• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 107
  • 89
  • 31
  • 31
  • 18
  • 13
  • 7
  • 5
  • 5
  • 5
  • 5
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 361
  • 95
  • 79
  • 55
  • 53
  • 39
  • 36
  • 34
  • 29
  • 25
  • 25
  • 25
  • 24
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

VIBRATIONAL SPECTROSCOPY FOR CHALLENGING SAMPLES AND SITUATIONS

Tran, Willie 23 April 2013 (has links)
No description available.
312

Polarimeteric Power Spectral Density Analysis of Lung Cancer Cells

Blinzler, Adam J. 08 May 2012 (has links)
No description available.
313

Multifunctional Magnetic Nanoparticles for Cancer Imaging and Therapy

Foy, Susan Patricia 30 January 2012 (has links)
No description available.
314

Prediction and Classification of Physical Properties by Near-Infrared Spectroscopy and Baseline Correction of Gas Chromatography Mass Spectrometry Data of Jet Fuels by Using Chemometric Algorithms

Xu, Zhanfeng 26 July 2012 (has links)
No description available.
315

Latent Variable Methods: Case Studies in the Food Industry

Nichols, Emily 10 1900 (has links)
<p>Accommodating changing consumer tastes, nutritional targets, competitive pressures and government regulations is an ongoing task in the food industry. Product development projects tend to have competing goals and more potential solutions than can be examined efficiently. However, existing databases or spreadsheets containing formulas, ingredient properties, and product characteristics can be exploited using latent variable methods to confront difficult formulation issues. Using these methods, a product developer can target specific final product properties and systematically determine new recipes that will best meet the development objectives.</p> <p>Latent variable methods in reformulation are demonstrated for a product line of frozen muffin batters used in the food service industry. A particular attribute is to be minimized while maintaining the taste, texture, and appearance of the original products, but the minimization is difficult because the attribute in question is not well understood. Initially, existing data is used to develop a partial least squares (PLS) model, which identifies areas for further testing. Design of experiments (DOE) in the latent variable space generates new data that is used to augment the model. An optimization algorithm makes use of the updated model to produce recipes for four different products, and a significant reduction of the target attribute is achieved in all cases.</p> <p>Latent variable methods are also applied to a difficult classification problem in oat milling. Process monitoring involves manually classifying and counting the oats and hulls in the product streams of groats; a task that is time-consuming and therefore infrequent. A solution based on near infrared (NIR) imaging and PLS-discriminant analysis (PLS-DA) is investigated and found to be feasible. The PLS-DA model, built using mixed-cultivar samples, effectively separates the oats and groats into two classes. The model is validated using samples of three pure cultivars with varying moistures and growing conditions.</p> / Master of Applied Science (MASc)
316

The Strong Field Simulator: Studying Quantum Trajectories in Classical Fields

Piper, Andrew J. 12 September 2022 (has links)
No description available.
317

A Positioning System for Landing a UAV on a UGV in a GNSS-Denied Scenario

Wiik, Tim January 2022 (has links)
A system of an unmanned aerial vehicle (UAV) collaborating with an unmanned ground vehicle (UGV) for use in for example surveillance, reconnaissance, transport and target acquisition is studied. The project investigates the problem of estimating the relative position, velocity and orientation between the UAV and the UGV required to autonomously land the UAV on the UGV during movement. The use of global navigation satellite system (GNSS) receivers are not considered since they are sensitive to interference and spoofing attacks.  The developed estimation system consists of an extended Kalman filter (EKF) using measurements from several sensors, including: a camera, barometers, inertial measurement units (IMUs) and impulse-radio ultra-wide bandwidth (IRUWB) transceivers. Primarily the use of near infrared (NIR) light emitting diodes (LEDs) attached to the UGV and a camera on the UAV is investigated. Several configurations of LED placements, and what errors to expect when measuring them with the camera, are evaluated. The performance is evaluated in both simulations and hardware sensor tests, but no live experiments that include any autonomous landing manoeuvre are conducted.  The results indicate that high estimation precision can be achieved, at close range the errors in position average below 2 cm and in orientation under 0.5 degrees. However, some problems arise from the detection and identification of the LEDs. Further, if measurements of the LEDs are completely missing, the estimation precision suffers due to error accumulation in the inertial navigation. These results indicate that autonomous landing is possible, since the amount of LED measurements and consequently also the estimation precision increases as the relative position decreases.
318

Investigation of a solvent-free continuous process to produce pharmaceutical co-crystals. Understanding and developing solvent-free continuous cocrystallisation (SFCC) through study of co-crystal formation under the application of heat, model shear and twin screw extrusion, including development of a near infrared spectroscopy partial least squares quantification method

Wood, Clive John January 2016 (has links)
This project utilised a novel solvent-free continuous cocrystallisation (SFCC) method to manufacture pharmaceutical co-crystals. The objectives were to optimize the process towards achieving high co-crystal yields and to understand the behaviour of co-crystals under different conditions. Particular attention was paid to the development of near infrared (NIR) spectroscopy as a process analytical technology (PAT). Twin screw, hot melt extrusion was the base technique of the SFCC process. Changing parameters such as temperature, screw speed and screw geometry was important for improving the co-crystal yield. The level of mixing and shear was directly influenced by the screw geometry, whilst the screw speed was an important parameter for controlling the residence time of the material during hot melt extrusion. Ibuprofen – nicotinamide 1:1 cocrystals and carbamazepine – nicotinamide 1:1 co-crystals were successfully manufactured using the SFCC method. Characterisation techniques were important for this project, and NIR spectroscopy proved to be a convenient, accurate analytical technique for identifying the formation of co-crystals along the extruder barrel. Separate thermal and model shear deformation studies were also carried out to determine the effect of temperature and shear on co-crystal formation for several different pharmaceutical co-crystal pairs. Finally, NIR spectroscopy was used to create two partial least squares regression models, for predicting the 1:1 co-crystal yield of ibuprofen – nicotinamide and carbamazepine – nicotinamide, when in a powder mixture with the respective pure API. It is believed that the prediction models created in this project can be used to facilitate future in-line PAT studies of pharmaceutical co-crystals during different manufacturing processes. / Engineering and Physical Sciences Research Council (EPSRC)
319

Implications of Shape Factors on Fate, Uptake, and Nanotoxicity of Gold Nanomaterials

Abtahi, Seyyed Mohammad Hossein 28 June 2018 (has links)
Noble metal nanoparticles such as gold and silver are of interest because of the unique electro-optical properties (e.g., localized surface plasmon resonance [LSPR]) that originate from the collective behavior of their surface electrons. These nanoparticles are commonly developed and used for biomedical and industrial application. A recent report has predicted that the global market for gold nanoparticles will be over 12.7 tons by year 2020. However, these surface-functionalized nanoparticles can be potential environmental persistent contaminants post-use due to their high colloidal stability in the aquatic systems. Despite, the environmental risks associated with these nanoparticles, just a few studies have investigated the effect of nanofeature factors such as size and shape on the overall fate/transport and organismal uptake of these nanomaterials in the aquatic matrices. This study presents a comprehensive approach to evaluate the colloidal stability, fate/transport, and organismal uptake of these nanoparticles while factoring in the size and shape related properties. We demonstrate the importance and effect of anisotropicity of a gold nanoparticle on the colloidal behavior and interaction with ecologically susceptible aquatic biota. We also show how readily available characterization techniques can be utilized to monitor and assess the fate/transport of this class of nanoparticles. We further describe and investigate the relationship between the aspect ratio (AR) of these elongated gold nanoparticles with clearance mechanisms and rates from the aquatic suspension columns including aggregation, deposition, and biopurification. We illustrate how a fresh water filter-feeder bivalve, Corbicula fluminea, can be used as a model organism to study the size and shape-selective biofiltration and nanotoxicity of elongated gold nanoparticles. The results suggest that biofiltration by C. fluminea increases with an increase in the size and AR of gold nanoparticle. We develop a simple nanotoxicity assay to investigate the short-term exposure nanotoxicity of gold nanoparticles to C. fluminea. The toxicity results indicate that for the tested concentration and exposure period that gold nanoparticles were not acutely toxic (i.e., not lethal). However, gold nanoparticles significantly inhibited the activities of some antioxidant enzymes in gill and digestive gland tissues. These inhibitions could directly affect the resistance of these organisms to a secondary stressor (temperature, pathogens, hypoxia etc.) and threaten organismal health. / Ph. D.
320

Synthesis and properties of d6 metal complexes of bidentate and tridentate ‘super donor’ ligands

Pal, Amlan Kumar 03 1900 (has links)
La polyvalence de la réaction de couplage-croisé C-N a été explorée pour la synthèse de deux nouvelles classes de ligands: (i) des ligands bidentates neutres de type N^N et (ii) des ligands tridentates neutres de type N^N^N. Ces classes de ligands contiennent des N-hétérocycles aromatiques saturés qui sont couplés avec hexahydropyrimidopyrimidine (hpp). Les ligands forment de cycles à six chaînons sur la coordination du centre Ru(II). Ce fait est avantageux pour améliorer les propriétés photophysiques des complexes de polypyridyl de Ru(II). Les complexes de Ru(II) avec des ligands bidentés ont des émissions qui dépendent de la basicité relative des N-hétérocycles. Bien que ces complexes sont électrochimiquement et photophysiquement attrayant, le problème de la stereopurité ne peut être évité. Une conception soigneuse du type de ligand nous permet de synthétiser un ligand bis-bidentate qui est utile pour surmonter le problème de stereopurité. En raison de la spécialité du ligand bis-bidentate, son complexe diruthénium(II,II) présente une grande diastéréosélectivité sans séparation chirale. Alors que l'unité de hpp agit comme un nucléophile dans le mécanisme de C-N réaction de couplage croisé, il peut également agir en tant que groupe partant, lorsqu'il est activé avec un complexe de monoruthenium. Les complexes achiraux de Ru(II) avec les ligands tridentés présentent des meilleures propriétés photophysiques en comparason avec les prototypes [Ru(tpy)2]2+ (tpy = 2,2′: 6′, 2′′-terpyridine). L’introduction de deux unités de hpp dans les ligands tridentates rend le complexe de Ru(II) en tant que ‘absorbeur noir’ et comme ‘NIR émetteur’ (NIR = de l’anglais, Near Infra-Red). Cet effet est une conséquence d'une meilleure géométrie de coordination octaédrique autour de l'ion Ru(II) et de la forte donation sigma des unités hpp. Les complexes du Re(I) avec des ligands tridentates présentent un comportement redox intéressant et ils émettent dans le bleu. L'oxydation quasi-réversible du métal est contrôlée par la donation sigma des fragments hpp, tandis que la réduction du ligand est régie par la nature électronique du motif N-hétérocycle central du ligand lui-même. Cette thèse presente également l'auto-assemblage des métal-chromophores comme ‘métallo-ligands’ pour former des espèces supramoléculaires discretes utilisant des complexes neutres. Les synthèses et propriétés des métaux-chromophores précités et les supramolécules sont discutées. / The versatility of C-N cross coupling reactions has been explored for the synthesis of two novel classes of ligands : (i) neutral bidentate N^N ligands and (ii) neutral tridentate N^N^N ligands. Both classes of ligands contain saturated aromatic N-heterocycles coupled with the unsaturated hexahydropyrimidopyrimidine (hpp) unit. The ligands form six-membered chelate rings upon coordination to a Ru(II) center. This fact is advantageous to improve the photophysical properties of Ru(II)-polypyridyl complexes. Ru(II) complexes of bidentate ligands can act as red-emitters. The red-emission is dependent on the relative basicity of the N-heterocycles. While these complexes are electrochemically and photophysically appealing, the problem of stereopurity can not be avoided. Careful ligand design affords bis-bidentate ligand that is useful to overcome the problem of stereopurity. Due to the speciality of this bis-bidentate ligand, its diruthenium(II,II) complex exhibits high diastereoselectivity without any chiral separation. While the hpp unit acts as a nucleophile in the mechanism of C-N cross coupling reaction, it can also act as a leaving group when activated as a monoruthenium complex. Achiral Ru(II) complexes of the tridentate ligands display improved photophysical properties over the prototype complex [Ru(tpy)2]2+ (tpy = 2,2’:6’,2’’-terpyridine). Introduction of two hpp units in the tridentate ligands renders the Ru(II) complex into a ‘black absorber’ and a ‘NIR emitter’ (NIR = Near Infra-Red). This fact is a consequence of better octahedral geometry around the Ru(II) ion and strong sigma-donation from the hpp units. The blue-emitting Re(I) complexes of the tridentate ligands also exhibit interesting redox behavior. The metal-based quasi-reversible oxidation is controlled by the sigma-donation from the hpp moieties, while the ligand-based reduction is governed by the electronic nature of the central N-heterocycle of the same ligand moiety. This thesis also incorporates self-assembly of metal-chromophores as ‘metallo-ligands’ to form discrete supramolecular species using neutral metal-complexes. The syntheses and properties of the aforesaid metal-chromophores and the supramolecules are discussed.

Page generated in 0.0553 seconds