• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 78
  • 9
  • 5
  • Tagged with
  • 131
  • 59
  • 49
  • 45
  • 37
  • 33
  • 32
  • 30
  • 25
  • 24
  • 19
  • 17
  • 16
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Neurocomputing and Associative Memories Based on Emerging Technologies: Co-optimization of Technology and Architecture

Calayir, Vehbi 01 September 2014 (has links)
Neurocomputers offer a massively parallel computing paradigm by mimicking the human brain. Their efficient use in statistical information processing has been proposed to overcome critical bottlenecks with traditional computing schemes for applications such as image and speech processing, and associative memory. In neural networks information is generally represented by phase (e.g., oscillatory neural networks) or amplitude (e.g., cellular neural networks). Phase-based neurocomputing is constructed as a network of coupled oscillatory neurons that are connected via programmable phase elements. Representing each neuron circuit with one oscillatory device and implementing programmable phases among neighboring neurons, however, are not clearly feasible from circuits perspective if not impossible. In contrast to nascent oscillatory neurocomputing circuits, mature amplitude-based neural networks offer more efficient circuit solutions using simpler resistive networks where information is carried via voltage- and current-mode signals. Yet, such circuits have not been efficiently realized by CMOS alone due to the needs for an efficient summing mechanism for weighted neural signals and a digitally-controlled weighting element for representing couplings among artificial neurons. Large power consumption and high circuit complexity of such CMOS-based implementations have precluded adoption of amplitude-based neurocomputing circuits as well, and have led researchers to explore the use of emerging technologies for such circuits. Although they provide intriguing properties, previously proposed neurocomputing components based on emerging technologies have not offered a complete and practical solution to efficiently construct an entire system. In this thesis we explore the generalized problem of co-optimization of technology and architecture for such systems, and develop a recipe for device requirements and target capabilities. We describe four plausible technologies, each of which could potentially enable the implementation of an efficient and fully-functional neurocomputing system. We first investigate fully-digital neural network architectures that have been tried before using CMOS technology in which many large-size logic gates such as D flip-flops and look-up tables are required. Using a newly-proposed all-magnetic non-volatile logic family, mLogic, we demonstrate the efficacy of digitizing the oscillators and phase relationships for an oscillatory neural network by exploiting the inherent storage as well as enabling an all-digital cellular neural network hardware with simplified programmability. We perform system-level comparisons of mLogic and 32nm CMOS for both networks consisting of 60 neurons. Although digital implementations based on mLogic offer improvements over CMOS in terms of power and area, analog neurocomputing architectures seem to be more compatible with the greatest portion of emerging technologies and devices. For this purpose in this dissertation we explore several emerging technologies with unique device configurations and features such as mCell devices, ovenized aluminum nitride resonators, and tunable multi-gate graphene devices to efficiently enable two key components required for such analog networks – that is, summing function and weighting with compact D/A (digital-to-analog) conversion capability. We demonstrate novel ways to implement these functions and elaborate on our building blocks for artificial neurons and synapses using each technology. We verify the functionality of each proposed implementation using various image processing applications based on compact circuit simulation models for such post-CMOS devices. Finally, we design a proof-of-concept neurocomputing circuitry containing 20 neurons using 65nm CMOS technology that is based on the primitives that we define for our analog neurocomputing scheme. This allows us to fully recognize the inefficiencies of an all-CMOS implementation for such specific applications. We share our experimental results that are in agreement with circuit simulations for the same image processing applications based on proposed architectures using emerging technologies. Power and area comparisons demonstrate significant improvements for analog neurocomputing circuits when implemented using beyond- CMOS technologies, thereby promising huge opportunities for future energy-efficient computing.
32

Neuromorphic Controller for Low Power Systems From Devices to Circuits

January 2011 (has links)
abstract: A workload-aware low-power neuromorphic controller for dynamic power and thermal management in VLSI systems is presented. The neuromorphic controller predicts future workload and temperature values based on the past values and CPU performance counters and preemptively regulates supply voltage and frequency. System-level measurements from stateof-the-art commercial microprocessors are used to get workload, temperature and CPU performance counter values. The controller is designed and simulated using circuit-design and synthesis tools. At device-level, on-chip planar inductors suffer from low inductance occupying large chip area. On-chip inductors with integrated magnetic materials are designed, simulated and fabricated to explore performance-efficiency trade offs and explore potential applications such as resonant clocking and on-chip voltage regulation. A system level study is conducted to evaluate the effect of on-chip voltage regulator employing magnetic inductors as the output filter. It is concluded that neuromorphic power controller is beneficial for fine-grained per-core power management in conjunction with on-chip voltage regulators utilizing scaled magnetic inductors. / Dissertation/Thesis / Ph.D. Electrical Engineering 2011
33

DHyANA : neuromorphic architecture for liquid computing / DHyANA : uma arquitetura digital neuromórfica hierárquica para máquinas de estado líquido

Holanda, Priscila Cavalcante January 2016 (has links)
Redes Neurais têm sido um tema de pesquisas por pelo menos sessenta anos. Desde a eficácia no processamento de informações à incrível capacidade de tolerar falhas, são incontáveis os mecanismos no cérebro que nos fascinam. Assim, não é nenhuma surpresa que, na medida que tecnologias facilitadoras tornam-se disponíveis, cientistas e engenheiros têm aumentado os esforços para o compreender e simular. Em uma abordagem semelhante à do Projeto Genoma Humano, a busca por tecnologias inovadoras na área deu origem a projetos internacionais que custam bilhões de dólares, o que alguns denominam o despertar global de pesquisa da neurociência. Avanços em hardware fizeram a simulação de milhões ou até bilhões de neurônios possível. No entanto, as abordagens existentes ainda não são capazes de fornecer a densidade de conexões necessária ao enorme número de neurônios e sinapses. Neste sentido, este trabalho propõe DHyANA (Arquitetura Digital Neuromórfica Hierárquica), uma nova arquitetura em hardware para redes neurais pulsadas, a qual utiliza comunicação em rede-em-chip hierárquica. A arquitetura é otimizada para implementações de Máquinas de Estado Líquido. A arquitetura DHyANA foi exaustivamente testada em plataformas de simulação, bem como implementada em uma FPGA Stratix IV da Altera. Além disso, foi realizada a síntese lógica em tecnologia 65nm, a fim de melhor avaliar e comparar o sistema resultante com projetos similares, alcançando uma área de 0,23mm2 e potência de 147mW para uma implementação de 256 neurônios. / Neural Networks has been a subject of research for at least sixty years. From the effectiveness in processing information to the amazing ability of tolerating faults, there are countless processing mechanisms in the brain that fascinates us. Thereupon, it comes with no surprise that as enabling technologies have become available, scientists and engineers have raised the efforts to understand, simulate and mimic parts of it. In a similar approach to that of the Human Genome Project, the quest for innovative technologies within the field has given birth to billion dollar projects and global efforts, what some call a global blossom of neuroscience research. Advances in hardware have made the simulation of millions or even billions of neurons possible. However, existing approaches cannot yet provide the even more dense interconnect for the massive number of neurons and synapses required. In this regard, this work proposes DHyANA (Digital HierArchical Neuromorphic Architecture), a new hardware architecture for a spiking neural network using hierarchical network-on-chip communication. The architecture is optimized for Liquid State Machine (LSM) implementations. DHyANA was exhaustively tested in simulation platforms, as well as implemented in an Altera Stratix IV FPGA. Furthermore, a logic synthesis analysis using 65-nm CMOS technology was performed in order to evaluate and better compare the resulting system with similar designs, achieving an area of 0.23mm2 and a power dissipation of 147mW for a 256 neurons implementation.
34

Multilevel Resistance Programming in Conductive Bridge Resistive Memory

January 2015 (has links)
abstract: This work focuses on the existence of multiple resistance states in a type of emerging non-volatile resistive memory device known commonly as Programmable Metallization Cell (PMC) or Conductive Bridge Random Access Memory (CBRAM), which can be important for applications such as multi-bit memory as well as non-volatile logic and neuromorphic computing. First, experimental data from small signal, quasi-static and pulsed mode electrical characterization of such devices are presented which clearly demonstrate the inherent multi-level resistance programmability property in CBRAM devices. A physics based analytical CBRAM compact model is then presented which simulates the ion-transport dynamics and filamentary growth mechanism that causes resistance change in such devices. Simulation results from the model are fitted to experimental dynamic resistance switching characteristics. The model designed using Verilog-a language is computation-efficient and can be integrated with industry standard circuit simulation tools for design and analysis of hybrid circuits involving both CMOS and CBRAM devices. Three main circuit applications for CBRAM devices are explored in this work. Firstly, the susceptibility of CBRAM memory arrays to single event induced upsets is analyzed via compact model simulation and experimental heavy ion testing data that show possibility of both high resistance to low resistance and low resistance to high resistance transitions due to ion strikes. Next, a non-volatile sense amplifier based flip-flop architecture is proposed which can help make leakage power consumption negligible by allowing complete shutdown of power supply while retaining its output data in CBRAM devices. Reliability and energy consumption of the flip-flop circuit for different CBRAM low resistance levels and supply voltage values are analyzed and compared to CMOS designs. Possible extension of this architecture for threshold logic function computation using the CBRAM devices as re-configurable resistive weights is also discussed. Lastly, Spike timing dependent plasticity (STDP) based gradual resistance change behavior in CBRAM device fabricated in back-end-of-line on a CMOS die containing integrate and fire CMOS neuron circuits is demonstrated for the first time which indicates the feasibility of using CBRAM devices as electronic synapses in spiking neural network hardware implementations for non-Boolean neuromorphic computing. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2015
35

DHyANA : neuromorphic architecture for liquid computing / DHyANA : uma arquitetura digital neuromórfica hierárquica para máquinas de estado líquido

Holanda, Priscila Cavalcante January 2016 (has links)
Redes Neurais têm sido um tema de pesquisas por pelo menos sessenta anos. Desde a eficácia no processamento de informações à incrível capacidade de tolerar falhas, são incontáveis os mecanismos no cérebro que nos fascinam. Assim, não é nenhuma surpresa que, na medida que tecnologias facilitadoras tornam-se disponíveis, cientistas e engenheiros têm aumentado os esforços para o compreender e simular. Em uma abordagem semelhante à do Projeto Genoma Humano, a busca por tecnologias inovadoras na área deu origem a projetos internacionais que custam bilhões de dólares, o que alguns denominam o despertar global de pesquisa da neurociência. Avanços em hardware fizeram a simulação de milhões ou até bilhões de neurônios possível. No entanto, as abordagens existentes ainda não são capazes de fornecer a densidade de conexões necessária ao enorme número de neurônios e sinapses. Neste sentido, este trabalho propõe DHyANA (Arquitetura Digital Neuromórfica Hierárquica), uma nova arquitetura em hardware para redes neurais pulsadas, a qual utiliza comunicação em rede-em-chip hierárquica. A arquitetura é otimizada para implementações de Máquinas de Estado Líquido. A arquitetura DHyANA foi exaustivamente testada em plataformas de simulação, bem como implementada em uma FPGA Stratix IV da Altera. Além disso, foi realizada a síntese lógica em tecnologia 65nm, a fim de melhor avaliar e comparar o sistema resultante com projetos similares, alcançando uma área de 0,23mm2 e potência de 147mW para uma implementação de 256 neurônios. / Neural Networks has been a subject of research for at least sixty years. From the effectiveness in processing information to the amazing ability of tolerating faults, there are countless processing mechanisms in the brain that fascinates us. Thereupon, it comes with no surprise that as enabling technologies have become available, scientists and engineers have raised the efforts to understand, simulate and mimic parts of it. In a similar approach to that of the Human Genome Project, the quest for innovative technologies within the field has given birth to billion dollar projects and global efforts, what some call a global blossom of neuroscience research. Advances in hardware have made the simulation of millions or even billions of neurons possible. However, existing approaches cannot yet provide the even more dense interconnect for the massive number of neurons and synapses required. In this regard, this work proposes DHyANA (Digital HierArchical Neuromorphic Architecture), a new hardware architecture for a spiking neural network using hierarchical network-on-chip communication. The architecture is optimized for Liquid State Machine (LSM) implementations. DHyANA was exhaustively tested in simulation platforms, as well as implemented in an Altera Stratix IV FPGA. Furthermore, a logic synthesis analysis using 65-nm CMOS technology was performed in order to evaluate and better compare the resulting system with similar designs, achieving an area of 0.23mm2 and a power dissipation of 147mW for a 256 neurons implementation.
36

Scalability and robustness of artificial neural networks

Stromatias, Evangelos January 2016 (has links)
Artificial Neural Networks (ANNs) appear increasingly and routinely to gain popularity today, as they are being used in several diverse research fields and many different contexts, which may range from biological simulations and experiments on artificial neuronal models to machine learning models intended for industrial and engineering applications. One example is the recent success of Deep Learning architectures (e.g., Deep Belief Networks [DBN]), which appear in the spotlight of machine learning research, as they are capable of delivering state-of-the-art results in many domains. While the performance of such ANN architectures is greatly affected by their scale, their capacity for scalability both for training and during execution is limited by the increased power consumption and communication overheads, implicitly posing a limiting factor on their real-time performance. The on-going work on the design and construction of spike-based neuromorphic platforms offers an alternative for running large-scale neural networks, such as DBNs, with significantly lower power consumption and lower latencies, but has to overcome the hardware limitations and model specialisations imposed by these type of circuits. SpiNNaker is a novel massively parallel fully programmable and scalable architecture designed to enable real-time spiking neural network (SNN) simulations. These properties render SpiNNaker quite an attractive neuromorphic exploration platform for running large-scale ANNs, however, it is necessary to investigate thoroughly both its power requirements as well as its communication latencies. This research focusses on around two main aspects. First, it aims at characterising the power requirements and communication latencies of the SpiNNaker platform while running large-scale SNN simulations. The results of this investigation lead to the derivation of a power estimation model for the SpiNNaker system, a reduction of the overall power requirements and the characterisation of the intra- and inter-chip spike latencies. Then it focuses on a full characterisation of spiking DBNs, by developing a set of case studies in order to determine the impact of (a) the hardware bit precision; (b) the input noise; (c) weight variation; and (d) combinations of these on the classification performance of spiking DBNs for the problem of handwritten digit recognition. The results demonstrate that spiking DBNs can be realised on limited precision hardware platforms without drastic performance loss, and thus offer an excellent compromise between accuracy and low-power, low-latency execution. These studies intend to provide important guidelines for informing current and future efforts around developing custom large-scale digital and mixed-signal spiking neural network platforms.
37

Event-Based Feature Detection, Recognition and Classification / Techniques de Détection, de Reconnaissance et de Classification de primitives "Event-Based"

Cohen, Gregory Kevin 05 September 2016 (has links)
La detection, le suivi de cible et la reconnaissance de primitives visuelles constituent des problèmes fondamentaux de la vision robotique. Ces problématiques sont réputés difficiles et sources de défis. Malgré les progrès en puissance de calcul des machines, le gain en résolution et en fréquence des capteurs, l’état-de-l’art de la vision robotique peine à atteindre des performances en coût d’énergie et en robustesse qu’offre la vision biologique. L’apparition des nouveaux capteurs, appelés "rétines de silicium” tel que le DVS (Dynamic Vision Sensor) et l’ATIS (Asynchronous Time-based Imaging Sensor) reproduisant certaines fonctionnalités des rétines biologiques, ouvre la voie à de nouveaux paradigmes pour décrire et modéliser la perception visuelle, ainsi que pour traiter l’information visuelle qui en résulte. Les tâches de suivi et de reconnaissance de formes requièrent toujours la caractérisation et la mise en correspondance de primitives visuelles. La détection de ces dernières et leur description nécessitent des approches fondamentalement différentes de celles employées en vision robotique traditionnelle. Cette thèse développe et formalise de nouvelles méthodes de détection et de caractérisation de primitives spatio-temporel des signaux acquis par les rétines de silicium (plus communément appelés capteurs “event-based”). Une structure théorique pour les tâches de détection, de suivi, de reconnaissance et de classification de primitives est proposée. Elle est ensuite validée par des données issues de ces capteurs “event-based”,ainsi que par des bases données standard du domaine de la reconnaissance de formes, convertit au préalable à un format compatible avec la representation “événement”. Les résultats présentés dans cette thèse démontrent les potentiels et l’efficacité des systèmes "event-based”. Ce travail fournit une analyse approfondie de différentes méthodes de reconnaissance de forme et de classification “event-based". Cette thèse propose ensuite deux solutions basées sur les primitives. Deux mécanismes d’apprentissage, un purement événementiel et un autre, itératif, sont développés puis évalués pour leur capacité de classification et de robustesse. Les résultats démontrent la validité de la classification “event-based” et souligne l’importance de la dynamique de la scène dans les tâches primordiales de définitions des primitives et de leur détection et caractétisation. / One of the fundamental tasks underlying much of computer vision is the detection, tracking and recognition of visual features. It is an inherently difficult and challenging problem, and despite the advances in computational power, pixel resolution, and frame rates, even the state-of-the-art methods fall far short of the robustness, reliability and energy consumption of biological vision systems. Silicon retinas, such as the Dynamic Vision Sensor (DVS) and Asynchronous Time-based Imaging Sensor (ATIS), attempt to replicate some of the benefits of biological retinas and provide a vastly different paradigm in which to sense and process the visual world. Tasks such as tracking and object recognition still require the identification and matching of local visual features, but the detection, extraction and recognition of features requires a fundamentally different approach, and the methods that are commonly applied to conventional imaging are not directly applicable. This thesis explores methods to detect features in the spatio-temporal information from event-based vision sensors. The nature of features in such data is explored, and methods to determine and detect features are demonstrated. A framework for detecting, tracking, recognising and classifying features is developed and validated using real-world data and event-based variations of existing computer vision datasets and benchmarks. The results presented in this thesis demonstrate the potential and efficacy of event-based systems. This work provides an in-depth analysis of different event-based methods for object recognition and classification and introduces two feature-based methods. Two learning systems, one event-based and the other iterative, were used to explore the nature and classification ability of these methods. The results demonstrate the viability of event-based classification and the importance and role of motion in event-based feature detection.
38

Asynchronous event-based 3d vision / Evénement asynchrone à base de vision 3D

Amaro Da Costa Luz Carneiro, Joao Paulo 10 February 2014 (has links)
L’implementation de la vision biologique sur machine est un problème majeur que la recherche actuelle a à peine effleuré la surface. Les organismes vivants sont capables de réaliser des tâches visuelles très complexes et de manière très efficace. La stéréovision fait partie de ces mécanismes complexes que les sci- entifiques tentent de reproduire à l’aide de caméras à haute résolution. Cette thèse aborde le problème de la stéréovision d’une manière neuromorphique par l’intermédiaire d’une nouvelle génération de capteurs de vision appelés ”rétines de silicium”. Ces rétines de silicium imitent les rétines biologiques en capturant l’information visuelle sous forme de flux asynchrones d’événements codant les changements de contraste avec une grande précision temporelle. Ces capteurs sont utilisés pour étudier l’importance de la précision et de la dynamiquetemporelledelascènedansleproblèmedemiseencorrespondance stéréo. Nous proposons une des premières méthodes de reconstruction 3D capable de produire des modèles 3D d’une manière totalement asynchrone, á partir de l’information visuelle. Cette approche, outre son originalité, permet également de préserver la dynamique native de la scène. Cette thèse montre que le temps en tant que medium d’information, joue un rôle primordial dans la stéréovision. Le temps peut compléter, compenser, voire remplacer l’information apportée habituellement par la luminance et la géométrie. Ce travail établit également les fondations solides des futures recherches en vision stéréo á haute vitesse et haute dynamique, basée sur les événements. Il ouvre également de nouvelles perspectives prometteuses pour la résolution de problèmes traditionels de vision artificielle grâce à l’apport du nouveau paradigme de la vision asynchrone. / Reproducing biological vision in a machine is a challenging problem for which scientists have just scratched the surface. Living organisms are able to per- form complex tasks in an awestruckly efficient manner. The stereovision is one of these complex mechanisms that computer scientists try to replicate with high resolution cameras. This thesis takes on the stereovision problem in a neuromorphic way by mean of a new generation of vision sensors also called ”silicon retinas”. These silicon retinas mimic biological retinas by cap- turing the visual information into the form of asynchronous stream of events that encode contrast change at high temporal precision. These sensors are used to study the importance of the precise timing and the scene temporal dynamics in solving the stereo correspondence problem. We propose one of the first 3D reconstruction methods which is able to produce 3Dmodelsinatrulyevent-basedandasynchronousmanner, fromevent-based visual information. Besides the novelty of proposing a truly temporal- based asynchronous event-driven approach of 3D reconstructions, this work is also able to preserve the native dynamic of the scene. Time as information medium is proven to have a critical role in stereovision. Time can supplement, compensate and even replace the usual luminance and spatial information. This work lays strong foundations for future research on high temporal and event-based dynamic stereo vision. It also opens new promisingperspectivesforsolvingtraditionalmachinevisionproblemsthanks to the use of the new asynchronous vision paradigm.
39

A chip multiprocessor for a large-scale neural simulator

Painkras, Eustace January 2013 (has links)
A Chip Multiprocessor for a Large-scale Neural SimulatorEustace PainkrasA thesis submitted to The University of Manchesterfor the degree of Doctor of Philosophy, 17 December 2012The modelling and simulation of large-scale spiking neural networks in biologicalreal-time places very high demands on computational processing capabilities andcommunications infrastructure. These demands are difficult to satisfy even with powerfulgeneral-purpose high-performance computers. Taking advantage of the remarkableprogress in semiconductor technologies it is now possible to design and buildan application-driven platform to support large-scale spiking neural network simulations.This research investigates the design and implementation of a power-efficientchip multiprocessor (CMP) which constitutes the basic building block of a spikingneural network modelling and simulation platform. The neural modelling requirementsof many processing elements, high-fanout communications and local memoryare addressed in the design and implementation of the low-level modules in the designhierarchy as well as in the CMP. By focusing on a power-efficient design, the energyconsumption and related cost of SpiNNaker, the massively-parallel computation engine,are kept low compared with other state-of-the-art hardware neural simulators.The SpiNNaker CMP is composed of many simple power-efficient processors withsmall local memories, asynchronous networks-on-chip and numerous bespoke modulesspecifically designed to serve the demands of neural computation with a globallyasynchronous, locally synchronous (GALS) architecture.The SpiNNaker CMP, realised as part of this research, fulfills the demands of neuralsimulation in a power-efficient and scalable manner, with added fault-tolerancefeatures. The CMPs have, to date, been incorporated into three versions of SpiNNakersystem PCBs with up to 48 chips onboard. All chips on the PCBs are performing successfully, during both functional testing and their targeted role of neural simulation.
40

Evaluating Online Learning Anomaly Detection on Intel Neuromorphic Chip and Memristor Characterization Tool

Jaoudi, Yassine 09 August 2021 (has links)
No description available.

Page generated in 0.0418 seconds