• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 692
  • 81
  • 77
  • 68
  • 41
  • 25
  • 14
  • 14
  • 6
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 1199
  • 406
  • 269
  • 190
  • 159
  • 152
  • 130
  • 126
  • 119
  • 100
  • 96
  • 95
  • 93
  • 91
  • 89
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
771

Ultra-baixo coeficiente de atrito entre o par cerâmico Si3N4-Al2O3 em água. / Ultra-low friction coefficient between Si3N4-Al2O3 in water.

Ferreira, Vanderlei 08 September 2008 (has links)
Neste trabalho, foi investigado o comportamento tribológico dos pares cerâmicos aluminanitreto de silício no deslizamento em água e em uma suspensão de sílica coloidal em água (hidrosol). O objetivo foi verificar a possibilidade de atingir um coeficiente de atrito da ordem de unidades de milésimos, aqui chamado de ultra-baixo coeficiente de atrito (UBCA), verificar se a mudança do meio, de água para hidrosol, diminui o running-in do coeficiente de atrito, e verificar o efeito da variação da rugosidade inicial da alumina no comportamento do atrito. Os ensaios foram realizados na configuração de teste esferasobre- disco, no qual a esfera foi de nitreto de silício e o disco de alumina, sob carga normal de 54 N e velocidade de 1 m/s. A água utilizada nos ensaios foi destilada e deionizada, e a sílica coloidal amorfa, hidrofílica, sem porosidade e de tamanho médio de partícula de 12 nm foi a Aerosil® 200, e o hidrosol foi preparado com pH 8,5 num eletrólito de NaCl de 1 mM. A esfera de nitreto de silício, adquirida comercialmente, e a alumina, sinterizada em laboratório, foram caracterizadas quanto a densidade, as fases foram determinadas por difração de raios X, microscopia eletrônica de varedura (MEV) observada em amostras ceramográficas atacadas. Algumas propriedades mecânicas como dureza, módulo de elasticidade e tenacidade à fratura foram determinadas. Duas condições de rugosidade dos discos de alumina foram utilizadas nos ensaios tribológicos, 350 nm e 10 nm RMS. Em todos os ensaios, em água, em hidrosol e independentemente da rugosidade inicial do disco o coeficiente de atrito no regime permanente apresentou pequena dispersão de valores de 0,002 a 0,006, e não foi possível estabelecer diferença entre elas. A menor rugosidade do disco de alumina acarretou menor desgaste e menor período de running-in de coeficiente de atrito, tanto em água quanto em hidrosol. Os ensaios em meio de hidrosol acarretaram menor desgaste das cerâmicas e apresentaram menor running-in de coeficiente de atrito, comparados aos ensaios com água. O disco de alumina apresentou menor desgaste do que a esfera de nitreto de silício, em todas as condições estudadas. Com a análise das perdas volumétricas, da rugosidade final das superfícies desgastadas, das curvas de coeficiente de atrito e das espessuras mínimas de filme lubrificante, calculadas com uso de modelo da literatura, foi possível relacionar a diminuição do desgaste e do running-in de coeficiente de atrito em meio de hidrosol, com a presença da sílica na superfície ou próxima dela. / In this work, the tribological behavior of the alumina-silicon nitride couple was investigated under water and hydrosol (colloidal silica suspensions in water) lubricated sliding. The purposes were to study how an ultra-low friction coefficient can be achieved and to analyze the effects of the environment, lubricant and alumina roughness changes on the friction behavior. Ball-on-disk tests with a normal load of 54 N and a sliding speed of 1 m/s were carried out, using a silicon nitride ball and an alumina disk. The water used as lubricant was distilled and deionized. The silica was amorphous colloidal and hydrophilic, without porous and with a 12 nm medium particle diameter, commercially named Aerosil ® 200. The hydrosol was obtained with a pH value of 8,5 and a 1mM NaCl electrolyte. To estimate the minimum film thickness, formed during the lubricated sliding tests, a theory model was used. The commercial silicon nitride balls and the alumina disks, which were conformed and sintered in laboratory, were characterized by density, X-ray diffraction and scanning electron microscopy measurements. The mechanical properties such as hardness, Young modulus and fracture toughness were determined. The friction coefficient values obtained in the steady state regime showed low standard deviations (0,002 to 0,006) under all conditions. A shorter period of running-in was observed with the lower disk roughness, both in water and hydrosol lubrication. The hydrosol lubricated sliding produced a lower wear and friction running-in comparing with the tests under water lubrication. The alumina disk always showed lower wear than the silicon nitride ball. The volume loss, friction coefficients, worn surfaces roughness and minimum film thickness results suggest that the wear and friction coefficient running-in decrease was caused by the presence of silica on the sliding surfaces or on the near surface regions.
772

Development of InGaN/GaN core-shell light emitters

Girgel, Ionut January 2017 (has links)
Gallium nitride (GaN) and its related semiconductor alloys are attracting tremendous interest for their wide range of applications in blue and green LEDs, diode lasers, high-temperature and high-power electronics. Nanomaterials such as InGaN/GaN core-shell three-dimensional nanostructures are seen as a breakthrough technology for future solid-state lighting and nano-electronics devices. In a core-shell LED, the active semiconductor layers grown around a GaN core enable control over a wide range of wavelengths and applications. In this thesis the capability for the heteroepitaxial growth of a proof-of-principle core-shell LED is advanced. A design that can be applied at the wafer scale using metalorganic vapor phase epitaxy (MOVPE) crystal growth on highly uniform GaN nanorod (NR) structures is proposed. This project demonstrates understanding over the growth constraints of active layers and dopant layers. The impact of reactor pressure and temperature on the morphology and on the incorporated InN mole fraction was studied for thick InGaN shells on the different GaN crystal facets. Mg doping and effectiveness of the p-n junction for a core-shell structure was studied by extensive growth experiments and characterization. Sapphire and Si substrates were used, and at all the stages of growth and fabrication. The structures were optimized to achieve geometry homogeneity, high-aspect-ratio, incorporation homogeneity for InN and Mg dopant. The three-dimensional nature of NRs and their light emission provided ample challenges which required adaptation of characterization and fabrication techniques for a core-shell device. Finally, an electrically contacted core-shell LED is demonstrated and characterized. Achieving a proof-of-principle core-shell device could be the starting point in the development of nanostructure-based devices and new physics, or in solving technical problems in planar LEDs, such as the polarization of emitted light, the quantum-confined Stark effect, efficiency droop, or the green gap.
773

Strategies for high efficiency silicon solar cells

Davidson, Lauren Michel 01 May 2017 (has links)
The fabrication of low cost, high efficiency solar cells is imperative in competing with existing energy technologies. Many research groups have explored using III-V materials and thin-film technologies to create high efficiency cells; however, the materials and manufacturing processes are very costly as compared to monocrystalline silicon (Si) solar cells. Since commercial Si solar cells typically have efficiencies in the range of 17-19%, techniques such as surface texturing, depositing a surface-passivating film, and creating multi-junction Si cells are used to improve the efficiency without significantly increasing the manufacturing costs. This research focused on two of these techniques: (1) a tandem junction solar cell comprised of a thin-film perovskite top cell and a wafer-based Si bottom cell, and (2) Si solar cells with single- and double-layer silicon nitride (SiNx) anti-reflection coatings (ARC). The perovskite/Si tandem junction cell was modeled using a Matlab analytical program. The model took in material properties such as doping concentrations, diffusion coefficients, and band gap energy and calculated the photocurrents, voltages, and efficiencies of the cells individually and in the tandem configuration. A planar Si bottom cell, a cell with a SiNx coating, or a nanostructured black silicon (bSi) cell can be modeled in either an n-terminal or series-connected configuration with the perovskite top cell. By optimizing the bottom and top cell parameters, a tandem cell with an efficiency of 31.78% was reached. Next, planar Si solar cells were fabricated, and the effects of single- and double-layer SiNx films deposited on the cells were explored. Silicon nitride was sputtered onto planar Si samples, and the refractive index and thicknesses of the films were measured using ellipsometry. A range of refractive indices can be reached by adjusting the gas flow rate ratios of nitrogen (N2) and argon (Ar) in the system. The refractive index and thickness of the film affect where the minimum of the reflection curve is located. For Si, the optimum refractive index of a single-layer passivation film is 1.85 with a thickness of 80nm so that the minimum reflection is at 600nm, which is where the photon flux is maximized. However, using a double-layer film of SiNx, the Si solar cell performance is further improved due to surface passivation and lowered surface reflectivity. A bottom layer film with a higher refractive index passivates the Si cell and reduces surface reflectivity, while the top layer film with a smaller refractive index further reduces the surface reflectivity. The refractive indices and thicknesses of the double-layer films were varied, and current-voltage (IV) and external quantum efficiency (EQE) measurements were taken. The double-layer films resulted in an absolute value increase in efficiency of up to 1.8%.
774

TEM and structural investigations of synthesized and modified carbon materials

Lai, Pooi-Fun Unknown Date (has links)
Due to the extreme properties of diamond, such as extreme hardness, high thermal conductivity, high electrical breakdown strength, high electron and hole mobilities and large band gap, it is of interest to study this material in detail. Before advantage can be taken of diamond’s properties for high-temperature, high-power electronic applications successful doping/ion implantation of diamond must be achieved. This requires an understanding of the types of defects produced during ion irradiation. In the present work, type IIa diamond has been irradiated with various doses of 320keV Xe ions at room temperature. Analytical techniques used are electron spin resonance spectroscopy, Raman spectroscopy, transmission electron microscopy and electron energy loss spectroscopy. Previous models have suggested that upon ion impact, amorphous and/or graphitized clusters are formed in diamond, which will overlap at a critical dose to form a semi-continuous graphitized layer. (For complete abstract open document)
775

Surface, Emitter and Bulk Recombination in Silicon and Development of Silicon Nitride Passivated Solar Cells

Kerr, Mark John, Mark.Kerr@originenergy.com.au January 2002 (has links)
[Some symbols cannot be rendered in the following metadata – please see the PDF file for an accurate version of the Abstract] ¶ Recombination within the bulk and at the surfaces of crystalline silicon has been investigated in this thesis. Special attention has been paid to the surface passivation achievable with plasma enhanced chemical vapour deposited (PECVD) silicon nitride (SiN) films due to their potential for widespread use in silicon solar cells. The passivation obtained with thermally grown silicon oxide (SiO2) layers has also been extensively investigated for comparison. ¶ Injection-level dependent lifetime measurements have been used throughout this thesis to quantify the different recombination rates in silicon. New techniques for interpreting the effective lifetime in terms of device characteristics have been introduced, based on the physical concept of a net photogeneration rate. The converse relationships for determining the effective lifetime from measurements of the open-circuit voltage (Voc) under arbitrary illumination have also been introduced, thus establishing the equivalency of the photoconductance and voltage techniques, both quasi-static and transient, by allowing similar possibilities for all of them. ¶ The rate of intrinsic recombination in silicon is of fundamental importance. It has been investigated as a function of injection level for both n-type and p-type silicon, for dopant densities up to ~5x1016cm-3. Record high effective lifetimes, up to 32ms for high resistivity silicon, have been measured. Importantly, the wafers where commercially sourced and had undergone significant high temperature processing. A new, general parameterisation has been proposed for the rate of band-to-band Auger recombination in crystalline silicon, which accurately fits the experimental lifetime data for arbitrary injection level and arbitrary dopant density. The limiting efficiency of crystalline silicon solar cells has been re-evaluated using this new parameterisation, with the effects of photon recycling included. ¶ Surface recombination processes in silicon solar cells are becoming progressively more important as industry drives towards thinner substrates and higher cell efficiencies. The surface recombination properties of well-passivating SiN films on p-type and n-type silicon have been comprehensively studied, with Seff values as low as 1cm/s being unambiguously determined. The well-passivating SiN films optimised in this thesis are unique in that they are stoichiometric in composition, rather than being silicon rich, a property which is attributed to the use of dilute silane as a process gas. A simple physical model, based on recombination at the Si/SiN interface being determined by a high fixed charge density within the SiN film (even under illumination), has been proposed to explain the injection-level dependent Seff for a variety of differently doped wafers. The passivation obtained with the optimised SiN films has been compared to that obtained with high temperature thermal oxides (FGA and alnealed) and the limits imposed by surface recombination on the efficiency of SiN passivated solar cells investigated. It is shown that the optimised SiN films show little absorption of UV photons from the solar spectrum and can be easily patterned by photolithography and wet chemical etching. ¶ The recombination properties of n+ and p+ emitters passivated with optimised SiN films and thermal SiO2 have been extensively studied over a large range of emitter sheet resistances. Both planar and random pyramid textured surfaces were studied for n+ emitters, where the optimised SiN films were again found to be stoichiometric in composition. The optimised SiN films provided good passivation of the heavily doped n+-Si/SiN interface, with the surface recombination velocity increasing from 1400cm/s to 25000cm/s as the surface concentration of electrically active phosphorus atoms increased from 7.5x1018cm-3 to 1.8x1020cm-3. The optimised SiN films also provided reasonable passivation of industrial n+ emitters formed in a belt-line furnace. It was found that the surface recombination properties of SiN passivated p+ emitters was poor and was worst for sheet resistances of ~150./ . The hypothesis that recombination at the Si/SiN interface is determined by a high fixed charge density within the SiN films was extended to explain this dependence on sheet resistance. The efficiency potential of SiN passivated n+p cells has been investigated, with a sheet resistance of 80-100./ and a base resistivity of 1-2.cm found to be optimal. Open-circuit voltages of 670-680mV and efficiencies up to ~20% and ~23% appear possible for SiN passivated planar and textured cells respectively. The recombination properties measured for emitters passivated with SiO2, both n+ and p+, were consistent with other studies and found to be superior to those obtained with SiN passivation. ¶ Stoichiometric SiN films were used to passivate the front and rear surfaces of various solar cell structures. Simplified PERC cells fabricated on 0.3.cm p-type silicon, with either a planar or random pyramid textured front surface, produced high Voc’s of 665-670mV and conversion efficiencies up to 19.7%, which are amongst the highest obtained for SiN passivated solar cells. Bifacial solar cells fabricated on planar, high resistivity n-type substrates (20.cm) demonstrated Voc’s up to 675mV, the highest ever reported for an all-SiN passivated cell, and excellent bifaciality factors. Planar PERC cells fabricated on gettered 0.2.cm multicrystalline silicon have also demonstrated very high Voc’s of 655-659mV and conversion efficiencies up to 17.3% using a single layer anti-reflection coating. Short-wavelength internal quantum efficiency measurements confirmed the excellent passivation achieved with the optimised stoichiometric SiN films on n+ emitters, while long-wavelength measurements show that there is a loss of short-circuit current at the rear surface of SiN passivated p-type cells. The latter loss is attributed to parasitic shunting, which arises from an inversion layer at the rear surface due to the high fixed charge (positive) density in the SiN layers. It has been demonstrated that that a simple way to reduce the impact of the parasitic shunt is to etch away some of the silicon from the rear contact dots. An alternative is to have locally diffused p+ regions under the rear contacts, and a novel method to form a rear structure consisting of a local Al-BSF with SiN passivation elsewhere, without using photolithography, has been demonstrated.
776

TEM and structural investigations of synthesized and modified carbon materials

Lai, Pooi-Fun Unknown Date (has links)
Due to the extreme properties of diamond, such as extreme hardness, high thermal conductivity, high electrical breakdown strength, high electron and hole mobilities and large band gap, it is of interest to study this material in detail. Before advantage can be taken of diamond’s properties for high-temperature, high-power electronic applications successful doping/ion implantation of diamond must be achieved. This requires an understanding of the types of defects produced during ion irradiation. In the present work, type IIa diamond has been irradiated with various doses of 320keV Xe ions at room temperature. Analytical techniques used are electron spin resonance spectroscopy, Raman spectroscopy, transmission electron microscopy and electron energy loss spectroscopy. Previous models have suggested that upon ion impact, amorphous and/or graphitized clusters are formed in diamond, which will overlap at a critical dose to form a semi-continuous graphitized layer. (For complete abstract open document)
777

Theoretical modelling of thin film growth in the B-N system

Mårlid, Björn January 2001 (has links)
<p>In vapour phase deposition, the knowledge and control of homogeneous and heterogeneous reactions in connection to precursor design may lead to the deposition of the desired material; structure or phase. This thesis is a document attempting to increase the knowledge of film growth in the B-N system.</p><p>In the present work, surface processes like adsorption, abstraction, migration and nucleation have been modelled on an atomic scale using density functional theory (DFT). The systems studied are mainly cubic and hexagonal boron nitride surfaces ((c-BN) vs. (h-BN)), but also the α-boron (001) surface.</p><p>It has been shown that DFT and a cluster approach is a reliable tool in modelling boron nitride surfaces and surface processes, provided that certain functionals, basis sets and geometrical constraints are used.</p><p>By using surface stabilisers such as H species in an electron- or radical-rich environment, it has been shown that <i>i)</i> the structure of cubic boron nitride surfaces can be sustained, and <i>ii)</i> c-BN may nucleate on the h-BN (001) basal plane. Furthermore, the nucleation of c-BN from arbitrary and experimental growth species is energetically preferable over a continuous growth of h-BN on the h-BN (001) edges.</p><p>An atomic layer deposition (ALD) process for boron nitride was developed. It resulted in turbostratic (t-BN), transparent, well-adherent and almost atomically smooth BN films. However, with the cubic phase of boron nitride absent in the ALD films, more effort needs to be put into both the theoretical and the experimental branches of this field of science.</p>
778

GaN Based Nanomaterials Fabrication with Anodic Aluminium Oxide by MOCVD

Wang, Yadong, Sander, Melissa, Peng, Chen, Chua, Soo-Jin, Fonstad, Clifton G. Jr. 01 1900 (has links)
A highly self-ordered hexagonal array of cylindrical pores has been fabricated by anodizing a thin film of Al on substrate and subsequent growth of GaN and InGaN in these nanoholes has been performed. This AAO template-based synthesis method provides a low cost process to fabricate GaN-based nanomaterials fabrication. / Singapore-MIT Alliance (SMA)
779

High Indium Concentration InGaN/GaN Grown on Sapphire Substrate by MOCVD

Hartono, Haryono, Chua, Soo-Jin, Fitzgerald, Eugene A., Song, T.L., Chen, Peng 01 1900 (has links)
The InGaN system provides the opportunity to fabricate light emitting devices over the whole visible and ultraviolet spectrum due to band-gap energies E[subscript g] varying between 3.42 eV for GaN and 1.89 eV for InN. However, high In content in InGaN layers will result in a significant degradation of the crystalline quality of the epitaxial layers. In addition, unlike other III-V compound semiconductors, the ratio of gallium to indium incorporated in InGaN is in general not a simple function of the metal atomic flux ratio, f[subscript Ga]/f[subscript In]. Instead, In incorporation is complicated by the tendency of gallium to incorporate preferentially and excess In to form metallic droplets on the growth surface. This phenomenon can definitely affect the In distribution in the InGaN system. Scanning electron microscopy, room temperature photoluminescence, and X-ray diffraction techniques have been used to characterize InGaN layer grown on InN and InGaN buffers. The growth was done on c-plane sapphire by MOCVD. Results showed that green emission was obtained which indicates a relatively high In incorporation. / Singapore-MIT Alliance (SMA)
780

The Influence of Adjacent Segment on the Reliability of Cu Dual Damascene Interconnects

Chang, Choon Wai, Choi, Z.-S., Thompson, Carl V., Gan, C.L., Pey, Kin Leong, Choi, Wee Kiong, Hwang, N. 01 1900 (has links)
Three terminal ‘dotted-I’ interconnect structures, with vias at both ends and an additional via in the middle, were tested under various test conditions. Mortalities (failures) were found in right segments with jL value as low as 1250 A/cm, and the mortality of a dotted-I segment is dependent on the direction and magnitude of the current in the adjacent segment. Some mortalities were also found in the right segments under a test condition where no failure was expected. Cu extrusion along the delaminated Cu/Si₃N₄ interface near the central via region was believed to cause the unexpected failures. From the time-to-failure (TTF), it is possible to quantify the Cu/Si₃N₄ interfacial strength and bonding energy. Hence, the demonstrated test methodology can be used to investigate the integrity of the Cu dual damascene processes. As conventionally determined critical jL values in two-terminal via-terminated lines cannot be directly applied to interconnects with branched segments, this also serves as a good methodology to identify the critical effective jL values for immortality. / Singapore-MIT Alliance (SMA)

Page generated in 0.0446 seconds