• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 78
  • 9
  • 5
  • Tagged with
  • 132
  • 60
  • 49
  • 45
  • 37
  • 34
  • 32
  • 31
  • 25
  • 24
  • 19
  • 17
  • 16
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Percolation with Plasticity Materials and Their Neuromorphic Applications

Patmiou, Maria January 2021 (has links)
No description available.
122

Micromagnetic Study of Current Induced Domain Wall Motion for Spintronic Synapses

Petropoulos, Dimitrios-Petros January 2021 (has links)
Neuromorphic computing applications could be made faster and more power efficient by emulating the function of a biological synapse. Non-conventional spintronic devices have been proposed that demonstrate synaptic behavior through domain wall (DW) driving. In this work, current induced domain wall motion has been studied through micromagnetic simulations. We investigate the synaptic behavior of a head to head domain wall driven by a spin polarized current in permalloy (Py) nanostrips with shape anisotropy, where triangular notches have been modeled to account for edge roughness and provide pinning sites for the domain wall. We seek optimal material parameters to keep the critical current density for driving the domain wall at order 1011 A/m2.
123

Simulation of integrate-and-fire neuron circuits using HfO₂-based ferroelectric field effect transistors

Suresh, Bharathwaj, Bertele, Martin, Breyer, Evelyn T., Klein, Philipp, Mulaosmanovic, Halid, Mikolajick, Thomas, Slesazeck, Stefan, Chicca, Elisabetta 03 January 2022 (has links)
Inspired by neurobiological systems, Spiking Neural Networks (SNNs) are gaining an increasing interest in the field of bio-inspired machine learning. Neurons, as central processing and short-term memory units of biological neural systems, are thus at the forefront of cutting-edge research approaches. The realization of CMOS circuits replicating neuronal features, namely the integration of action potentials and firing according to the all-or-nothing law, imposes various challenges like large area and power consumption. The non-volatile storage of polarization states and accumulative switching behavior of nanoscale HfO₂ - based Ferroelectric Field-Effect Transistors (FeFETs), promise to circumvent these issues. In this paper, we propose two FeFET-based neuronal circuits emulating the Integrate-and-Fire (I&F) behavior of biological neurons on the basis of SPICE simulations. Additionally, modulating the depolarization of the FeFETs enables the replication of a biology-based concept known as membrane leakage. The presented capacitor-free implementation is crucial for the development of neuromorphic systems that allow more complex features at a given area and power constraint.
124

Growth and design strategies of organic dendritic networks

Ciccone, Giuseppe, Cucchi, Matteo, Gao, Yanfei, Kumar, Ankush, Seifert, Lennart Maximilian, Weissbach, Anton, Tseng, Hsin, Kleemann, Hans, Alibart, Fabien, Leo, Karl 05 March 2024 (has links)
A new paradigm of electronic devices with bio-inspired features is aiming to mimic the brain’s fundamental mechanisms to achieve recognition of very complex patterns and more efficient computational tasks. Networks of electropolymerized dendritic fibers are attracting much interest because of their ability to achieve advanced learning capabilities, form neural networks, and emulate synaptic and plastic processes typical of human neurons. Despite their potential for braininspired computation, the roles of the single parameters associated with the growth of the fiber are still unclear, and the intrinsic randomness governing the growth of the dendrites prevents the development of devices with stable and reproducible properties. In this manuscript, we provide a systematic study on the physical parameters influencing the growth, defining cause-effect relationships for direction, symmetry, thickness, and branching of the fibers. We build an electrochemical model of the phenomenon and we validate it in silico using Montecarlo simulations. This work shows the possibility of designing dendritic polymer fibers with controllable physical properties, providing a tool to engineer polymeric networks with desired neuromorphic features.
125

Exploring the column elimination optimization in LIF-STDP networks

Sun, Mingda January 2022 (has links)
Spiking neural networks using Leaky-Integrate-and-Fire (LIF) neurons and Spike-timing-depend Plasticity (STDP) learning, are commonly used as more biological possible networks. Compare to DNNs and RNNs, the LIF-STDP networks are models which are closer to the biological cortex. LIF-STDP neurons use spikes to communicate with each other, and they learn through the correlation among these pre- and post-synaptic spikes. Simulation of such networks usually requires high-performance supercomputers which are almost all based on von Neumann architecture that separates storage and computation. In von Neumann architecture solutions, memory access is the bottleneck even for highly optimized Application-Specific Integrated Circuits (ASICs). In this thesis, we propose an optimization method that can reduce the memory access cost by avoiding a dual-access pattern. In LIF-STDP networks, the weights usually are stored in the form of a two-dimensional matrix. Pre- and post-synaptic spikes trigger row and column access correspondingly. But this dual-access pattern is very costly for DRAM. We eliminate the column access by introducing a post-synaptic buffer and an approximation function. The post-synaptic spikes are recorded in the buffer and are processed at pre-synaptic spikes together with the row updates. This column update elimination method will introduce errors due to the limited buffer size. In our error analysis, the experiments show that the probability of introducing intolerable errors can be bounded to a very small number with proper buffer size and approximation function. We also present a performance analysis of the Column Update Elimination (CUE) optimization. The error analysis of the column updates elimination method is the main contribution of our work. / Spikande neurala nätverk som använder LIF-neuroner och STDP-inlärning, används vanligtvis som ett mer biologiskt möjligt nätverk. Jämfört med DNN och RNN är LIF-STDP-nätverken modeller närmare den biologiska cortex. LIFSTDP-neuroner använder spikar för att kommunicera med varandra, och de lär sig genom korrelationen mellan dessa pre- och postsynaptiska spikar. Simulering av sådana nätverk kräver vanligtvis högpresterande superdatorer som nästan alla är baserade på von Neumann-arkitektur som separerar lagring och beräkning. I von Neumanns arkitekturlösningar är minnesåtkomst flaskhalsen även för högt optimerade Application-Specific Integrated Circuits (ASIC). I denna avhandling föreslår vi en optimeringsmetod som kan minska kostnaden för minnesåtkomst genom att undvika ett dubbelåtkomstmönster. I LIF-STDPnätverk lagras vikterna vanligtvis i form av en tvådimensionell matris. Preoch postsynaptiska toppar kommer att utlösa rad- och kolumnåtkomst på motsvarande sätt. Men detta mönster med dubbel åtkomst är mycket dyrt i DRAM. Vi eliminerar kolumnåtkomsten genom att införa en postsynaptisk buffert och en approximationsfunktion. De postsynaptiska topparna registreras i bufferten och bearbetas vid presynaptiska toppar tillsammans med raduppdateringarna. Denna metod för eliminering av kolumnuppdatering kommer att introducera fel på grund av den begränsade buffertstorleken. I vår felanalys visar experimenten att sannolikheten för att införa oacceptabla fel kan begränsas till ett mycket litet antal med korrekt buffertstorlek och approximationsfunktion. Vi presenterar också en prestandaanalys av CUE-optimeringen. Felanalysen av elimineringsmetoden för kolumnuppdateringar är det huvudsakliga bidraget från vårt arbete
126

The effect of noise filters on DVS event streams : Examining background activity filters on neuromorphic event streams / Brusreduceringens inverkan på synsensorer : En studie kring brusreduceringens inverkan på händelseströmmar ifrån neuromorfiska synsensorer

Trogadas, Giorgos, Ekonoja, Larissa January 2021 (has links)
Image classification using data from neuromorphic vision sensors is a challenging task that affects the use of dynamic vision sensor cameras in real- world environments. One impeding factor is noise in the neuromorphic event stream, which is often generated by the dynamic vision sensors themselves. This means that effective noise filtration is key to successful use of event- based data streams in real-world applications. In this paper we harness two feature representations of neuromorphic vision data in order to apply conventional frame-based image tools on the neuromorphic event stream. We use a standard noise filter to evaluate the effectiveness of noise filtration using a popular dataset converted to neuromorphic vision data. The two feature representations are the best-of-class standard Histograms of Averaged Time Surfaces (HATS) and a simpler grid matrix representation. To evaluate the effectiveness of the noise filter, we compare classification accuracies using various noise filter windows at different noise levels by adding additional artificially generated Gaussian noise to the dataset. Our performance metrics are reported as classification accuracy. Our results show that the classification accuracy using frames generated with HATS is not significantly improved by a noise filter. However, the classification accuracy of the frames generated with the more traditional grid representation is improved. These results can be refined and tuned for other datasets and may eventually contribute to on- the- fly noise reduction in neuromorphic vision sensors. / Händelsekameror är en ny typ av kamera som registrerar små ljusförändringar i kamerans synfält. Sensorn som kameran bygger på är modellerad efter näthinnan som finns i våra ögon. Näthinnan är uppbyggd av tunna lager av celler som omvandlar ljus till nervsignaler. Eftersom synsensorer efterliknar nervsystemet har de getts namnet neuromorfiska synsensorer. För att registrera små ljusförändringar måste dessa sensorer vara väldigt känsliga vilket även genererar ett elektroniskt brus. Detta brus försämrar kvalitén på signalen vilket blir en förhindrande faktor när dessa synsensorer ska användas i praktiken och ställer stora krav på att hitta effektiva metoder för brusredusering. Denna avhandling undersöker två typer av digitala framställningar som omvandlar signalen ifrån händelsekameror till något som efterliknar vanliga bilder som kan användas med traditionella metoder för bildigenkänning. Vi undersöker brusreduseringens inverkan på den övergripande noggrannhet som uppnås av en artificiell intelligens vid bildigenkänning. För att utmana AIn har vi tillfört ytterligare normalfördelat brus i signalen. De digitala framställningar som används är dels histogram av genomsnittliga tidsytor (eng. histograms of averaged time surfaces) och en matrisrepresentation. Vi visar att HATS är robust och klarar av att generera digitala framställningar som tillåter AIn att bibehålla god noggrannhet även vid höga nivåer av brus, vilket medför att brusreduseringens inverkan var försumbar. Matrisrepresentationen gynnas av brusredusering vid högre nivåer av brus.
127

Mimicking biological neurons with a nanoscale ferroelectric transistor

Mulaosmanovic, Halid, Chicca, Elisabetta, Bertele, Martin, Mikolajick, Thomas, Slesazeck, Stefan 12 October 2022 (has links)
Neuron is the basic computing unit in brain-inspired neural networks. Although a multitude of excellent artificial neurons realized with conventional transistors have been proposed, they might not be energy and area efficient in large-scale networks. The recent discovery of ferroelectricity in hafnium oxide (HfO₂) and the related switching phenomena at the nanoscale might provide a solution. This study employs the newly reported accumulative polarization reversal in nanoscale HfO₂-based ferroelectric field-effect transistors (FeFETs) to implement two key neuronal dynamics: the integration of action potentials and the subsequent firing according to the biologically plausible all-or-nothing law. We show that by carefully shaping electrical excitations based on the particular nucleation-limited switching kinetics of the ferroelectric layer further neuronal behaviors can be emulated, such as firing activity tuning, arbitrary refractory period and the leaky effect. Finally, we discuss the advantages of an FeFET-based neuron, highlighting its transferability to advanced scaling technologies and the beneficial impact it may have in reducing the complexity of neuromorphic circuits.
128

Exploring Column Update Elimination Optimization for Spike-Timing-Dependent Plasticity Learning Rule / Utforskar kolumnuppdaterings-elimineringsoptimering för spik-timing-beroende plasticitetsinlärningsregel

Singh, Ojasvi January 2022 (has links)
Hebbian learning based neural network learning rules when implemented on hardware, store their synaptic weights in the form of a two-dimensional matrix. The storage of synaptic weights demands large memory bandwidth and storage. While memory units are optimized for only row-wise memory access, Hebbian learning rules, like the spike-timing dependent plasticity, demand both row and column-wise access of memory. This dual pattern of memory access accounts for the dominant cost in terms of latency as well as energy for realization of large scale spiking neural networks in hardware. In order to reduce the memory access cost in Hebbian learning rules, a Column Update Elimination optimization has been previously implemented, with great efficacy, on the Bayesian Confidence Propagation neural network, that faces a similar challenge of dual pattern memory access. This thesis explores the possibility of extending the column update elimination optimization to spike-timing dependent plasticity, by simulating the learning rule on a two layer network of leaky integrate-and-fire neurons on an image classification task. The spike times are recorded for each neuron in the network, to derive a suitable probability distribution function for spike rates per neuron. This is then used to derive an ideal postsynaptic spike history buffer size for the given algorithm. The associated memory access reductions are analysed based on data to assess feasibility of the optimization to the learning rule. / Hebbiansk inlärning baserat på neural nätverks inlärnings regler används vid implementering på hårdvara, de lagrar deras synaptiska vikter i form av en tvådimensionell matris. Lagringen av synaptiska vikter kräver stor bandbredds minne och lagring. Medan minnesenheter endast är optimerade för radvis minnesåtkomst. Hebbianska inlärnings regler kräver som spike-timing-beroende plasticitet, både rad- och kolumnvis åtkomst av minnet. Det dubbla mönstret av minnes åtkomsten står för den dominerande kostnaden i form av fördröjning såväl som energi för realiseringen av storskaliga spikande neurala nätverk i hårdvara. För att minska kostnaden för minnesåtkomst i hebbianska inlärnings regler har en Column Update Elimination-optimering tidigare implementerats, med god effektivitet på Bayesian Confidence Propagation neurala nätverket, som står inför en liknande utmaning med dubbel mönster minnesåtkomst. Denna avhandling undersöker möjligheten att utöka ColumnUpdate Elimination-optimeringen till spike-timing-beroende plasticitet. Detta genom att simulera inlärnings regeln på ett tvålagers nätverk av läckande integrera-och-avfyra neuroner på en bild klassificerings uppgift. Spike tiderna registreras för varje neuron i nätverket för att erhålla en lämplig sannolikhetsfördelning funktion för frekvensen av toppar per neuron. Detta används sedan för att erhålla en idealisk postsynaptisk spike historisk buffertstorlek för den angivna algoritmen. De associerade minnesåtkomst minskningarna analyseras baserat på data för att bedöma genomförbarheten av optimeringen av inlärnings regeln.
129

Development and Evaluation of a Road Marking Recognition Algorithm implemented on Neuromorphic Hardware / Utveckling och utvärdering av en algoritm för att läsa av vägbanan, som implementeras på neuromorfisk hårdvara

Bou Betran, Santiago January 2022 (has links)
Driving is one of the most common and preferred forms of transport used in our actual society. However, according to studies, it is also one of the most dangerous. One solution to increase safety on the road is applying technology to automate and prevent avoidable human errors. Nevertheless, despite the efforts to obtain reliable systems, we have yet to find a reliable and safe enough solution for solving autonomous driving. One of the reasons is that many drives are done in conditions far from the ideal, with variable lighting conditions and fast-paced, unpredictable environments. This project develops and evaluates an algorithm that takes the input of dynamic vision sensors (DVS) and runs on neuromorphic spiking neural networks (SNN) to obtain a robust road lane tracking system. We present quantitative and qualitative metrics that evaluate the performance of lane recognition in low light conditions against conventional algorithms. This project is motivated by the main advantages of neuromorphic vision sensors: recognizing a high dynamic range and allowing a high-speed image capture. Another improvement of this system is the computational speed and power efficiency that characterize neuromorphic hardware based on spiking neural networks. The results obtained show a similar accuracy of this new algorithm compared to previous implementations on conventional hardware platforms. Most importantly, it accomplishes the proposed task with lower latency and computing power requirements than previous algorithms. / Att köra bil är ett av de vanligaste och mest populära transportsätten i vårt samhälle. Enligt forskningen är det också ett av de farligaste. En lösning för att öka säkerheten på vägarna är att med teknikens hjälp automatisera bilkörningen och på så sätt förebygga misstag som beror på den mänskliga faktorn. Trots ansträngningarna för att få fram tillförlitliga system har man dock ännu inte hittat en tillräckligt tillförlitlig och säker lösning för självkörande bilar. En av orsakerna till det är att många körningar sker under förhållanden som är långt ifrån idealiska, med varierande ljusförhållanden och oförutsägbara miljöer i höga hastigheter. I det här projektet utvecklar och utvärderar vi en algoritm som tar emot indata från dynamiska synsensorer (Dynamic Vision Sensors, DVS) och kör datan på neuromorfiska pulserande neuronnät (Spiking Neural Networks, SNN) för att skapa ett robust system för att läsa av vägbanan. Vi presenterar en kvantitativ och kvalitativ utvärdering av hur väl systemet läser av körbanans linjer i svagt ljus, och jämför därefter resultaten med dem för tidigare algoritmer. Detta projekt motiveras av de viktigaste fördelarna med neuromorfiska synsensorer: brett dynamiskt omfång och hög bildtagningshastighet. En annan fördel hos detta system är den korta beräkningstiden och den energieffektivitet som kännetecknar neuromorfisk hårdvara baserad på pulserande neuronnät. De resultat som erhållits visar att den nya algoritmen har en liknande noggrannhet som tidigare algoritmer på traditionella hårdvaruplattformar. I jämförelse med den traditionella tekniken, utför algoritmen i den föreliggande studien sin uppgift med kortare latenstid och lägre krav på processorkraft. / La conducción es una de las formas de transporte más comunes y preferidas en la actualidad. Sin embargo, diferentes estudios muestran que también es una de las más peligrosas. Una solución para aumentar la seguridad en la carretera es aplicar la tecnología para automatizar y prevenir los evitables errores humanos. No obstante, a pesar de los esfuerzos por conseguir sistemas fiables, todavía no hemos encontrado una solución suficientemente fiable y segura para resolver este reto. Una de las razones es el entorno de la conducción, en situaciones que distan mucho de las ideales, con condiciones de iluminación variables y entornos rápidos e imprevisibles. Este proyecto desarrolla y evalúa un algoritmo que toma la entrada de sensores de visión dinámicos (DVS) y ejecuta su computación en redes neuronales neuromórficas (SNN) para obtener un sistema robusto de seguimiento de carriles en carretera. Presentamos métricas cuantitativas y cualitativas que evalúan el rendimiento del reconocimiento de carriles en condiciones de poca luz, frente a algoritmos convencionales. Este proyecto está motivado por la validación de las ventajas de los sensores de visión neuromórficos: el reconocimiento de un alto rango dinámico y la captura de imágenes de alta velocidad. Otra de las mejoras que se espera de este sistema es la velocidad de procesamiento y la eficiencia energética que caracterizan al hardware neuromórfico basado en redes neuronales de impulsos. Los resultados obtenidos muestran una precisión similar entre el nuevo algoritmo en comparación con implementaciones anteriores en plataformas convencionales. Y lo que es más importante, realiza la tarea propuesta con menor latencia y requisitos de potencia de cálculo.
130

Laser à semi-conducteur pour modéliser et contrôler des cellules et des réseaux excitables / Semiconductor laser for modelling and controlling spiking cells and networks

Dolcemascolo, Axel 14 December 2018 (has links)
Les systèmes « excitables » sont omniprésents dans la nature, le plus paradigmatique d'entre eux étant le neurone, qui répond de façon « tout ou rien » aux perturbations externes. Cette particularité étant clairement établie comme l'un des points clé pour le fonctionnement des systèmes nerveux, son analyse dans des systèmes modèles (mathématiques ou physiques) peut d'une part aider à la compréhension de la dynamique d'ensembles de neurones couplés et d'autre part ouvrir des voies pour un traitement neuromimétique de l'information. C'est dans cette logique que s'inscrit la préparation de cette thèse de doctorat. Dans ce mémoire, nous utilisons des systèmes basés sur des lasers à semiconducteur pour d'une part modéliser des systèmes excitables ou des ensembles de systèmes neuromimétiques couplés et d'autre part pour contrôler (grâce à l'optogénétique) des canaux ioniques impliqués dans l'émission de potentiels d'action par des neurones de mammifères. Le long du premier chapitre, nous présentons de manière synthétique les concepts dynamiques sur lesquels nous nous appuierons dans la suite du manuscrit. Par la suite, nous décrivons brièvement le contexte de ce travail du point de vue de la synchronisation, notamment de cellules excitables. Enfin, nous discutons le contexte applicatif potentiel de ces travaux, c’est-à-dire l'utilisation de systèmes photoniques dits « neuromimétiques » dans le but de traiter de l'information. Dans le chapitre 2, nous analysons tout d'abord du point de vue théorique et bibliographique le caractère excitable d'un laser à semiconducteur sous l'influence d'un forçage optique cohérent. Par la suite, nous détaillons nos travaux expérimentaux d'abord, puis numériques et théoriques, sur la réponse de ce système « neuromimétique » à des perturbations répétées dans le temps. Tandis que le modèle mathématique simplifié prévoit un comportement de type intégrateur en réponse a des perturbations répétées, nous montrons que le comportement est en fait souvent résonateur, ce qui confère à ce système la propriété étonnante d'émettre une impulsion seulement s'il reçoit deux perturbations séparées d'un intervalle de temps bien précis. Nous montrons également que ce système peut convertir des perturbations de différente intensité en une série d'impulsions toutes identiques mais dont le nombre dépend de l'intensité de la perturbation incidente. Dans le chapitre 3, nous analysons (de nouveau expérimentalement, puis numériquement et théoriquement) le comportement dynamique d'un réseau de lasers à semiconducteur couplés dans un régime de chaos lent-rapide. Nous nous basons sur une étude antérieure montrant qu'un seul de ces éléments peut présenter une dynamique neuromimétique (en particulier l'émission chaotique d'impulsions originant du phénomène de canard). De façon surprenante pour un système ayant un si grand nombre de degrés de liberté, nous observons une dynamique qui semble chaotique de basse dimension. Nous examinons l'impact des propriétés statistiques de la population considérée sur la dynamique et relions nos observations expérimentales et numériques à l'existence d'une variété critique calculable analytiquement pour le champ moyen et près duquel converge la dynamique grâce au caractère lent-rapide du système. Dans le chapitre 4 enfin, nous présentons une brève étude expérimentale de la réponse de cellules biologiques à des perturbations lumineuses. En effet, les techniques optogénétiques permettent de rendre des cellules (en particulier des neurones) sensibles à la lumière grâce au contrôle optique de l'ouverture et de la fermeture de canaux ioniques. Ainsi, après avoir étudié dans les chapitres précédents des systèmes optiques sur la base de considérations provenant de systèmes biologiques, nous amenons matériellement un système laser vers un système biologique. / Excitable systems are everywhere in Nature, and among them the neuron, which responds to an external stimulus with an all-or-none type of response, is often regarded as the most typical example. This excitability behaviour is clearly established as to be one of the underlying operating mechanisms of the nervous system and its analysis in model systems (being them mathematical of physical) can, from one hand, shed some light on the dynamics of neural networks, and from the other, open novel ways for a neuro-mimetic treatment of information. The work presented in this PhD thesis was realized in this perspective. In this dissertation we will consider systems based on semiconductor lasers both for modelling excitable systems or coupled neuromorphic networks and for controlling (in an optogenetic outlook) ionic channels that are involved in the emission of action potentials of neurons in mammals. During the first chapter, we will briefly present the dynamical concepts on which we will build our understanding for the rest of the manuscript. Thereafter, we will describe the context of this work from the point of view of synchronized systems, in particular excitable cells. Finally, we will discuss in this context the applications potential of this work, namely the possibility of using “neuromimetic” photonic systems as a was to treat information. In chapter 2 we will firstly analyse from a theoretical and bibliographical standpoint the excitable character of a laser with coherent injection. Later, we will firstly detail our results, firstly experimental and subsequently numerical and theoretical, on the response of this “neuromimetic” system to perturbations repeated in time. Whereas the simplified mathematical model envisions an integrator behaviour in response to repeated perturbations, we will show that the system often acts as a resonator, thus imparting the remarkable property of being able to emit a single pulse only if it receives two perturbations that are separated by a specific time interval. We will also illustrate how this system can convert perturbations of different intensity in a series of all identical pulses whose number depends on the intensity of the incoming perturbation. In the third chapter we will analyse, first experimentally and later numerically and theoretically, the dynamical behaviour of a network of coupled semiconductor lasers in a slow-fast chaotic regime. We will rely on a previous study documenting that a single such element can present a neuromimetic dynamics (in particular, the emission of chaotic pulses originating from a canard phenomenon). Surprisingly for a system having such a large number of degrees of freedom, we observe a dynamics which seems low dimensional chaotic. We will examine the impact of statistical properties of the selected population on the dynamics, and we will link our experimental and numerical observations to the existence of a slow manifold for the mean field, computable analytically, and towards whom the dynamics converges thanks to the slow-fact nature of the system. Finally, in chapter 4 we will present a short experimental study on the response of biological cells to light perturbations. Indeed, optogenetic techniques enables to render the cells (in particular neurons) sensitive to light due to the optical control of the opening and closing of ionic channels. Hence, after having studied in the previous chapters optical systems on the basis of observations derived from biological systems, we will physically transfer an optical system towards a biological one. Here we lay the groundwork of a photonic system which allows, with a moderate complexity, to realize cell measurements in response to spatially localized optical perturbations.

Page generated in 0.0966 seconds