• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 72
  • 57
  • 14
  • 9
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 207
  • 57
  • 21
  • 20
  • 19
  • 18
  • 18
  • 13
  • 13
  • 13
  • 12
  • 11
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Effects of Early Chemotherapeutic Treatment on Learning, Novelty, and Drug Reward in Adolescent Mice

Bisen-Hersh, Emily Beth January 2012 (has links)
Among children diagnosed with acute lymphoblastic leukemia (ALL) and given chemotherapy-only treatment, 40-70% of survivors experience neurocognitive impairment. Psychostimulants such as methylphenidate are becoming popular medications for treating these deficits in childhood cancer survivors. However, little is known about the outcome of prescribing stimulants to this population. In the research reported here, a novel preclinical mouse model of ALL treatment was developed and used to investigate the effects of early exposure to methotrexate (MTX) and cytarabine (Ara-C) on learning and memory, and the outcome of treating these deficits using a number of different stimulants. Mouse pups were treated on postnatal day (PND) 14, 15, and 16 with saline, MTX, Ara-C, or two combinations of MTX and Ara-C. At PND 35, significant impairments on learning and memory as measured by autoshaping and novel object recognition were found. Mild deficits were observed in a novel conditional discrimination task, which suggests that extensive training may ameliorate learning impairments. MTX and Ara-C treated mice also exhibited sensitivity to the rewarding and stimulatory properties of amphetamine and methylphenidate, suggesting that typical psychostimulants may become more potent following early chemotherapeutic treatment. In contrast, no increase in drug reward following early exposure to MTX and Ara-C was found for an alternative treatment with possible neuroprotective effects, atomoxetine. These findings were further supported by converging evidence that chemotherapy-treated mice displayed increased novelty-seeking. In addition, a greater percentage of MTX and Ara-C treated mice acquired cocaine self-administration, and maintained a higher number of infusions per session. Overall, these findings highlight the usefulness of preclinical models to examine the developmental effects of early exposure to chemotherapeutic agents on future learning, possible models of cognitive remediation, and the consequences of treating impairments using typical psychostimulant medications. / Psychology
122

Developmental Effects of a Non-Dioxin-Like Polychlorinated Biphenyl Mixture on Zebrafish (Danio rerio)

Green, Corey 07 1900 (has links)
PCBs are synthetic organic compounds known for their toxicity to many organisms and are notorious for having large discrepancies between measured and nominal concentrations. Historically thought to be less toxic, non-dioxin-like (NDL) PCBs represent the majority of congeners and are capable of eliciting neurotoxic effects. NDL-PCBs remain understudied, including their effects on aquatic organisms. In the first study, I collected extensive chemistry data and data on neurobehavioral and cardiac endpoints to test the acute effects of exposure to an NDL-PCB mixture on early life stage zebrafish. Neurobehavioral effects observed in the first study indicated a potential for longer term behavioral effects in these fish. In the second study, I collected data on feeding, social, and memory behavior of zebrafish at time points beyond the acute exposure from the first study. Acute and longer-term behavioral endpoints in the first and second studies demonstrated effects from PCB exposure but did not indicate mechanisms. In the third study, I collected untargeted and targeted metabolomic data on amino acid, sugar, anionic compound, and neurotransmitter profiles to determine the specific pathways affected by exposure to an NDL-PCB mixture. These combined data from these studies provide a unique insight into the chemical profile of an NDL-PCB mixture in biological applications and synthesize acute, longer-term, and mechanistic effects on developing zebrafish. These data fully illustrate an adverse outcome pathway from toxicokinetic to population level effects.
123

The Effect of Organophosphate Exposure on Neocortical, Hippocampal and Striatal Monoamines: A Potential Substrate for Chronic Psychiatric, Cognitive and Motor Dysfunction

Lewis, Mary Catherine 01 September 2003 (has links)
Depression and other mood disorders, as well as cognitive and motor dysfunction have been linked with changes in monoamine levels in the brain. Environmental acetylcholinesterase (AChE) inhibitors, such as organophosphate insecticides (OPs), have also been shown to induce these problems. This study investigated whether insecticide-induced AChE inhibition, induced by chlorpyrifos (CPS), may contribute to the types of forebrain monoaminergic alterations associated with psychiatric, cognitive and motor dysfunction. Increased synaptic ACh, resulting from CPS-induced AChE inhibition, may alter the synthesis or release of monoamines through prolonged action of ACh on monoaminergic neurons that contain ACh receptors. Adult, male Sprague-Dawley rats were subjected to a single subcutaneous dose of CPS or corn oil vehicle. Brains were rapidly removed and the frontal cortex, hippocampus and striatum were bilaterally dissected on ice. These three regions from one side were assayed for AChE activity, while those from the opposite side were processed for high performance liquid chromatography with electrochemical detection (HPLC-ED) analysis of monoamine neurotransmitters and their metabolites. In the initial, exploratory experiment, inhibition of AChE activity was 66.8% in the frontal cortex, 43.8% in the hippocampus and 46.9% in the striatum, 7 days after a 60mg/kg dose of CPS. No significant differences in concentration of monoamine neurochemicals were observed between vehicle control and CPS-treated groups in either the hippocampus or striatum. However, in the frontal cortex of the CPS-treated rats there was a significant increase in median dihydroxyphenylacetic acid (DOPAC) concentration (P=0.019) and a very strong statistical trend toward increased dopamine (DA) concentration (P=0.0506). The second experiment examined the time course of AChE inhibition produced by a higher dose (200mg/kg) of CPS and how monoamine levels changed in conjunction with this pattern of AChE inhibition. Percent inhibition of AChE activity in CPS-treated animals, at 4, 14 and 21 days post-exposure was 77.0%, 86.6% and 81.9% in the frontal cortex, 86.1%, 85.9% and 83.2% in the hippocampus and 90.1%, 89.8% and 85.5% in the striatum. No significant differences in monoamine neurochemicals were observed between vehicle control and CPS-treated groups in either the hippocampus or striatum. A statistical trend toward a decrease in serotonin (5-HT) was seen in the frontal cortex at 14 days (P=0.0753) following CPS exposure. A very consistent, yet non-significant pattern of an increase in monoamines at 4 days post-CPS was observed in all instances, except for 5-hydroxyindoleacetic acid (5-HIAA) in the striatum. Therefore, the final experiment employed a more powerful design to focus on monoamine levels during, or shortly after, the change in AChE activity that rapidly follows exposure to 200mg/kg CPS. This experiment also employed a behavioral analysis on the day of sacrifice to assess the presence or absence of clinical signs of toxicity associated with this dose. Of the 30 CPS-treated rats, only 1 animal displayed a single behavioral sign of cholinergic poisoning. Percent inhibition of AChE activity at 2 and 4 days after treatment was 81.4% and 79.4% in the frontal cortex, 53.4% and 83.5% in the hippocampus, and 80.5% and 87.8% in the striatum. No significant changes in monoamine neurochemicals were observed between vehicle control and CPS-treated groups in either the frontal cortex or hippocampus. However, a significant increase in DOPAC (P=0.0285) in the striatum, 2 days after CPS treatment, was observed. In addition, a strong statistical trend toward decreased striatal 5-HT (P=0.0645) was reported 4 days after CPS treatment. The only significant correlation between AChE activity and monoamine concentration was observed for 5-HIAA in the striatum of CPS-treated, 2 day survivors (P=0.0445). However, it was of low magnitude (r=0.525, r2=0.276). CPS has a limited capacity to produce changes in monoamine neurotransmitters and/or their metabolites in the frontal cortex and striatum of the mammalian brain. These changes are primarily seen in the dopaminergic system. Alterations of monoamines do not appear to be strongly associated with incident levels of AChE inhibition. The biological implication of the limited OP induced changes in central monoamines remains significant, as changes in monoamines in the CNS nervous system have been linked to psychiatric, cognitive and motor dysfunction. / Master of Science
124

Formulation, characterization and cellular toxicity of lipid based drug delivery systems for mefloquin / Chrizaan Helena (nee Slabbert)

Helena (nee Slabbert), Chrizaan January 2011 (has links)
Malaria affects millions of people annually especially in third world countries. Increase in resistance and limited research being conducted adds to the global burden of malaria. Mefloquine, known for unwanted adverse reactions and neurotoxicity, is highly lipophilic and is still used as treatment and prophylaxis. Lipid drug delivery systems are commonly used to increase solubility and efficacy and decrease toxicity. The most generally used lipid drug delivery system is liposomes. The lipid bilayer structure varying in size from 25 nm to 100 μm can entrap both hydrophilic and lipophilic compounds. Similar in structure and size to liposomes, Pheroid™ technology consist of natural fatty acids and is also able to entrap lipophilic and hydrophilic compounds. The aim of this study was to formulate liposomes and Pheroid™ vesicles loaded with mefloquine and evaluate the physiochemical characteristic of the formulations followed by efficacy and toxicity studies. Pheroid™ vesicles and liposomes with and without mefloquine were evaluated in size, morphology, pH and entrapment efficacy during three month accelerated stability testing. Optimization of size determination by flow cytometry lead to accurate determination of size for both Pheroid™ vesicles and liposomes. During the three months stability testing, Pheroid™ vesicles showed a small change in size from 3.07 ± 0.01 μm to approximately 3 μm for all three temperatures. Confocal laser scanning microscopic evaluation of the liposomes showed structures uniform in spherical shape and size. No difference in size or structure between the Pheroid™ vesicles with and without mefloquine were obtained. Significant increase (p=0.027) in size from 6.46 ± 0.01 μm to above 10 μm was observed for liposomes at all the temperatures. Clearly formed lipid bilayer structures were observed on micrographs. With the addition of mefloquine to the liposome formulation, a decrease in the amount of bilayer structures and an increase in oil droplets were found. Entrapment efficacy was determined by firstly separating the entrapped drug from the unentrapped drug utilizing a Sephadex®G50 mini column. This was followed by spectrophotometric evaluation by UV-spectrophotometry at 283 nm. Initial entrapment efficacy of both Pheroid™ vesicles and liposomes was above 60%. An increase in entrapment efficacy was observed for Pheroid™ vesicles. The addition of mefloquine to already formulated Pheroid™ vesicles illustrated entrapment efficacy of 60.14 ± 5.59% after 14 days. Formulations loaded with mefloquine resulted in lower pH values as well as a decrease in pH over time. Optimization of efficacy studies utilizing propidium iodide was necessary due to the similarity in size and shape of the drug delivery systems to erythrocytes. A gating strategy was successfully implemented for the determination of the percentage parasitemia. Efficacy testing of mefloquine loaded in Pheroid™ vesicles and liposomes showed a 186% and 207% decrease in parasitemia levels compared to the control of mefloquine. Toxicity studies conducted include haemolysis and ROS (reactive oxygen species) analysis on erythrocytes as well as cell viability on mouse neuroblastoma cells. Pheroid™ vesicles with and without mefloquine resulted in a dose dependent increase in ROS and haemolysis over time. A dose dependent increase in ROS and haemolysis in both liposome formulations were observed, but to a lesser extent. Mefloquine proved to be neurotoxic with similar results obtained when mefloquine was entrapped in liposomes. Pheroid™ vesicles seem to have neuroprotective properties resulting in higher cell viability. Mefloquine could be entrapped successfully in Pheroid™ vesicles and less in liposomes. Pheroid™ vesicles was more stable over a three months accelerated stability testing with more favourable characteristics. The increase in ROS levels of Pheroid™ vesicles could be responsible for the higher efficacy and haemolytic activity. DL-α-Tocopherol in Pheroid™ vesicles possibly acted as a pro-oxidant due to the presence of iron in the erythrocytes. DL-α-Tocopherol showed possible antioxidant properties in the neurotoxicity evaluation resulting in higher cell viability. Even though liposomes illustrated higher efficacy and little haemolysis and ROS production, no difference in neurotoxicity was observed together with unfavourable properties during stability testing makes this drug delivery system less favourable in comparison to Pheroid™ vesicles. Mefloquine was successfully incorporated into Pheroid™ vesicles resulted in high efficacy and showed possible neuroprotection and therefore makes it an ideal system for treatment of malaria. / Thesis (Ph.D. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2011
125

L'approche économique des politiques de prévention des risques liés à la dégradation de l'environnement et à ses effets sur la santé humaine. Cas d'étude : l'application de l'Analyse Coût Bénéfice en vue de réduire l'exposition au plomb et au méthylmercure dans la population infantile française / The economic approach of prevention policies risks of environmental degradation and its effects on human health. Case studies : the choice of the Cost Benefit Analysis to reduce exposure to lead and methylmercury in French child population

Dudoy-Pichery, Céline 12 November 2012 (has links)
L'environnement s'est considérablement transformé au cours des dernières décennies sous l'effet du développement économique. Ces transformations se sont accompagnées d'effets positifs, mais aussi négatifs car l'homme se trouve exposé à un grand nombre de substances chimiques dont certaines présentent des risques pour sa santé. La dégradation de l'environnement et ses conséquences néfastes sur la santé ont fait prendre conscience progressivement aux décideurs publics de la nécessité de s'engager dans un développement durable reposant sur un modèle de croissance économiquement soutenable. Dans ce contexte, l'élaboration de politiques de prévention en santé environnementale repose sur une approche globale mobilisant différentes disciplines scientifiques allant de la toxicologie aux sciences sociales en passant par les sciences de l?ingénieur et l'écologie environnementale. En France, les politiques publiques de prévention mobilisent encore peu l'approche économique comme outil d'aide à la décision. Or la contribution de cette approche est indéniable : elle peut, notamment, mesurer la réduction du bien-être social liée aux effets des expositions sur la santé. L'évaluation économique peut permettre, entre autres, de faire révéler aux agents leur consentement à payer pour éviter une réduction de leur état de santé ou de leur bien-être, en donnant une valeur monétaire à ces externalités. Outre le fait d'aider à la décision, elle apporte aussi des éléments utiles et nécessaires au débat public. Dans cette thèse, nous avons retenu l'Impact Pathway Analysis (IPA) comme méthode d?évaluation parce qu'elle analyse un risque environnemental donné en définissant précisément sa nature, son ampleur et les probabilités qui le caractérisent et elle intègre ensuite l'évaluation économique afin de mesurer l'impact monétaire de la réduction du risque sur la santé. Cette thèse s'appuie sur deux exemples des conséquences de la pollution environnementale sur la santé des enfants, les cas du plomb et du mercure, et cherche à mettre en évidence le bien-fondé de l'intégration de l'évaluation économique dans les processus de décision publique. L'exposition au plomb et l'exposition au mercure altèrent la santé des enfants et provoquent des effets indésirables graves, tels que des troubles cognitifs et comportementaux. L'impact économique de l'exposition de la population infantile française à ces deux polluants et de sa réduction a été évalué par l'Analyse Coût Bénéfice (ACB) qui permet de rapprocher l'objectif à atteindre de l'optimisation des coûts. Les premiers résultats de l'évaluation montrent que des politiques publiques axées sur la réduction de l'exposition à ces polluants permettraient de réaliser des bénéfices monétaires de plusieurs milliards d'Euros par année comme le montrent les deux articles présentés 1,2. Ces bénéfices incluent une réduction des dépenses médicales futures et de la charge d'une éducation spécialisée des enfants en bas âge, et surtout l'augmentation de la productivité de ces derniers au cours de leur vie d'adulte. L'évaluation des coûts d'investissements dans des programmes de réduction des émissions des polluants est utile au décideur public afin qu'il puisse mettre en balance les coûts des interventions et le bénéfice de cette réduction. Différentes interventions pour réduire les émissions et/ou les expositions sont possibles : "réglementation - permis d'émission - information" et ont des coûts et des efficacités différents. Un troisième papier fait apparaître des bénéfices nets négatifs dans le cas des changements des canalisations d'eau contenant du plomb. Dans un contexte d'allocation de ressources rares, la recherche de l'efficience d'une politique publique nécessite de s'interroger sur le retour sur investissements, ce que permet l'évaluation économique / The environment has changed considerably in recent decades due to economic development. These changes have been accompanied by positive effects but also negative because people are exposed to many chemicals, some of which pose health risks. The environmental degradation and its adverse health effects have gradually led policy makers to become aware of the need to engage in development based on an economically sustainable growth model. In this context, prevention policies in environmental health I should be based on a comprehensive approach mobilizing various scientific fields, from toxicology to social sciences through engineering and environmental ecology. In France, public policies hardly use the economic approach as a tool for decision support. Now, the contribution of this approach is undeniable: it may, in particular, measure the reduction of social welfare associated with the health effects of exposure. Economic evaluation can help economic agents disclose their willingness to pay in order to avoid a degradation of their health or welfare, by giving a monetary value on these externalities. In addition to helping decision, it also provides useful and necessary items for public discussion. In this thesis, we selected the Impact Pathway Analysis (IPA) as an assessment method because it precisely defines the nature, magnitude and probability of a given environmental hazard and integrates the economic assessment to measure the monetary impact of reducing risk. This thesis is based on two examples of the effects of environmental pollution on children's health, the cases of lead and mercury, and seeks to highlight the validity of integrating economic evaluation in the process of public decision. Exposure to lead and mercury affects the health of children and may cause serious side effects, such as cognitive and behavioral disorders. The objective of this thesis is to evaluate the economic impact of the exposure of the French child population to these pollutants, and to highlight the costs and benefits of measures that would reduce the risks. To do this, we selected the Cost Benefit Analysis (CBA), which encompasses a cost optimization assessment. The first results of the evaluation show that public policy focused on reducing exposure to these pollutants would achieve monetary benefits of several billion Euros per year as shown by the two first papers presented in the thesis1.2. These benefits include a reduction in future medical expenses and of the burden of special education of young children, and mainly increased productivity of the latter during their adult life. Assessing the costs of investments in programs to reduce emissions of pollutants is useful for public decision so that costs of intervention and the benefit of this reduction can be weighed. Different interventions are possible to reduce emissions and / or exposures: "regulation - emission permits - information" and have different costs and efficiencies. A third paper shows net negative benefits in the case of removal of water pipes containing lead. In a context of allocating scarce resources, the pursuit of efficiency in public policy requires to consider the return on investment, which is allowed by economic evaluation. Following the empirical work in the three articles, the general discussion comes back on contributions, limits and prospects of integration in the economic evaluation of prevention policies and environmental risks of their neurotoxic effects on the health of children
126

Manganês: o papel do fracionamento químico e da especiação como determinantes de seu comportamento geoquímico e neurotóxico nos organismos em desenvolvimento / Manganese: role of chemical fractioning and speciation as determinants of its geochemical and developmental neurotoxicological effect

Hernández, Raúl Bonne 11 December 2009 (has links)
O manganês (Mn) é um elemento essencial, porém pode ser tóxico em concentrações acima do requerido fisiologicamente. Assim, motivado pelo aumento nos teores desse metal na bacia hidrográfica Alto do Paranapanema (ALPA) e o crescente número de estudos internacionais relacionando desordens neurológicas ao excesso de Mn em águas superficiais, o presente trabalho foi conduzido para avaliar o perfil geoquímico e neurotoxicológico do Mn nos organismos em desenvolvimento em função da especiação química do metal. Desta maneira, no período de agosto/2006 a abril/2007, foram realizadas quatro coletas de amostras de águas superficiais e de sedimentos, nos rios Paranapanema e Itapetininga e no reservatório Jurumirim, localizados na bacia hidrográfica Alto do Paranapanema (ALPA, SP). Os estudos de fracionamento químico demonstraram que na bacia ALPA o Mn ocorre basicamente nos sedimentos (Mn ligado a hidr(óxidos) de Fe e Mn > Mn ligado a carbonatos ≈ Mn intercambiável ≈ Mn ligado a silicatos > Mn ligado a matéria orgânica) porém em constante troca com a coluna líquida, onde o Mn ocorre como metal particulado e em menor proporção como metal lábil. Acredita-se que esse padrão de distribuição esteja governado pelas características oxidantes e alcalinas desses sistemas aquáticos. Adicionalmente, foi verificado que a origem do Mn nesses sistemas é de caráter natural, porém com ~ 30 % de riscos ecotoxicológicos. Neste sentido, estudos in vitro (modelos de neurônios) e in vivo (embriões de paulistinha, Danio rerio) com as espécies MnCl2, Mn(II)Cit, Mn(III)Cit, Mn(III)PPi (Cit: Citrato, PPi: Pirofosfato) sugeriram que o Mn(II) é mais tóxico do que o Mn(III). Contudo, independentemente da especiação química, o Mn foi mais tóxico para neurônios glutamatérgicos do cerebelo em diferenciação, e para o paulistinha no período embrio-larval, pós-eclosão (> 72 horas pós-fertilização), no qual foram verificados danos neuromusculares. No entanto, a espécie mais tóxica para embriões expostos por 48 h foi o MnCl2 e por 120 h o Mn(II)Cit, sugerindo que o citrato está mediando essa toxicidade, o que é uma exceção ao “Free Ion Activity Model”. Conforme esses resultados foram verificados inibição do metabolismo do lactato e do ascorbato in vitro. Estudos de expressão gênica no paulistinha, mediante RT-PCR qualitativo e quantitativo permitiram verificar alterações no gene mitocondrial mt-co1, que pode ser compensada pela superexpressão do gene hspb11. Esses resultados sugerem que os danos induzidos pelas espécies de Mn devem estar associados à disfunção mitocondrial e do metabolismo energético, seguido da indução de estresse oxi-redutivo, o qual pode ser parcialmente revertido pela administração exógena de lactato e/ou ascorbato, sendo propostos os prováveis mecanismos. A probabilidade de que esses eventos toxicológicos aconteçam em outras espécies, incluindo os seres humanos, é sustentada principalmente pelos estudos tóxico-genômicos, dado que em outras espécies podem ser encontrados ortologos para esses genes, e especialmente para mt-co1, que poderia ser um biomarcador da toxicidade do Mn. Finalmente, sugere-se que os valores de referência de Mn em sedimentos sejam revistos em função das contribuições de frações biodisponíveis, e que esses resultados sejam considerados pelas agências ambientais do Estado em seus programas de avaliação e gerenciamentos de riscos / Manganese (Mn) is an essential element, however it may be toxic in higher than recquired physiological levels. The present work was motivated by the increased levels of this metal in the Alto do Paranapanema (ALPA, São Paulo state) hydrographic basin and to the growing amount of international evidence relating neurological disorders to excess Mn in superficial waters. Therefore, experiments were conducted in order to evaluate Mn both geochemical and neurotoxicological profiles on the developmental stages of aquatic organisms and mammaliam models as a function of metal speciation. During August 2006 to April 2007, four expeditions to ALPA were performed to collect water and sediment samples from rivers Paranapanema and Itapetininga, as well as from Jurumirim reservoir. Chemical fractioning studies showed that Mn occurs mainly in sediments (Mn bound to Fe, Mn (hydr)oxides > Mn bound to carbonates ≈ Interchangeable Mn ≈ Mn bound to silicates > Mn bound to organic matter) but in constant exchange with the liquid column, where Mn occurs as particulated metal and, in lesser amounts, as a labile metal. This distribution pattern is thought to be governed by the oxidant and alkaline conditions of this aquatic system. Also, Mn was found to be of natural origin, however posing ~ 30% of ecotoxicological risks. In vitro (neuronal cells) and in vivo (zebrafish, Danio rerio embryos) studies with the species MnCl2, Mn(II)Cit, Mn(III)Cit, Mn(III)PPi (Cit: Citrate, PPi: Pyrophosphate) suggest that Mn(II) is more toxic than Mn(III). However, independently of chemical speciation, Mn was more toxic to cerebellar glutamatergic neurons during differentiation and to zebrafish in the embryo- larval period (> 72 hours pos-fertilization), to which neuromuscular damage was observed. The most toxic species for embryos exposed for 48 h was MnCl2, but in the 120 h exposition experiment Mn(II)Cit was more toxic, suggesting that citrate mediates the toxicity, in an exception to the Free Ion Activity Model. According to these results, it was observed inhibition in the metabolism of lactate and ascorbate in vitro. Gene expression studies of zebrafish were performed by both qualitative and quantitative RT-PCR, displaying changes in the expression of the mithocondrial gene mt-co1 which may be compensated by an overexpression of hspb11 gene. These results suggest that the damage induced by Mn species may be related to mitochondrial and energy metabolism disfunction followed by induction of oxi-reductive stress, which can be partially reverted by the exogenous administration of lactate and/or ascorbate. The putative mechanisms are proposed. The possibility that these toxic events might be important to other species, humans included, is substantiated mainly by the toxicogenomics studies, since ortologs for both genes are widespread. This is especially true to mt-co1, which may be a biomarker for Mn toxicity. Finally, it is suggested that the reference values of Mn in sediments should be revised to accomodate the contributions of bioavailable fractions, and that results should be considered by official environment control agencies during their evaluation and risk management programs
127

Neurotoxicity and aggregation of β-synuclein and its P123H and V70M mutants associated with dementia with Lewy bodies

Psol, Maryna 26 June 2018 (has links)
No description available.
128

Avaliação da segurança de polimixina B em altas doses para o tratamento de infecções causadas por bacilos gram-negativo multirresistentes

França, Josiane January 2017 (has links)
Base teórica: O surgimento de bactérias multirresistentes levou a uma renovação no interesse de antigos antimicrobianos, como a polimixina B, medicamento que foi descartado no passado devido sua toxicidade. Nas últimas duas décadas, esse antimicrobiano tornou-se um dos mais importantes agentes terapêuticos para o tratamento de infecções causadas por bactérias multirresistentes; porém, ainda faltam estudos clínicos que avaliem a segurança da polimixina B, especialmente em altas doses. Objetivo: Avaliar eventos adversos graves relacionados à infusão e a falência renal nos pacientes que receberam altas doses de polimixina B intravenosa. Métodos: Realizamos um estudo de coorte retrospectivo, multicêntrico. Incluímos pacientes que receberam > 3mg/kg/ dia ou uma dose total ≥250mg/dia de polimixina B, no período de janeiro de 2013 a dezembro de 2015. Para a avaliação dos eventos relacionados a infusão, foram incluídos pacientes que receberam ≥ 1 dose de polimixina B e para avaliação de falência renal incluiu apenas os pacientes que receberam ≥ 48 horas de polimixina B. Os desfechos principais avaliados foram os eventos adversos graves relacionados à infusão de acordo com os Critérios de Terminologia Comuns para Eventos Adversos (CTCAE v4.0) e a falência renal, utilizamos os critérios RIFLE (Risk, Injury, Failure, Loss and End stage), para categorizar os diferentes graus de lesão renal aguda. As variáveis incluídas no estudo foram as variáveis demográficas (idade, sexo), as variáveis individuais (peso, comorbidades, escore de Charlson), os fatores de gravidade (internação em UTI, uso de vasopressor, uso de bloqueador neuromuscular), outras fármacos nefrotóxicas, dose de polimixina utilizada (total, média diária e em mg/kg/dia), associação com outros medicamentos, e características da infecção (sítio, isolamento microbiológico) foram avaliadas em análise bivariada. Variáveis com P≤0.2 foram incluídas uma a uma, em ordem crescente, em modelo de regressão de COX. Variáveis com P< 0.1 permaneceram no modelo final. Resultados: Foram incluídos 222 pacientes para análise de eventos graves relacionados à infusão. A dose média de polimixina B foi de 3.61± 0.97 mg/kg /dia (dose total media = 268 mg/kg). Ocorreram eventos adversos graves relacionados à infusão em dois pacientes, determinando uma incidência bruta de 0.9% (intervalo de confiança de 95%, 0.2-3.2): um 7 evento classificado como um risco ameaçador a vida (efeito adverso classe IV) ocorreu em um paciente, homem, de 40 anos, internado no Centro de Terapia Intensiva, com fibrose cística, que recebeu 3,3 mg / kg / dia de PMB e desenvolveu dor torácica súbita, dispnéia e hipoxemia, no quarto dia de tratamento e o outro evento adverso grave (classe III), ocorreu em um paciente, homem, 23 anos, internado na enfermaria, com linfoma, que recebeu 3,6 mg / kg / dia de PMB , que apresentou parestesia perioral, tonturas e dispnéia no primeiro dia de tratamento. A falência renal foi analisada em 115 pacientes que receberam ≥ 48 horas de polimixina B e que não estavam em diálise no início do tratamento com Polimixina B; Falência renal foi encontrada em 25 de 115 (21,7%) pacientes expostos as PMB. Nosso estudo identificou que 54 [47,0%] pacientes desenvolveram algum grau de lesão renal aguda, pelos critérios de RIFLE: risco, 15 (27,8%), injúria, 14 (25,9%) e falência, 25 (46,3%) dentro das categorias do RIFLE. Além disso, droga vasoativa, outros fármacos nefrotóxicos e clearance de creatinina foram fatores de risco independentes para falência renal. Nem a dose diária de polimixina B ajustada para o peso corporal, nem a dose diária total foram associadas a falência renal. A mortalidade intra-hospitalar foi de 60% (134 pacientes): 26% (57 pacientes) morreram durante o tratamento e nenhum óbito foi durante a infusão. Conclusão: Altas doses de polimixina B no tratamento de infecções por bactérias gramnegativo apresentaram incidência baixa de eventos adversos agudos no nosso estudo e incidência de nefrotoxicidade elevadas, mas semelhantes a alguns estudos prévios com doses usuais”. Portanto, doses elevadas podem ser testadas em ensaios clínicos, objetivando melhorar os desfechos dos pacientes gravemente doentes com infecções por bactérias multirresistentes e minimizar o surgimento da resistência a polimixina B. / Background: The emergence of multiresistant bacteria has led to a renewal in the interest of old antimicrobials, such as polymyxin B, a drug that has been discarded in the past due to its toxicity. However, at this time, this antimicrobial has become one of the most important therapeutic agents for the treatment of infections caused by multiresistant bacteria but there is still a lack of clinical studies that evaluate the safety of polymyxin B, especially in relation to the use of high doses. This strategy, high doses, may be necessary in the fight against Gramnegative bacteria with a high minimum inhibitory concentration. Patients and methods: A retrospective, multicenter cohort study; the period evaluated was from January 2013 to December 2015, included patients who received > 3mg/kg/day or a total dose of ≥250mg/day of polymyxin B. The study included the evaluation of infusion-related events, patients who received ≥ 1 dose of polymyxin B and patients who received ≥ 48 hours of PMB were included for evaluation of renal failure. Major outcomes were serious adverse events related to infusion according to the Common Terminology Criteria for Adverse Events (CTCAE v4.0) and categorized renal failure by the RIFLE criteria (Risk, Injury, Failure, Loss, End stage). Factors potentially related to nephrotoxicity or mortality in 30 days were: demographic variables (age, sex), individual variables (weight, comorbidities, Charlson score), severity factors (ICU admission, use of vasopressor, use of Neuromuscular blocker), nephrotoxicity (other nephrotoxic drugs), polymyxin dose (total, daily mean and mg / Kg / day), association of drugs and infection characteristics (site and microbiological isolate) were evaluated in bivariate analysis. Variables with P≤0.2 were included one by one, in ascending order, in a Cox regression model. Variables with P <0.1 remained in the final model. Results: Two of 222 patients presented a severe infusion-related adverse event during PMB infusion, resulting in a crude incidence of 0.9% (95% Confidence Interval [CI], 0.2-3.2); one was classified as life-threatening and one classified as severe (crude incidence of each adverse event, 0.45%; 95% CI, 0.08-2.5). The life-threatening adverse effect occurred in an ICU patient (crude incidence among ICU patients, 0.67%; 95% CI, 0.12-3.7), a 40-years old male with cystic fibrosis who used 3.3 mg/kg/day of PMB and developed sudden thoracic pain, dyspnea and hypoxemia, in the fourth day of treatment. The severe adverse effect occurred in a non-ICU patient (crude incidence among non-ICU patients, 1.3%; 95% CI, 0.2-7.2), a 23- years old male with lymphoma exposed to 3.6 mg/kg/day of PMB, who presented perioral 9 paresthesia, dizziness and dyspnea in the first day of treatment. Renal failure was analysed in 115 patients who received ≥48 hours of PMB and who were not previously in dialysis. A total of 54 [47.0%] patients developed any degree of AKI, categorised as Risk [27.8%]; Injury [25.9%] and Failure [46.3%]) and 25 of 115 (21.7%) patients presented renal failure Vasoactive drug, concomitant nephrotoxic drugs and baseline creatinine clearance were independent risk factors for renal failure. Neither PMB daily dose scaled by body weight nor total daily dose were associated with renal failure. In-hospital mortality was 60% (134 patients): 26% (57 patients) occurred during treatment and none during infusion. Conclusion: Results suggest that high dose regimens have similar safety profile of usual doses and could be further tested in clinical trials assessing strategies to improve patients’ outcomes and minimize the emergence of PMB resistance.
129

Manganês: o papel do fracionamento químico e da especiação como determinantes de seu comportamento geoquímico e neurotóxico nos organismos em desenvolvimento / Manganese: role of chemical fractioning and speciation as determinants of its geochemical and developmental neurotoxicological effect

Raúl Bonne Hernández 11 December 2009 (has links)
O manganês (Mn) é um elemento essencial, porém pode ser tóxico em concentrações acima do requerido fisiologicamente. Assim, motivado pelo aumento nos teores desse metal na bacia hidrográfica Alto do Paranapanema (ALPA) e o crescente número de estudos internacionais relacionando desordens neurológicas ao excesso de Mn em águas superficiais, o presente trabalho foi conduzido para avaliar o perfil geoquímico e neurotoxicológico do Mn nos organismos em desenvolvimento em função da especiação química do metal. Desta maneira, no período de agosto/2006 a abril/2007, foram realizadas quatro coletas de amostras de águas superficiais e de sedimentos, nos rios Paranapanema e Itapetininga e no reservatório Jurumirim, localizados na bacia hidrográfica Alto do Paranapanema (ALPA, SP). Os estudos de fracionamento químico demonstraram que na bacia ALPA o Mn ocorre basicamente nos sedimentos (Mn ligado a hidr(óxidos) de Fe e Mn > Mn ligado a carbonatos &#8776; Mn intercambiável &#8776; Mn ligado a silicatos > Mn ligado a matéria orgânica) porém em constante troca com a coluna líquida, onde o Mn ocorre como metal particulado e em menor proporção como metal lábil. Acredita-se que esse padrão de distribuição esteja governado pelas características oxidantes e alcalinas desses sistemas aquáticos. Adicionalmente, foi verificado que a origem do Mn nesses sistemas é de caráter natural, porém com ~ 30 % de riscos ecotoxicológicos. Neste sentido, estudos in vitro (modelos de neurônios) e in vivo (embriões de paulistinha, Danio rerio) com as espécies MnCl2, Mn(II)Cit, Mn(III)Cit, Mn(III)PPi (Cit: Citrato, PPi: Pirofosfato) sugeriram que o Mn(II) é mais tóxico do que o Mn(III). Contudo, independentemente da especiação química, o Mn foi mais tóxico para neurônios glutamatérgicos do cerebelo em diferenciação, e para o paulistinha no período embrio-larval, pós-eclosão (> 72 horas pós-fertilização), no qual foram verificados danos neuromusculares. No entanto, a espécie mais tóxica para embriões expostos por 48 h foi o MnCl2 e por 120 h o Mn(II)Cit, sugerindo que o citrato está mediando essa toxicidade, o que é uma exceção ao &#8220;Free Ion Activity Model&#8221;. Conforme esses resultados foram verificados inibição do metabolismo do lactato e do ascorbato in vitro. Estudos de expressão gênica no paulistinha, mediante RT-PCR qualitativo e quantitativo permitiram verificar alterações no gene mitocondrial mt-co1, que pode ser compensada pela superexpressão do gene hspb11. Esses resultados sugerem que os danos induzidos pelas espécies de Mn devem estar associados à disfunção mitocondrial e do metabolismo energético, seguido da indução de estresse oxi-redutivo, o qual pode ser parcialmente revertido pela administração exógena de lactato e/ou ascorbato, sendo propostos os prováveis mecanismos. A probabilidade de que esses eventos toxicológicos aconteçam em outras espécies, incluindo os seres humanos, é sustentada principalmente pelos estudos tóxico-genômicos, dado que em outras espécies podem ser encontrados ortologos para esses genes, e especialmente para mt-co1, que poderia ser um biomarcador da toxicidade do Mn. Finalmente, sugere-se que os valores de referência de Mn em sedimentos sejam revistos em função das contribuições de frações biodisponíveis, e que esses resultados sejam considerados pelas agências ambientais do Estado em seus programas de avaliação e gerenciamentos de riscos / Manganese (Mn) is an essential element, however it may be toxic in higher than recquired physiological levels. The present work was motivated by the increased levels of this metal in the Alto do Paranapanema (ALPA, São Paulo state) hydrographic basin and to the growing amount of international evidence relating neurological disorders to excess Mn in superficial waters. Therefore, experiments were conducted in order to evaluate Mn both geochemical and neurotoxicological profiles on the developmental stages of aquatic organisms and mammaliam models as a function of metal speciation. During August 2006 to April 2007, four expeditions to ALPA were performed to collect water and sediment samples from rivers Paranapanema and Itapetininga, as well as from Jurumirim reservoir. Chemical fractioning studies showed that Mn occurs mainly in sediments (Mn bound to Fe, Mn (hydr)oxides > Mn bound to carbonates &#8776; Interchangeable Mn &#8776; Mn bound to silicates > Mn bound to organic matter) but in constant exchange with the liquid column, where Mn occurs as particulated metal and, in lesser amounts, as a labile metal. This distribution pattern is thought to be governed by the oxidant and alkaline conditions of this aquatic system. Also, Mn was found to be of natural origin, however posing ~ 30% of ecotoxicological risks. In vitro (neuronal cells) and in vivo (zebrafish, Danio rerio embryos) studies with the species MnCl2, Mn(II)Cit, Mn(III)Cit, Mn(III)PPi (Cit: Citrate, PPi: Pyrophosphate) suggest that Mn(II) is more toxic than Mn(III). However, independently of chemical speciation, Mn was more toxic to cerebellar glutamatergic neurons during differentiation and to zebrafish in the embryo- larval period (> 72 hours pos-fertilization), to which neuromuscular damage was observed. The most toxic species for embryos exposed for 48 h was MnCl2, but in the 120 h exposition experiment Mn(II)Cit was more toxic, suggesting that citrate mediates the toxicity, in an exception to the Free Ion Activity Model. According to these results, it was observed inhibition in the metabolism of lactate and ascorbate in vitro. Gene expression studies of zebrafish were performed by both qualitative and quantitative RT-PCR, displaying changes in the expression of the mithocondrial gene mt-co1 which may be compensated by an overexpression of hspb11 gene. These results suggest that the damage induced by Mn species may be related to mitochondrial and energy metabolism disfunction followed by induction of oxi-reductive stress, which can be partially reverted by the exogenous administration of lactate and/or ascorbate. The putative mechanisms are proposed. The possibility that these toxic events might be important to other species, humans included, is substantiated mainly by the toxicogenomics studies, since ortologs for both genes are widespread. This is especially true to mt-co1, which may be a biomarker for Mn toxicity. Finally, it is suggested that the reference values of Mn in sediments should be revised to accomodate the contributions of bioavailable fractions, and that results should be considered by official environment control agencies during their evaluation and risk management programs
130

Effects of Rotenone and 6-OHDA on Dopaminergic Neurons of the Substantia Nigra Studied In Vitro

Freestone, Peter Stuart January 2009 (has links)
This study investigated the neurotoxic effects of rotenone and 6-hyroxydopamine (6 OHDA), two compounds which have been implicated in Parkinson’s disease (PD). PD is a neurodegenerative disorder that results in the impairment of movement. During the disease process, a group of dopamine-containing cells in the brain region called the Substantia Nigra pars compacta (SNc), degenerate. Whilst genetic factors contribute to approximately 5% of PD cases, the causes of the remaining 95% are unknown. What does seem clear is the pivotal role of mitochondrial dysfunction as observed in post-mortem human tissue. Mitochondrial dysfunction leads to energy depletion and the generation of harmful reactive oxygen species (ROS). However, despite the fact that the involvement of mitochondria in the disease process has been well established, the cellular events that lead to, and result from, mitochondrial dysfunction remain poorly understood. Rotenone and 6 OHDA have been implicated in PD for two reasons: (1) both toxins can relatively selectively kill SNc neurons in animal models of PD, and (2) there is evidence for both compounds having a potential causative role in the etiology of the disease in humans. When 6 OHDA is injected into the brain, or rotenone applied systemically, both toxins cause degeneration of SNc neurons. This ability makes them excellent tools for studying mechanisms of PD in animal models. In addition, both toxins inhibit mitochondrial function. Despite extensive use in models of PD, the mechanisms by which each toxin cause cell damage remains elusive. The first part of this study investigated the acute responses of dopaminergic SNc neurons to rotenone exposure (5 nM – 1 µM). The experiments were conducted on brain slices obtained from rats. Electrophysiological recordings (whole-cell patch-clamp technique) were used to detect activation of specific membrane channels as well as cell firing and changes to the membrane potential. In addition, imaging of several fluorescent dyes sensitive to specific cellular events was carried out. In voltage-clamp experiments, acute rotenone (200 nM – 1 µM) application evoked a concentration-dependent outward current which was mediated by tolbutamide-sensitive KATP channels. The current was associated with a drop in cell input resistance (Rm) and, in current-clamp, membrane hyperpolarization and inhibition of spontaneous action potentials. The mechanisms by which rotenone activates KATP channels is controversial, with some studies suggesting activation by ATP depletion and others by elevated reactive oxygen species (ROS). To address this issue, experiments were conducted with high levels of ATP in the pipette solution. Since the rotenone-induced outward current was unaffected by high ATP levels, it was concluded that KATP channel activation was due to oxidative stress. Indeed, the antioxidant Trolox significantly attenuated the current response. Confirmation of elevated ROS production was obtained by recording increased mitochondrial superoxide production, using the fluorescent dye MitoSOX. In addition, rotenone evoked depolarization of mitochondrial membrane potential (ΔΨm). Measurements of intracellular Ca2+ and Na+ were performed using the fluorescent dyes Fura 2 and SBFI, respectively. Rotenone evoked increases to both [Ca2+]i and [Na+]i in a concentration-dependent manner. The rotenone-induced [Ca2+]i rise was unaffected by blocking KATP channels with Cs+. The elevation of [Ca2+]i is particularly important in relation to cell death, since [Ca2+]i overload is known to activate pathways leading to necrosis and apoptosis. There has been growing interest in the synergistic action of rotenone with other toxins/conditions which also enhance [Ca2+]i. This concept was explored in the present study by testing the relationship between the baseline [Ca2+]i level and the rotenone-induced [Ca2+]i increase. Two approaches were taken. Firstly, baseline [Ca2+]i was deliberately raised by activation of voltage-gated calcium channels. When rotenone was applied in the presence of this raised baseline calcium level, the rotenone-induced [Ca2+]i rise was significantly greater. The second approach involved post-hoc analysis of the relationship between the normal cellular variation in baseline [Ca2+]i and the rotenone-induced [Ca2+]i elevation. This analysis also revealed a dependency of the rotenone-induced [Ca2+]i elevation on the baseline calcium level. From this finding, as well as the observation that rotenone evoked ROS production, Transient Receptor Protein subtype M2 (TRPM2) channels were proposed as the likely underlying mechanism. The potentiation of the rotenone-induced [Ca2+]i rise by an elevation in baseline calcium level can be attributed to the calcium-dependence of ROS-sensitive TRPM2 channels, known to respond with increased channel opening to increased [Ca2+]i. Recent findings from our laboratory have confirmed TRPM2 involvement in rotenone toxicity, since blockade of these channels with ACA reduced the rotenone-induced [Ca2+]i rise (K. Chung, unpublished). Imaging using the fluorescent dye propidium iodide (PI) to label cells with compromised membrane integrity was also conducted in acute midbrain slices. SNc neurons were retrograde-labelled with FluoroGold and then exposed to various toxic insults. The detergent Triton-X100 caused an increase in PI labelling, whilst rotenone and high concentrations of glutamate were ineffective over the period of time investigated (up to 40 min). The second part of this study, also conducted on acute rat midbrain slices, investigated the acute responses of SNc neurons to 6 OHDA (0.2 – 2 mM) exposure. Extracellular recordings of action potential firing were conducted on SNc neurons. 6 OHDA evoked rapid inhibition of firing in a similar manner to dopamine (100 µM). In the presence of D2 dopamine receptor blocker sulpiride, the inhibition of firing evoked by 6 OHDA was delayed, and an initial increase of firing was observed. Blockade of the dopamine transporter with nomifensine reduced the 6 OHDA-induced inhibition of firing, and prevented the persistent inhibition of firing after 6 OHDA washout. For comparison, the response to 6 OHDA of non-dopaminergic neurons in the subthalamic nucleus was also studied. In the subthalamic nucleus, 6 OHDA evoked an increase of spontaneous action potential firing. Rapid application of 6 OHDA (using the picospritz application technique) in voltage-clamp recorded SNc neurons evoked an outward current, similar to that observed after dopamine application. In the presence of sulpiride, 6 OHDA induced an inward current, consistent with the initial increase of firing activity observed in extracellular recordings. Microfluorometric experiments with Fura 2, showed that 6 OHDA evokes an increase in [Ca2+]i. Loading cells with the fluorescent dye Lucifer Yellow enabled visualization of 6 OHDA-induced swelling of the cell body and damage to proximal dendrites. Imaging of SNc neurons loaded with dextran-rhodamine revealed 6 OHDA-induced damage of distal dendrites. The last part of the study was performed on organotypic cultures obtained from slices of the ventral midbrain. These cultures were prepared from newborn transgenic mice expressing green fluorescent protein (GFP) under the tyrosine hydroxylase-promoter. This fluorescent marker enabled easy identification of dopamine-containing cells (including SNc neurons). Only preliminary experiments were carried out using this preparation. GFP-positive neurons did not show the classic membrane hyperpolarization in response to dopamine. For comparison, recordings from GFP-positive SNc neurons in acute slices obtained from age-matched animals did show a typical hyperpolarizing response to dopamine. GFP-neurons from organotypic cultures also lacked the Ih current – another characteristic feature of SNc neurons in vivo or in acute brain slices. In addition, atypical responses to CNQX (blocker of NMDA receptors) and baclofen (blocker of GABAB receptors) application were identified in GFP-positive neurons. These results demonstrate that the culturing process used in this study alters the functional ‘phenotype’ of dopaminergic neurons, a change which needs to be considered in future studies using this preparation. Chronic exposure of organotypic cultures to low concentration of rotenone (50 nM) evoked a delayed increase of PI labelling indicative of cell death, however technical limitations prevented detection of PI co-localization with GFP was observed. In conclusion, this study identified several key aspects of 6 OHDA and rotenone toxicity in SNc neurons. The most significant novel findings include evidence for ROS activation of KATP channels, presumed involvement of TRPM2 channels in rotenone-induced [Ca2+]i rise, and dopamine-analogous effects of 6 OHDA. The controversial role of KATP channels in neuroprotection was addressed. Findings from this study suggest therapies targeting this channel alone would be of little benefit. The proposed involvement of TRPM2 channels in rotenone-induced [Ca2+]i overload in SNc neurons is particularly interesting as it provides a mechanism for synergism between rotenone and other factors that disrupt [Ca2+]i homeostasis.

Page generated in 0.0591 seconds