• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 72
  • 36
  • 5
  • Tagged with
  • 100
  • 78
  • 23
  • 22
  • 21
  • 20
  • 20
  • 17
  • 17
  • 17
  • 16
  • 16
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Sécrétion du précurseur de la protéine amyloïde par les plexus choroïdes : implications dans la neurogenèse adulte et la maladie d'Alzheimer / Secretion of the amyloid precursor protein by the choroid plexus : implications on adult neurogenesis and Alzheimer's disease

Arnaud, Karen 23 September 2016 (has links)
Le vieillissement et la dégénérescence du cerveau, associés à des déficits cognitifs, comportementaux et neurologiques, représentent aujourd'hui un problème majeur de santé publique. L'une des principales maladies liées à l'âge est la maladie d'Alzheimer (MA). L'une des caractéristiques de la MA est l'apparition de plaques amyloïdes, résultant de l'agrégation du peptide ßA4. Physiologiquement, le précurseur de la protéine amyloïde (APP) est clivé par une alpha-sécrétase qui génère un fragment soluble de l'APP (sAPP), important pour la formation de nouvelles cellules nerveuses (neurogenèse). Ce clivage en prévient deux autres, par les béta- et gamma-sécrétases, impliqués dans la MA, et conduisant à la formation du ßA4 toxique. Une analyse du plexus choroïde (PCh) a mis en évidence la forte expression de l’APP par cette structure cérébrale. Le PCh est une structure facilement accessible et produisant le liquide cérébro-spinal : son impact peut donc être répercuté à l’ensemble du cerveau. Il pourrait être une source cérébrale importante d’APP, et contribuer fortement à la pathologie. Mon projet de thèse s'inscrivait dans la possibilité de réguler génétiquement l'expression des formes sauvages et mutées de l'APP au niveau de cette source, et suivre les conséquences sur la neurogenèse adulte et la formation des plaques amyloïdes, marqueur histopathologique de la MA. Par l’utilisation de la thérapie génique pour moduler l’expression de l’APP dans les PCh, nous avons confirmé l’importance de l’APP soluble provenant des PCh dans la neurogenèse adulte. Les PCh semble être une source importante d’APP dans le cerveau, et pourraient avoir un rôle clé dans la maladie d’Alzheimer. / Aging and degeneration of the brain with cognitive decline and neurologic symptoms are major individual and societal problems. The major age-related brain degeneration disease is Alzheimer’s disease (AD) with about 40 million people affected in 2015.Physiologically, the Amyloid Precursor Protein (APP) is cleaved by an alpha-secretase, releasing soluble APP (sAPP) an important regulator of adult neurogenesis. This cleavage prevents two others in positions beta and gamma that generate the ßA4 toxic peptide, a hallmark of Alzheimer Disease.Next generation RNA-sequencing has revealed that APP is the 16th most expressed genes in the choroid plexus (CP), suggesting that it may be a major source of sAPP and ßA4 in the cerebrospinal fluid (CSF). If so, adult neurogenesis in the SVZ and hippocampus may be regulated by the choroid plexus and impeded in mutations favoring ßA4 production. My thesis project fell under the possibility to regulate App expression in the CP, and follow consequences on adult neurogenesis and plaques formation in AD. Using viral vectors to modulate App expression in the CP, we confirmed the importance of sAPP coming from CP in adult neurogenesis. With so, CP seems to be an important source of APPin the brain, and could have a key role in AD.
22

Rôle de la Sémaphorine 3B dans l’orientation des divisions des progéniteurs au cours de la neurogenèse chez les vertébrés / Semaphorin 3B functions in progenitor cell division during neurogenesis in vertebrates

Reynaud, Florie 12 December 2016 (has links)
Au cours de la mitose, la ségrégation des chromatides, la partition du matériel cytoplasmique entre cellules filles et leur position relative se fait selon un plan qui est préfiguré par la plaque métaphasique. Ainsi, l'orientation de ce plan est un processus crucial pour le contrôle du destin des cellules, pour la morphogenèse durant l'embryogenèse et pour l'homéostasie tissulaire. Jusqu'à aujourd'hui, les mécanismes intrinsèques impliqués dans le positionnement du plan de division ont reçu beaucoup d'attention. En revanche, peu d'études ont exploré l'implication de signaux extracellulaires dans l'orientation du plan de division. Pourtant, l'axe des divisions cellulaires dont la position est souvent stéréotypée est largement associé aux axes de polarités du tissu. Au cours de ma thèse, je me suis demandé si des signaux extracellulaires capables de délivrer des informations de position spatiale aux cellules dans le cadre de leur migration, de leur différenciation morphologique, ou de leur polarisation, pouvaient influencer l'orientation des divisions cellulaires. En particulier, je me suis intéressée aux facteurs impliqués dans le guidage axonal à travers l'étude des mitoses des progéniteurs neuraux chez l'embryon de souris. Dans la moelle épinière en développement, les progéniteurs neuraux effectuent leur division au contact du canal central, lequel renferme le liquide céphalo-rachidien (LCR), une source de nombreux facteurs extracellulaires comme les morphogènes. Nous avons montré que la présence de molécules du LCR était nécessaire pour une orientation appropriée du plan de divisions des progéniteurs neuraux localisés au contact du canal central. Priver les progéniteurs neuraux de LCR par l'ouverture du tube neural ou provoquer génétiquement l'obstruction du canal central affecte les proportions de divisions planaires et obliques. Nous avons identifié la protéine Sémaphorine 3B, secrétée par les cellules de la plaque du plancher et les plexus choroïdes, comme un signal extrinsèque contrôlant l'orientation des divisions des progéniteurs neuraux dans la moelle épinière. L'invalidation génétique de Sema3B chez la souris phénocopie la perte d'accès au LCR des progéniteurs. Une application exogène de Sema3B sur des embryons dont le tube neural a été ouvert compense la déficience de LCR. Nous avons pu montrer que Sema3B se lie à ses récepteurs Neuropilines à la surface apicale des progéniteurs mitotiques et agit sur l'architecture des microtubules via l'activation de la voie GSK3/CRMP2, voie initialement mise en évidence dans le contexte du guidage axonal. Afin d'identifier de nouveaux facteurs influençant le positionnement du fuseau mitotique en réponse à ce facteur de guidage, une analyse transcriptomique des progéniteurs neuraux des mutants Sema3B-/- a été réalisée et des gènes candidats dérégulés en contexte d'invalidation de Sema3B ont été considérés. Durant la seconde partie de ma thèse, j'ai exploré l'implication du gène Norbin/Neurochondrin. De manière intéressante, le knock- down de Norbin dans les cellules HeLa altère l'orientation du fuseau mitotique. L'ensemble de ces travaux révèle donc la contribution d'une large famille de signaux topographiques jusqu'à présent inexplorée, dans l'orientation des divisions cellulaires et ouvre un large champ d'investigation passionnant concernant leur action moléculaire et cellulaire dans la neurogenèse et la morphogenèse / During development, the orientation of cell division is crucial to correctly organize andshape tissues and organs and also to generate cellular diversity. As cell mitosis proceeds, thesegregation of chromatids and cytoplasmic material occurs along a division axis. Itsorientation largely determines the relative position of daughter cells and the partition ofmother cell subcellular domain between them. The orientation of the cell division isprefigured by the position of a complex microtubule-based scaffold, the mitotic spindle.Until now, the intrinsic molecular machinery positioning the mitotic spindle and its couplingto cell polarities have been study in details. In contrast, the contribution of extracellularsignals to cell division orientation is less characterised. My research shows that these signalsin the CSF contribute to the orientation of cell division in neural progenitors. Removal theCSF cues by opening the neural tube or by genetic engineering affects the proportion ofplanar and oblique divisions. We identified Semaphorin 3B (Sema3B), released from thefloor plate and the nascent choroid plexus, as an important actor in this extrinsic control ofprogenitor division. Knockout of Sema3B phenocopies the loss of progenitor access to CSF.Delivery of exogenous Sema3B to progenitors in living embryos compensates this deficiency.We showed that Sema3B binds to Neuropilin receptors at the apical surface of mitoticprogenitors and exerts its effect through GSK3b activation and subsequent inhibition of themicrotubule stabilizer CRMP2. Thus extrinsic signaling mediated by Semaphorins directs theorientation of progenitor division in neurogenic zones.In order to identify new factors implicated in Sema3B-dependant mitotic spindleposition, we performed a transcriptomic analysis of Sema3B -/- neural progenitors. Severalderegulated candidate genes were considered. In the second part of my thesis, I focus onone of this, Norbin/Neurochondrin. Interestingly, the invalidation of Norbin/Neurochondrinalters the orientation of the mitotic spindle in HeLa cells.My PhD work reveals the contribution of a large family of topographic cues known tofunction in axon guidance has a novel role in the orientation of cell division
23

Dissecting the functional and morphological contributions of the glucocorticoid receptor gene in neural progenitor cells of the hippocampus / Dissection des rôles fonctionnels et morphologiques du récepteur des glucocorticoïdes dans les précurseurs neuronaux de l'hippocampe

Wong, Alana Tamar 30 September 2014 (has links)
La libération d'hormones glucocorticoïdes (GC), en réponse au stress, est un mécanisme important du contrôle de la neurogenèse chez l'adulte. Une question non résolue est de savoir si ces hormones agissent directement sur les précurseurs neuronaux (NPCs) ou indirectement, en agissant sur d'autres types cellulaires, modifiant la libération de facteurs de croissance ou l'activité de réseaux neuronaux. Afin de répondre à cette question, nous avons développé un modèle murin dans lequel le gène du récepteur des GC (GR) est invalidé, de façon inductible, dans les précurseurs neuraux adultes. Nous avons montré qu'en présence ou en absence du GR, un traitement chronique avec des GC affecte de façon similaire la différentiation et la survie des neurones nés chez l'adulte. L'effet connu des GC sur la suppression de la neurogenèse adulte n'est donc pas du à une action directe de ces hormones sur les NPCs. L'absence du GR n'affecte pas non plus le comportement des souris mutantes lorsque les GC circulent à un niveau de base. En revanche, un traitement chronique avec des GC induit chez les animaux contrôles un phénotype anxieux (observé dans les tests de novelty-suppressed feeding, light/dark box, and elevated O-maze) alors que les animaux mutés sont préservé de ce changement comportemental. De façon similaire, un traitement chronique avec des GC facilite l'apprentissage des souris contrôles lors d'un test d'apprentissage par la peur. L'invalidation du gène GR dans les NPC bloque cet effet. L'apprentissage des souris. Ces résultats précisent le rôle du GR dans le contrôle de la neurogenèse dans l'hippocampe adulte et dans la modulation des comportements de type anxieux. / Stress hormones are known as one of the strongest and most ecologically relevant mediators of adult neurogenesis. A lingering question in adult neurogenesis is whether these hormones, known as glucocorticoids (CG), act directly on neural progenitor cells (NPCs), or indirectly through secreted factors or changes in network activity. To address these unknowns, we generated a transgenic mouse model whose GC receptors (GRs) could be inducibly inactivated specifically in NPCs. We investigated the effect of this cell-specific GR knockout model on hippocampal survival and differentiation and found them to be similarly affected by chronic GC treatment compared to controls. This implies that GC-suppressed neurogenesis and its impact on morphology is indirect, and GR in other cells may be mediating the effects. Furthermore, mice with GR inactivation in newborn neurons behaved similarly to controls in all tasks observed under basal levels of GC. When mice were chronically treated with GC, however, controls exhibited an anxious phenotype, whereas transgenic mice behaved like untreated control groups in all anxiety measures except latency to feed in NSF. Neither GC nor inactivation of GR in adult-born neurons altered depression-like behaviors in the forced swim test, nor percent freezing in contextual fear discrimination. Lastly, we found that GC increased the rate of learning in 1-trial contextual fear conditioning, an effect not mediated by reducing GR signaling in the neurogenic pool. These results highlight the functional contributions of adult neurogenesis as well as how their GRs mediate anxiety-relevant behaviors irrespective of suppressed neurogenesis.
24

Roles of retinoic acid signaling in regulating nervous system development in the cephalochordate amphioxus (Branchiostoma lanceolatum) / Rôle de l'acide rétinoïque dans le développement du système nerveux de l'amphioxus cephalochordate (Branchiostoma lanceolatum)

Zieger, Elisabeth 30 March 2016 (has links)
Le système nerveux est responsable de l’interconnexion interne des animaux multicellulaires. Il leur permet en effet d’intégrer les activités physiologiques de leurs différentes composantes en une seule entité fonctionnelle, capable d’interagir avec son environnement. L’évolution et le développement des systèmes nerveux complexes comptent parmi les questions les plus fascinantes de la recherche en biologie. Afin de mettre en place une diversité de types de cellules neurales et de connexions neurales, les animaux métazoaires ne déploient qu’un nombre étonnamment réduit de signaux développementaux. C’est l’intermodulation dynamique de ces signaux qui va pouvoir induire un patron spatial d’identités et de comportements cellulaires distincts. L’acide rétinoïque (AR) est une petite molécule diffusible dérivée de la vitamine A qui contribue à la mise en place des axes du système nerveux central des vertébrés et est un régulateur crucial de la différentiation neuronale. D’autre part, il a été montré que les signaux à l’AR affectaient le phénotype de neurotransmetteurs exhibé par des sous-populations neuronales et jouent des rôles divers dans la morphogenèse du système nerveux périphérique issu des placodes crâniennes et des cellules des crêtes neurales. Néanmoins, bien que le rôle de l’AR dans la régionalisation du système nerveux central ait été étudié de manière extensive, nous en savons beaucoup moins au sujet de l’action de l’AR sur le développement du système nerveux périphérique, sur l’établissement des différentes identités de neurotransmetteurs, ou quant à comment ces fonctions ont évolué. Bien qu’initialement considéré comme spécifique aux vertébrés, un volume croissant de données indique désormais que l’AR serait impliqué dans le développement du système nerveux de divers taxons, tels que les cnidaires, les mollusques gastropodes ainsi que les cordés invertébrés. En particulier, l’amphioxus, céphalocordé dont l’évolution est lente, est connu pour posséder un système de signalisation à l’AR semblable à celui des vertébrés. Le génome de l’amphioxus présente un haut degré de conservation de sa synténie par rapport à celui des vertébrés et exhibe relativement peu de pertes ou de duplications indépendantes de ses gènes développementaux. Par conséquent, l’embryogenèse ainsi que la morphologie de l’amphioxus ressemble par bien des points à celles des vertébrés, ce qui facilite l’identification des traits ancestraux et dérivés et en fait donc un modèle approprié à la recherche comparative. Cette étude vise à fournir une description détaillée de différentes populations neurales au sein du système nerveux périphérique de l’amphioxus et d’explorer les rôles joués par l’AR dans ce processus. À cette fin, des analyses d’expression de gènes et d’immunohistochimie ont été utilisées, en vue d’identifier les différentes sous-populations de progéniteurs et les différents types de cellules neurales. De plus, les niveaux de signaux à l’AR ont été altérés pharmacologiquement à différents stades de développement de l’amphioxus, pour déterminer leurs effets sur la formation des populations neurales identifiées, ainsi que sur les patrons de prolifération et d’apoptose. Les résultats inclus dans ce travail révèlent la présence de différentes populations de cellules neurales chez l’amphioxus et mettent en lumière leur vraisemblable relation phylogénétique avec les structures leur correspondant chez les vertébrés. Par ailleurs, différents rôles contexte-dépendants de la signalisation à l’AR on été documentés, incluant la mise en place de frontières discrètes dans le système nerveux central et l’ectoderme de l’embryon d’amphioxus, et la régulation du développement des progéniteurs neuraux tardifs dans le système nerveux périphérique de manière spécifique à leur type cellulaire. / The nervous system provides internal interconnection to multi-cellular animals. It enables them to integrate the physiological activities of their different components into one functional entity that can successfully interact with its environment. The evolution and development of complex nervous systems is one of the most fascinating questions of biological research. In order to generate a diversity of neural cell types and neural connections, metazoan animals deploy a surprisingly small number of instructive developmental signals, which crosstalk in a dynamic manner to induce a spatial pattern of cell identities and behaviors.Retinoic acid (RA) is a small diffusible signaling molecule derived from vitamin A that contributes to the axial patterning of the vertebrate central nervous system and functions as a crucial regulator of neuronal differentiation. Moreover, RA signals have been shown to affect the neurotransmitter phenotype of specific neuronal subsets and play distinct roles during the morphogenesis of the peripheral nervous system from cranial placodes and neural crest. However, while the role of RA signaling in the regionalization of the central nervous system has been extensively studied, much less is known about its actions in cranial placodes and neural crest derivatives, in the establishment of different neurotransmitter identities, or how these functions might have evolved.Albeit initially believed to be vertebrate-specific, a growing body of evidence now implicates RA signaling in the nervous system development of various distant taxa, such as cnidarians, gastropod mollusks and invertebrate chordates. In particular, the slow evolving cephalochordates, commonly called amphioxus, are known to possess a vertebrate-like RA signaling system. The amphioxus genome has retained a high degree of synteny with vertebrate genomes and exhibits relatively little losses or independent duplications of developmental genes. Accordingly, amphioxus embryogenesis and morphology also display remarkable similarity with vertebrates, which allows the identification of ancestral as well as newly derived traits and makes these animals attractive models for comparative research.This study aims at providing a detailed description of the development of different neural cell populations in the central and peripheral nervous system of amphioxus and explores the roles played by RA signaling during this process. To this end, gene expression analyses and immunohistochemistry were used, in order to identify distinct subsets of neural progenitors and neural cell types. Furthermore, RA signaling levels were manipulated pharmacologically at different stages of amphioxus development, to assess their effects on the formation of identified neural cell populations as well as on proliferation and apoptosis patterns. The results presented in this work reveal the presence of distinct neural cell populations in amphioxus and highlight their likely phylogenetic relationships with corresponding structures in other chordates. In addition, several context-dependent functions of RA signaling were documented, which include the generation of discrete boundaries in the central nervous system and ectoderm of amphioxus embryos as well as the cell type-specific regulation of late neural progenitor development in the peripheral nervous system. The observed roles of RA signaling in the amphioxus neural tube and peripheral nervous system correspond well to those reported for the vertebrate hindbrain and cranial placodes, supporting the current hypothesis of a close evolutionary relationship between these structures and suggesting that the involvement of RA signals in their development is a conserved feature of chordates.
25

Rôle de la neurogenèse hippocampique adulte dans la stabilisation à long terme de la mémoire spatiale / Role of adult hippocampal neurogenesis in spatial memory stabilization

Lods, Marie 06 December 2018 (has links)
La neurogenèse hippocampique adulte fait référence à la création de neurones durant la vie adulte dans le gyrus denté de l’hippocampe. Une décennie de recherche a démontré l’importance de cette neurogenèse chez l’adulte dans les processus de mémoire. En particulier, la neurogenèse adulte est nécessaire à l’apprentissage spatial et l’apprentissage spatial lui-même augmente la survie et accélère le développement d’une population de nouveaux neurones immatures. Cependant, l’implication de ces nouveaux neurones « sélectionnés » par l’apprentissage dans le devenir de la mémoire reste incertaine. En conséquence, le travail de cette thèse porte sur l’étude du rôle de ces nouveaux neurones dans les processus de mémoire spatiale à long terme résultants de l’apprentissage d’origine, comme la restitution et la reconsolidation de la mémoire. En effet depuis plus d’un siècle, on sait qu’un apprentissage n’induit pas immédiatement une mémoire stable. Les souvenirs sont tout d’abord fragiles, puis vont au fil du temps devenir stables et insensibles aux perturbations via un processus appelé «consolidation de la mémoire». Cependant ce processus n’est pas immuable ; les souvenirs établis peuvent à nouveau devenir labiles lorsqu'ils sont rappelés ou réactivés lors d’une restitution de la mémoire. Cette déstabilisation d’une mémoire consolidée nécessite alors un nouveau processus de stabilisation appelé « reconsolidation de la mémoire ». Depuis sa découverte, la reconsolidation a vivement intéressé le milieu de la recherche sur la mémoire et un nombre croissant d’études a cherché à comprendre les mécanismes sous-tendant cette reconsolidation, en particulier dans l'hippocampe. Étonnamment, le processus de reconsolidation n’a été que très peu envisagé dans le contexte de la neurogenèse hippocampique adulte.Nous avons tout d’abord mis au point un protocole de reconsolidation de la mémoire spatiale du rat dans le labyrinthe aquatique de Morris. Cela nous a permis de montrer que les néo-neurones nés avant l’apprentissage étaient activés lors de la reconsolidation de la mémoire spatiale, ce qui n’est pas le cas des neurones issus du développement précoce. Afin de pouvoir établir une relation de causalité entre néo-neurones et processus de reconsolidation, nous avons ensuite développé un outil basé sur la technique pharmacogénétique des DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) couplés à un rétrovirus. Cet outil permet de marquer les néo-neurones à leur naissance et de les manipuler (inhiber ou stimuler l’activation) plus tard, lors des processus de mémoire à long terme. Nous avons observé que les néo-neurones immatures modifiés par l’apprentissage étaient non seulement activés par la reconsolidation mais également nécessaire à celle-ci, à l’inverse des néo-neurones matures au moment de l’apprentissage. Nous avons enfin montré que stimuler l’activité des néo-neurones au moment de la restitution de la mémoire améliorait les performances des rats dans le labyrinthe aquatique.Ensemble, ces résultats de thèse soulignent le rôle critique de la neurogenèse hippocampique adulte dans la stabilisation de la mémoire spatiale à long terme. / Adult hippocampal neurogenesis refers to the creation of neurons during adult life in the dentate gyrus of the hippocampus. A decade of research has demonstrated the importance of this adult neurogenesis in memory processes. In particular, adult neurogenesis is necessary for spatial learning and spatial learning itself increases survival and accelerates the development of a population of new immature neurons. However, the involvement of these new modified / promoted / amplified / selected neurons by learning in the fate of memory remains unclear. The work of this thesis focuses on the study of the role of these new neurons in the long-term spatial memory processes resulting from the original learning, such as retrieval and reconsolidation.For more than a century, we know that learning does not immediately induce a stable memory. Memories are fragile at first and then become stable and insensitive to interferences over time, through a process called “memory consolidation". However this process is not immutable; the established memories can become labile again when they are reactivated during memory recall. This destabilization of a consolidated memory requires then a new stabilization process called "memory reconsolidation". Since its discovery, the reconsolidation process has strongly interested the memory research community and a growing number of studies have sought to understand the mechanisms underlying this reconsolidation, particularly in the hippocampus. Surprisingly, the process of reconsolidation has rarely been considered in the context of adult hippocampal neurogenesis.We first developed a protocol for memory reconsolidation of spatial memory in the Morris water maze in rats. This allowed us to show that new neurons born before learning were activated during reconsolidation of spatial memory, which is not the case of the neurons generated during the early development. In order to establish a causal relationship between new neurons and reconsolidation, we developed a tool based on the pharmacogenetic technique of DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) coupled with a retrovirus. This tool is used to tag new neurons at their birth and manipulate them (inhibit or stimulate their activation) later during long-term memory processes. We observed that the population of neurons that were immature at the time of learning are not only activated by but also necessary for reconsolidation, unlike new neurons that were mature at the time of learning. We have finally shown that stimulating the activity of new neurons during retrieval improves the performance of rats in the water maze.All together, these thesis results highlight the critical role of adult hippocampal neurogenesis in long-term spatial memory stabilization.
26

Etude de la neurogenèse hippocampique adulte et des fonctions cognitives chez trois souris modèles de déficience intellectuelle / Adult Hippocampal Neurogenesis and Cognitive Functions in Three Mouse Models of Intellectual Disability

Castillon, Charlotte 12 March 2018 (has links)
Les dernières années témoignent d'une remarquable accélération dans la compréhension des facteurs génétiques impliqués dans la déficience intellectuelle (DI) et de nombreux gènes responsables ont été identifiés. Néanmoins, les mécanismes cellulaires et moléculaires sous-jacents à la DI sont encore mal connus. Une hypothèse attractive est que les mutations à l’origine de DI affectent la neurogenèse hippocampique adulte (NGA), une forme de plasticité qui joue un rôle crucial dans la mémoire. L'objectif de ce projet est d’entreprendre une analyse comparative de la NGA chez trois modèles murins de pathologies d’origine génétique, menant à une DI sévère, impliquant des gènes localisés sur le chromosome X et participant à différentes voies de signalisation susceptibles de moduler la NGA : le syndrome de Coffin-Lowry (gène rsk2), la dystrophie musculaire de Duchenne (gène dmd) et une DI liée au gène pak3. Mes recherches actuelles montrent que ces trois modèles présentent des déficits cognitifs dépendants de l’hippocampe, dont des altérations de la fonction de séparation de patterns. Nous avons également mis en évidence des altérations de la NG adulte, avec, entre autres, des altérations du recrutement des jeunes neurones par l’apprentissage qui pourraient contribuer aux déficits cognitifs observés en particulier dans la fonction de séparation de patterns. Toutefois, selon les gènes en cause, les déficits ne sont pas observés dans les mêmes étapes de la NGA ni dans les mêmes situations comportementales. L’ensemble de ces résultats laisse donc suggérer que chacun des gènes étudiés pourrait jouer un rôle différent dans la NGA, mais qu'in fine des altérations de cette forme de plasticité contribuent, au moins en partie, aux déficits cognitifs associés à la DI dans les trois modèles. Ensemble, ces résultats apportent des informations supplémentaires qui seront directement pertinentes pour d’autres pathologies neuro-développementales conduisant à des déficits cognitifs liés à des altérations de la NG, et pourraient ouvrir de nouvelles pistes thérapeutiques. / Recent years have shown a remarkable acceleration in the understanding of genetic factors involved in intellectual disability (ID) and many genes responsible have been identified. However, the cellular and molecular underlying mechanisms are still poorly understood. An attractive hypothesis is that mutations causing ID may affect adult hippocampal neurogenesis (ANG), a form of plasticity that plays a crucial role in learning and memory. The objective of this project was to undertake a comparative analysis of adult hippocampal neurogenesis in three mouse models of genetic diseases involving genes located on the X chromosome and participating in different signalling pathways that may modulate ANG: the Coffin-Lowry syndrome (rsk2 gene), Duchenne muscular dystrophy (dmd gene) and ID due to mutation of the pak3 gene. My current research shows that these three models present hippocampal dependent cognitive deficits. Among these deficits, major deficits in spatial pattern separation function have been highlighted. We also showed specific alterations of basal ANG, together with alterations in the recruitment of young newborn neurons by learning that could contribute to the observed cognitive deficits, in particular in pattern separation function. However, depending on the genes involved, the deficits are not observed in the same steps of adult NG and in the same behavioural situations. In all, the results suggest that each of the genes plays a different role in ANG, but finally that alterations of this form of plasticity may contribute to the cognitive deficits associated with ID in the three models. Together, these results provide additional information that will be directly relevant to other neurodevelopmental disorders leading to cognitive deficits related to NG alterations, and could open new therapeutic tracks.
27

Rôle de microARN-9 dans la régulation de l'état cellule souche neural chez l'adulte / Role of MicroRNA-9 in Regulating Adult Neural Stem Cell State

Katz, Shauna 13 November 2015 (has links)
Depuis la découverte fondatrice de la présence de cellules souches neurales (NSCs) multipotentes dans le cerveau des mammifères adultes, plusieurs études ont révélé l'importance de ces cellules pour le maintien de l'homéostasie du cerveau. Notamment, des perturbations dans l'équilibre des NSCs ont été associées au vieillissement et à diverses pathologies neurologiques, ce qui suscite un intérêt croissant pour ces cellules. Les NSCs résident dans des zones germinatives restreintes; dans le rongeur adulte les NSCs sont localisées principalement dans deux niches neurogéniques bien établies dans le télencéphale, ce qui contraste avec la situation chez le poisson zèbre adulte où des niches de NSCs actives ont été identifiées dans tout le cerveau, y compris dans le télencéphale dorsal (pallium). Aussi bien chez les rongeurs que le poisson zèbre, les NSCs adultes présentent les deux propriétés fondamentales des cellules souches: elles sont multipotentes, c’est-à-dire capables de générer de nouveaux neurones et cellules gliales, et ont la capacité d'auto-renouvellement à long terme, permettant leur maintien au long de la vie adulte. A la différence des progéniteurs neuronaux embryonnaires (NPCs), une caractéristique de ces NSCs adultes est qu’elles résident la plupart du temps dans un état d’arrêt réversible du cycle cellulaire appelé quiescence. Cet état, activement maintenu, est censé protéger la réserve de NSCs d’un épuisement prématuré, d’où l'importance de déchiffrer les mécanismes moléculaires de régulation de l’équilibre entre la quiescence et l’activation de ces cellules vers la neurogenèse.Les microARNs constituent une classe de petits ARN régulateurs, qui jouent un rôle crucial dans le contrôle d’états cellulaires et des transitions entre ces états. Ils sont capables de réagir rapidement à des signaux à la fois intra- et extracellulaires, qui peuvent moduler aussi bien leur niveau d’expression que leur impact fonctionnel, leur donnant ainsi la capacité de coordonner diverses signaux pour induire des transitions d'état cellulaire. Un microARN en particulier, miR-9, a été montré comme jouant un rôle clé et conservé au cours de la neurogenèse embryonnaire. L'objectif principal de cette étude était d'étudier, pour la première fois, un rôle potentiel de miR-9 dans le contrôle des NSCs, dans un contexte physiologique dans lequel la majorité des NSCs sont quiescentes - le pallium adulte du poisson zèbre. Nous avons constaté que miR-9 est exclusivement exprimé dans une sous-partie des NSCs, met vraisemblablement en évidence un « sous-état » de quiescence. De plus, nous avons pu montrer que miR-9 ancre les NSCs dans un état de quiescence, en partie via le maintien d’un niveau élevé d’activation de la voie de signalisation Notch. De façon surprenante, nous avons également identifié une modification de la localisation subcellulaire de miR-9 au cours du temps: alors que miR-9 est localisé dans le cytoplasme de tous les NPCs chez l’embryon ou le juvenile, chez le poisson adulte miR-9 est localisé dans le noyau des NSCs en quiescence. En outre, la localisation nucléaire de miR-9 dans ces NSCs quiescentes est fortement corrélée avec la localisation nucléaire des protéines effectrices des microARNs, les protéines Argonaute (Agos), ce qui suggère un rôle fonctionnel de miR-9 dans le noyau. De fait, l'élucidation du mécanisme de transport nucléo-cytoplasmique de miR-9/Agos nous a permis de manipuler leur localisation, et d’observer un impact de cette localisation sur l’état de quiescence vs activation des NSCs. L’ensemble des résultats de cette étude identifient ainsi miR-9 comme un régulateur essentiel de la quiescence des NSCs, fournissent pour la première fois un marqueur moléculaire d’un sous-état de quiescence spécifique du cerveau adulte et suggèrent l'implication d'un mécanisme inédit de régulation par les microARNs dans le maintien de l'homéostasie des réserves de NSCs. / Since the seminal discovery of multipotent neural stem cells (NSCs) in the adult mammalian brain, multiple studies have unravelled the importance of these cells for maintaining brain homeostasis. Notably, disturbances in NSC equilibrium have been linked to physiological aging and various neurological pathologies thus sparkling interest in harnessing them for use in regenerative medicine. NSCs reside in distinct germinal zones; in the adult rodent brain NSCs are found mainly in two well-established neurogenic niches in the telencephalon which contrasts with the situation in the adult zebrafish where NSC niches are widespread throughout the brain, including in the dorsal telencephalon or pallium. In both the rodent and zebrafish brains, adult NSCs display fundamental stem cell properties: they are multipotent, e.g. capable of generating new neurons and glia throughout adult life, and have the capacity for long-term self-renewal. Similar to stem cells in other adult tissues, and in contrast to embryonic neural progenitors, a hallmark of these adult NSCs is their relative proliferative quiescence. Quiescence is an actively maintained, reversible state of cell-cycle arrest and generally thought to protect against exhaustion of the stem cell pool. In line with this, disrupting the balance between quiescent and activated NSCs leads to a premature depletion or permanent cell-cycle exit of these cells highlighting the importance of fully deciphering the mechanisms regulating this equilibrium. microRNAs, a major class of small pleiotropic regulatory RNAs, play crucial roles in reinforcing developmental and transitional states. They are capable of reacting to environmental cues, both cell-intrinsic and -extrinsic, with varying outputs such as changing their regulatory functions and expression levels, thus enabling them to coordinating diverse cues to induce cell-state transitions. One microRNA in particular, miR-9, is a highly conserved master regulator of embryonic neurogenesis and in the embryonic zebrafish brain, it establishes a primed neural progenitor state enabling them to quickly respond to cues to differentiate or proliferate. The primary goal of this study was to investigate, for the first time, a potential role for miR-9 in influencing NSC state in a physiological context in which the majority of NSCs are quiescent – the adult zebrafish pallium. We found that miR-9 is exclusively expressed in quiescent NSCs and highlights a “sub-state” within quiescence. In part by maintaining high levels of Notch signalling, a known quiescence promoting pathway, miR-9 anchors NSCs in the quiescent state. Strikingly, we identified a conserved age-associated change in the subcellular localization of the mature miR-9 from the cytoplasm of all embryonic/juvenile neural progenitors to the nucleus of a subset of quiescent NSCs in the adult brain. Moreover, the nuclear expression of miR-9 in these quiescent NSCs is highly correlated with nuclear localization of the microRNAs effector proteins Argonaute (Agos), suggestive of a functional role for nuclear miR-9. Indeed, the elucidation of the nuclear-cytoplasmic transport mechanism of miR-9/Agos enabled us to manipulate their nuclear to cytoplasmic ratios which directly impacted NSC state. Altogether, these results identify miR-9 as a crucial regulator of NSC quiescence, provide for the first time a molecular marker for an age-associated sub-state of quiescence and suggest the involvement of a novel and unconventional microRNA-mediated mechanism to maintain homeostasis of NSC pools.
28

Une approche développementale de l' hétérogénéité fonctionnelle des neurones pyramidaux de CA3 / Functionnal heterogeneity of CA3 pyramidal neurons : a developmental approach

Marissal, Thomas 18 January 2012 (has links)
Les neurones pyramidaux de la région CA3 de l'hippocampe présentent une diversité morphologique, physiologique, biochimique, mais aussi fonctionnelle. Une partie des caractéristiques des neurones étant acquise pendant le développement, nous avons formulé l'hypothèse que la diversité morpho-fonctionnelle des neurones pyramidaux serait déterminée aux stades embryonnaires. Pour tester cette hypothèse, nous avons utilisé des souris transgéniques pour lesquelles l'expression d'un marqueur fluorescent (GFP) est conditionnée par la date de neurogenèse des neurones glutamatergiques. Nous avons enregistré l'activité des neurones en imagerie calcique et montré que les neurones pyramidaux nés le plus tôt déchargent pendant la phase d'initiation des activités épileptiformes générées par le blocage pharmacologique de la transmission GABAergique rapide. De plus, nous montrons que ces neurones précoces possèdent des propriétés morpho-physiologiques distinctes. Enfin, nous montrons que la stimulation de neurones pyramidaux nés tôt peut générer des activités épileptiformes à des stades immatures lorsqu'ils sont stimulés en groupe, et à des stades juvéniles lorsqu'ils sont stimulés individuellement. Ainsi nous démontrons qu'il existe un lien entre la date de neurogenèse et les propriétés morpho-fonctionnelles des neurones pyramidaux de CA3. / There is increasing evidence that CA3 pyramidal cells are biochemically, electrophysiologically, morphologically and functionally diverse. As most of these properties are acquired during development, we hypothesized that the heterogeneity of the morphofunctionnal properties of pyramidal cells could be determined at the early stages of life. To test this hypothesis, we used a transgenic mouse line in which we glutamatergic cells are labelled with GFP according to their birth date. Using calcium imaging, we recorded multineuron activity in hippocampal slices and show that early generated pyramidal neurons fire during the build-up phase of epileptiform activities generated in the absence of fast GABAergic transmission. Moreover, we show that early generated pyramidal neurons display distinct morpho-physiological properties. Finally, we demonstrate that early generated neurons can generate epileptiform activities when stimulated as assemblies at immature stages, and when stimulated individually at juvenile stages. Thus we suggest a link between the date of birth and the morpho-functional properties of CA3 pyramidal neurons.
29

Effet neuroprotecteur des progeniteurs endotheliaux tardifs sur un modèle d'ischémie cérébrale chez le rat. / Transplanted late endothelial progenitor cells as cell therapy product for stroke

Moubarik, Chahrazad 30 November 2012 (has links)
Les progéniteurs endothéliaux semblent offrir de nouvelles perspectives dans le traitement des pathologies ischémiques. Nos travaux portent sur l'étude des effets d'une transplantation d'une sous population homogène de progéniteurs endothéliaux dits tardifs, les ECFCs, sur un modèle d'occlusion de l'artère cérébrale moyenne (MCAO) transitoire chez le rat. 4x106 ECFCs cultivés à partir du sang de cordon humain ou 1ml de PBS ont été injectés en intraveineuse (IV) 24h après une MCAO d'une durée d'une heure chez les rats appartenant respectivement au groupe greffé et au groupe contrôle. On a pu mettre en évidence le passage des cellules greffées dans l'hémisphère cérébral ischémié par radiomarquage à l'oxinate d'indium 111 (111In) et marquage fluorescent au CM-Dil des ECFCs avant transplantation. Ceci a été confirmé par la visualisation d'ECFCs d'origine humaine en périphérie de la zone infarcie par marquages immunohistochimiques au MAB1281 et CD31. La transplantation d'ECFCs a augmenté significativement le taux de survie et a amélioré la récupération fonctionnelle des animaux. L'effet bénéfique observé est associé à une réduction du nombre de cellules apoptotiques ainsi qu'une augmentation de la densité capillaire et de la neurogenèse en périphérie de la zone lésée. Ces effets semblent corrélés à une surexpression en zone de pénombre de VEGF et IGF1 aux propriétés pro-angiogéniques et neurotrophiques, et à une diminution de l'expression d'un facteur pro-apoptotique proBDNF. De plus, nous avons montré que les ECFCs sont capables de sécréter des cytokines pro-angiogéniques. / Endothelial progenitor cells (EPCs) seem to be a promising option to treat patients with ischemic diseases. Here, we investigated the effects of late EPCs or Endothelial Colony-Forming Cells (ECFCs), a recently defined homogeneous subtype of EPCs, in a rat model of transient middle cerebral artery occlusion (MCAO). Either vehicle or 4.106 ECFCs, isolated from human cord blood, were intravenously injected 24h after 1 hour of MCAO in rats assigned to control and transplanted groups respectively. 111In-oxine-labeled ECFCs specifically homed to ischemic hemisphere and CM-Dil prelabeled ECFCs preferentially settled in the inner boundary of the core area of transplanted animals. The presence of human cells in rat brain sections was detected by immunohistochemical staining (MAB1281, CD31). We demonstrated that ECFCs injected 24h after MCAO improved functional recovery and survival rate. Beneficial effect was associated with an increase in growth factors expression in homogenates from ischemic area (VEGF, IGF-1, proBDNF) and may be related to the secretion by ECFCs of soluble factors that could affect apoptosis, vascular growth and neurogenesis. These findings raise perspectives for the use of ECFCs as a well-characterized cell therapy product for optimal therapeutic outcome after stroke.
30

Lésion cervicale de la moelle épinière : vulnérabilité cérébrale et stratégie réparatrice spinale

Felix, Marie-Solenne 05 November 2012 (has links)
Les lésions spinales cervicales sont au premier rang de l'épidémiologie des lésions spinales. Ce type de lésion porte atteinte aux commandes motrices bulbo-spinales respiratoires et entraîne des insuffisances respiratoires mettant en jeu le pronostic vital du patient. L'étude de la récupération spontanée de la fonction respiratoire et le développement de stratégies réparatrices constituent un enjeu majeur. Les stratégies thérapeutiques par greffe de cellules engainantes olfactives sont les plus prometteuses. Nous exposons l'effet de la transplantation de cellules gliales olfactives d'origine nasale au niveau spinal dans le cadre d'une hémi-contusion spinale cervicale chez le rat adulte et de la récupération de la fonction respiratoire. Nous montrons également, pour la première fois, qu'une lésion spinale a un impact sur les foyers de neurogenèse du cerveau et qu'un phénomène de neuroprotection se met en place dans la medulla du tronc cérébral suite à une lésion spinale. Nos travaux se replaçent dans une thématique clinique très actuelle, riche en publications. Il est impératif de prendre en compte les conséquences sus-lésionnelles d'une lésion spinale notamment pour la médecine régénératrice. / Cervical spinal cord injuries are the most frequent type of spinal cord injury. It interrupts motor bulbospinal respiratory pathway inducing respiratory deficits bringing into play the vital diagnostic of patients. The study of spontaneous recovery of respiratory function and the development of reparing strategies are a major issue. Therapeutic strategies by olfactory enseathing cells are the most promising. We show the effect of nasal olfactory enseathing cells transplantation at the spinal level considering a cervical spinal cord hemicontusion in adult rat and the recovery of respiratory function. We also demonstrate, for the first time, that spinal cord injury has an impact on adult brain neurogenesis niches and that a neuroprotective phenomenon appears after spinal cord injury in the medulla of the brainstem. Our results concerns an actual clinical research theme, well-referenced in publications. It is of high importance to consider supralesional consequences of spinal cord injury, especially for the regenerative medicine

Page generated in 0.0414 seconds