21 |
Pharmacokinetic drug-drug interactions in the management of malaria, HIV and tuberculosisElsherbiny, Doaa January 2008 (has links)
<p> Malaria, Human Immunodeficiency Virus (HIV) and tuberculosis (TB) are global health problems having their worst situation in sub-Saharan Africa. Consequently, concomitant use of antimalarial, antiretroviral and antitubercular drugs may be needed, resulting in a potential risk of drug-drug interactions.</p><p>Cytochrome P-450 (CYP) enzyme induction/inhibition may lead to drug-drug interactions and can be detected by probe drugs. An analytical method was developed for the quantitation of mephenytoin, CYP2B6 and CYP2C19 probe, and its metabolites. </p><p>Induction/inhibition of principal CYP enzymes by the antimalarials; artemisinin, dihydroartemisinin, arteether, artemether and artesunate, was evaluated using the 4-hour plasma concentration ratios of probe drugs and their metabolites along with modelling the population pharmacokinetics of S-mephenytoin and its metabolites. The extent of change in enzymatic activities was different among the antimalarials, with artemisinin having strongest capacity for induction and inhibition, consequently, the strongest potential risk for drug-drug interactions. </p><p>Drug-drug interactions between the antitubercular rifampicin and the antiretrovirals nevirapine and lopinavir were assessed, in TB/HIV patients, by developing population pharmacokinetic models. Rifampicin increased nevirapine oral clearance. Simulations suggested that increasing the nevirapine dose to 300 mg twice daily when co-administered with rifampicin, would result in nevirapine concentrations above subtherapeutic levels, with minimum exposure above the recommended maximum concentration. Lopinavir is co-formulated with ritonavir in the ratio of 4:1. In children, increasing ritonavir dose four times did not completely compensate the enhancement of lopinavir oral clearance caused by rifampicin. However, the predicted lopinavir trough concentration was above the recommended minimum therapeutic concentration.</p><p>The work presented in this thesis followed an investigation line though not done for a particular drug. First the CYP enzymes involved in the interaction are identified. Afterwards, the expected drug-drug interaction is investigated where the potentially interacting drugs are concomitantly administered and an adjustment in the dose regimen is proposed that is subsequently evaluated.</p>
|
22 |
Pharmacokinetic drug-drug interactions in the management of malaria, HIV and tuberculosisElsherbiny, Doaa January 2008 (has links)
Malaria, Human Immunodeficiency Virus (HIV) and tuberculosis (TB) are global health problems having their worst situation in sub-Saharan Africa. Consequently, concomitant use of antimalarial, antiretroviral and antitubercular drugs may be needed, resulting in a potential risk of drug-drug interactions. Cytochrome P-450 (CYP) enzyme induction/inhibition may lead to drug-drug interactions and can be detected by probe drugs. An analytical method was developed for the quantitation of mephenytoin, CYP2B6 and CYP2C19 probe, and its metabolites. Induction/inhibition of principal CYP enzymes by the antimalarials; artemisinin, dihydroartemisinin, arteether, artemether and artesunate, was evaluated using the 4-hour plasma concentration ratios of probe drugs and their metabolites along with modelling the population pharmacokinetics of S-mephenytoin and its metabolites. The extent of change in enzymatic activities was different among the antimalarials, with artemisinin having strongest capacity for induction and inhibition, consequently, the strongest potential risk for drug-drug interactions. Drug-drug interactions between the antitubercular rifampicin and the antiretrovirals nevirapine and lopinavir were assessed, in TB/HIV patients, by developing population pharmacokinetic models. Rifampicin increased nevirapine oral clearance. Simulations suggested that increasing the nevirapine dose to 300 mg twice daily when co-administered with rifampicin, would result in nevirapine concentrations above subtherapeutic levels, with minimum exposure above the recommended maximum concentration. Lopinavir is co-formulated with ritonavir in the ratio of 4:1. In children, increasing ritonavir dose four times did not completely compensate the enhancement of lopinavir oral clearance caused by rifampicin. However, the predicted lopinavir trough concentration was above the recommended minimum therapeutic concentration. The work presented in this thesis followed an investigation line though not done for a particular drug. First the CYP enzymes involved in the interaction are identified. Afterwards, the expected drug-drug interaction is investigated where the potentially interacting drugs are concomitantly administered and an adjustment in the dose regimen is proposed that is subsequently evaluated.
|
23 |
Adverse pregnancy outcomes among HIV-positive pregnant women treated with efavirenz-containing antiretroviral drugs: a retrospective cohort study in the Cape FlatsMohammednur, Mohammedmekin Mohammedseid January 2017 (has links)
Doctor Pharmaceuticae - Dpharm / The use of efavirenz (EFV) in the first trimester of pregnancy
remains controversial. In South Africa, the use of EFV-containing antiretroviral
therapy (ART) as part of a Fixed Dose Combination (FDC) during the first
trimester of pregnancy started in April, 2013. Literature to date has reported
conflicting outcomes following the use of EFV-containing ART during the first
trimester of pregnancy. The objectives of the study were to determine the
prevalence of adverse pregnancy outcomes among HIV-positive pregnant women
treated with EFV-containing ART and compare these results with those of pregnant
women treated with NVP-containing ART and HIV-negative pregnant women in
resource-limited settings. In addition, the study also aimed to determine the effect
of the time of initiation of ART on the prevalence of adverse pregnancy outcomes.
|
24 |
Immunological and virological responses in highly active antiretroviral therapy naive patients exposed to isoniazid preventive therapyManda, Robert January 2009 (has links)
This study compare immunological and virological outcomes in antiretroviral therapy naïve patients exposed to Isoniazid prevention treatment.Medical records of antiretroviral naïve patients managed in the public sector from 1st January 2006 to 31st December 2006 were analysed.Multivariate analysis of variance showed that each treatment group achieved statistically significant increases in CD4+ cell count and viral load decay at each follow-up time point. Pairwise post hoc contrast tests showed patients in NVPipt-past group and EFVipt-past group to have superior immunological and virological outcomes respectively. / Health Studies / M.A. (Public health)
|
25 |
Identification of protein targets of nevirapine reactive metabolites using click chemistry and mass spectrometry-based differential proteomicsEloraby, Ghada January 2016 (has links)
Abstract : Adverse drug reactions (ADRs) are undesirable effects caused after administration of a single dose or prolonged administration of drug or result from the combination of two or more drugs. Idiosyncratic drug reaction (IDR) is an adverse reaction that does not occur in most patients treated with a drug and does not involve the therapeutic effect of the drug. IDRs are unpredictable and often life-threatening. Idiosyncratic reaction is dependent on drug chemical characteristics or individual immunological response. IDRs are a major problem for drug development because they are usually not detected during clinical trials.
In this study we focused on IDRs of Nevirapine (NVP), which is a non-nucleoside reverse transcriptase inhibitor used for the treatment of Human Immunodeficiency Virus (HIV) infections. The use of NVP is limited by a relatively high incidence of skin rash. NVP also causes a rash in female Brown Norway (BN) rats, which we use as animal model for this study. Our hypothesis is that idiosyncratic skin reactions associated with NVP treatment are due to post-translational modifications of proteins (e.g., glutathionylation) detectable by MS. The main objective of this study was to identify the proteins that are targeted by a reactive metabolite of Nevirapine in the skin.
The specific objectives derived from the general objective were as follow:
1) To implement the click chemistry approach to detect proteins modified by a reactive NVP-Alkyne (NVP-ALK) metabolite. The purpose of using NVP-ALK was to couple it with Biotin using cycloaddition Click Chemistry reaction.
2) To detect protein modification using Western blotting and Mass Spectrometry techniques, which is important to understand the mechanism of NVP induced toxicity.
3) To identify the proteins using MASCOT search engine for protein identification, by comparing obtained spectrum from Mass Spectrometry with theoretical spectrum to find a matching peptide sequence.
4) To test if the drug or drug metabolites can cause harmful effects, as the induction of oxidative stress in cells (via protein glutathionylation). Oxidative stress causes cell damage that mediates signals, which likely induces the immune response.
The results showed that Nevirapine is metabolized to a reactive metabolite, which causes protein modification. The extracted protein from the treated BN rats matched 10% of keratin, which implies that keratin was the protein targeted by the NVP-ALK. / Résumé : Les effets indésirables (EI) sont les effets indésirables causés après l'administration d'une dose unique ou une administration prolongée du médicament ou le résultat de la combinaison de deux médicaments ou plus. La Réaction idiosyncratique (IDR) est une réaction indésirable qui ne se produit pas dans la plupart des patients traités avec un médicament et qui ne comporte pas l'effet thérapeutique du médicament. IDR sont imprévisibles et peuvent mettre la vie du malade en danger. Cette réaction dépend des caractéristiques chimiques du médicaments et/ou de la réponse immunitaire individuelle du patient. IDR est un problème majeur pour le développement de médicaments car ils ne sont généralement pas détectés au cours des essais cliniques.
Dans cette étude, nous nous sommes concentrés sur la Réaction idiosyncratique de
névirapine (NVP) qui est un inhibiteur de transcriptase inverse non nucléosidique utilisé
pour le traitement du virus d'immunodéficience humaine (VIH). L'utilisation de NVP est
limitée par une incidence relativement élevée d'éruption cutanée. NVP provoque également une éruption cutanée chez les rats femelles de souche Brown Norway. Notre étude vise à mieux comprendre les IDRs induites par l'administration de NVP chez l'animal. La présente étude vise à vérifier l'hypothèse que les problèmes cutanés associés à la prise de NVP soient attribuables à la modification post-traductionnelle de protéines détactable par spectrométrie de masse. Les principaux objectifs de ce projet étaient : 1) Déterminer si la Nevirapine alcynes (NVP-ALK), un analogue de la NVP peut
développer la même éruption cutanée que la NVP. La NVP-ALK a été couplé avec
de la biotine en utilisant la réaction chimique (click chemistry). 2) Détecter les modifications post-traductionelles des proteines par Western blot et des techniques de spectrométrie de masse, pour comprendre le mécanisme de la toxicité induite par la NVP. 3) Identifier les protéines modifiées en utilisant le moteur de recherche MASCOT pour l'identification des protéines, en comparant le les spectres de masse obtenus avec les spectres théoriques pour trouver une séquence correspondante de peptide. 4) Tester si la NVP et ses métabolites peuvent provoquer des effets nocifs, comme l'induction d'un stress oxydatif dans les cellules (par la mesure de la glutathionylation des protéines).
Les résultats ont montré que la névirapine est métabolisé en métabolite réactif ce qui
provoque une modification de la kératine. Ainsi nos résultats suggèrent que la kératine est la cible des métabolites de la NVP-ALK.
|
26 |
Prédiction du passage transplacentaire in-vivo des médicaments à partir de modèles ex-vivo / In-vivo prediction of transplacental transfer using ex-vivo experimentSousa Mendes, Maïlys de 15 September 2016 (has links)
Les femmes enceintes sont exposées à de nombreux médicaments et les essais cliniques sont difficilement réalisables dans cette population, c'est pourquoi avoir une méthode qui permet d'estimer l'ampleur des modifications de pharmacocinétique chez la femme enceinte et le passage transplacentaire est essentiel. En effet les modifications physiologiques prennent place durant cette période clé. Nous avons développé des modèles pharmacocinétiques basé sur la physiologie (PBPK) et intégré les modifications physiologiques connues survenant durant la grossesse. Ils décrivent bien la pharmacocinétique de 3 antirétroviraux éliminés par le rein, le ténofovir (TFV), l'emtricitabine (FTC) et la lamivudine (3TC) et d'une molécule métabolisée par le CYP3A4, 2D6 et 2B6, la névirapine (NVP) et ceci pour différentes voies d'administration et pour des populations enceintes et non enceintes. De plus les clairances individuelles disponibles pour le TFV, le FTC et le 3TC tout au long de la grossesse ont permis d'explorer l'évolution de la sécrétion rénale. Celle-ci évoluerait proportionnellement au débit plasmatique rénal. L'intégration dans les modèles PBPK, des paramètres estimés à partir de l'expérience ex-vivo de cotylédon humain perfusé, a permis la prédiction de la cinétique foetale en fin de grossesse du TFV, FTC et NVP. Les prédictions ont été validées en les comparants aux concentrations mesurées au sang de cordon à l'accouchement. De plus, pour la névirapine nous avons exploré le métabolisme foetal et en avons conclu que même si celui-ci existe et est proche voir un peu supérieur à celui du nouveau-né, il n'influence pas la cinétique foetale. / Pregnant women are exposed to numerous drugs and for obvious ethical reasons studies in this sensitive population arelimited. Information about the maternal pharmacokinetic (PK) changes and transplacental transfer of drugs prior to theiradministration to pregnant women would be highly useful. Indeed is it known that physiological changes during pregnancycan affect drug disposition. Time-varying pregnancy-related physiological parameters changes were implemented in fullPBPK models. They successfully predicted the disposition of 3 renally excreted drugs tenofovir (TFV), emtricitabine (FTC)and lamivudine (3TC) and one metabolized drug, nevirapine (NVP) for non-pregnant and pregnant populations. We foundthat both renal secretion and filtration changed during pregnancy. Changes in renal clearance secretion were related tochanges in renal plasma flow. Transplacental parameters estimated from ex vivo human placenta perfusion experiments implemented in PBPK models allowed good prediction of foetal TFV, FTC and NVP PK. Predictions were compared to observed cord blood concentrations to validate these models. Moreover, we have explored nevirapine foetal metabolism and concluded that even if the foetal metabolism is the same than the newborn one or a little more important, it is notlikely to impact foetal PK.
|
27 |
Making it happen prevention of mother to child transmission of HIV in rural Malawi /Kasenga, Fyson, January 2009 (has links)
Diss. (sammanfattning) Umeå : Umeå universitet, 2009. / Felaktigt serienummer 1251. Härtill 4 uppsatser.
|
28 |
Development and Validation of Bioanalytical Methods : Application to Melatonin and Selected Anti-Infective DrugsRömsing, Susanne January 2010 (has links)
This thesis describes bioanalytical methods for measuring melatonin and some anti-infective drugs in biological fluids. Solid-phase extraction (SPE) or protein precipitation was used for enrichment and purification of the analytes and Liquid Chromatography (LC) was used to analyze the samples. Developed methods were validated according to international guidelines. Melatonin is a hormone secreted by the pineal gland with a robust circadian rhythm. Bioanalytical methods for determination of melatonin in plasma and saliva have been developed which were used for monitoring melatonin levels in volunteers and patients suffering from sleep related diseases. Eflornithine (DFMO) is a chiral drug used for the treatment of human African trypanosomiasis. A bioanalytical method for determination of the DFMO enantiomers in plasma, after precolumn derivatization with o-phtalaldehyde and N-acetyl-L-cystein has been developed. The method has been used to study the L- and D-DFMO pharmacokinetics, in order to investigate the possible development of an oral treatment of DFMO. A method for simultaneous determination of three antiretroviral drugs i.e. Lamivudine (3TC), Zidovudine (AZT) and Nevirapine (NVP) in dried blood spots (DBS) was developed. The method was used for drug determination in two subjects after receiving standard antiretroviral treatment. The method seemed well suitable for the determination of 3TC and NVP and in some extent for AZT. Lumefantrine (LF) is one of the active components in a new fixed drug combination recommended by the WHO as a replacement to older drugs that has lost their effect. A method for the determination of LF in DBS was developed. The method is suitable for monitoring of drug treatment in rural settings. Tafenoquine is a new promising antimalarial drug under development. A method for the determination of Tafenoquine in plasma and in DBS is described. The method may be useful in future clinical studies in laboratory environment as well as in rural settings. / Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 703
|
29 |
Effective prevention of mother-to-child transmission of HIV at Oshakati District Health Centre in the Republic of NamibiaShoopala, Naemi Ndahambemlela 02 1900 (has links)
The aim of this study was to assess the extent on how effective was the prevention of mother-to-child transmission of Human Immunodeficiency Virus (HIV) infection at Oshakati District Health Centre. Explanatory survey was used to conduct the research. A total of 160 nurses experienced in prevention of mother-to-child transmission and women who attended antenatal care and post natal care services participated in the study. Respondents expressed unsatisfactory with the promoting involvement of male partners, high quality voluntary counselling and testing services, couple counselling and testing, integration of Highly Active Antiretroviral Therapy services, administration of short course of Zidovudine to pregnant mothers and the provision of antiretroviral drugs to infants. Therefore, promoting involvement of male partners, couple counselling and testing, administration of short course of Zidovudine to pregnant mothers and educating women about exclusive breastfeeding prior to delivery are some of recommendations for effective prevention of mother-to-child transmission of HIV infections. / Health Studies / (M.A. (Public Health))
|
30 |
Effective prevention of mother-to-child transmission of HIV at Oshakati District Health Centre in the Republic of NamibiaShoopala, Naemi Ndahambelela 02 1900 (has links)
The aim of this study was to assess the extent on how effective was the prevention of mother-to-child transmission of Human Immunodeficiency Virus (HIV) infection at Oshakati District Health Centre. Explanatory survey was used to conduct the research. A total of 160 nurses experienced in prevention of mother-to-child transmission and women who attended antenatal care and post natal care services participated in the study. Respondents expressed unsatisfactory with the promoting involvement of male partners, high quality voluntary counselling and testing services, couple counselling and testing, integration of Highly Active Antiretroviral Therapy services, administration of short course of Zidovudine to pregnant mothers and the provision of antiretroviral drugs to infants. Therefore, promoting involvement of male partners, couple counselling and testing, administration of short course of Zidovudine to pregnant mothers and educating women about exclusive breastfeeding prior to delivery are some of recommendations for effective prevention of mother-to-child transmission of HIV infections. / Health Studies / M.A. (Public Health)
|
Page generated in 0.0558 seconds