Spelling suggestions: "subject:"boktill"" "subject:"dettill""
101 |
INVESTIGATION OF CORN YIELD IMPROVEMENT FOLLOWING CEREAL RYE USING STARTER NITROGEN FERTILIZERHouston L Miller (7830965) 20 November 2019 (has links)
Cereal rye (CR), the most common and effective nitrogen (N) scavenging
cover crop option in the Midwest, is often utilized in cropping systems to
reduce nitrate loss for environmental benefits. To increase environmental
efficiency in Midwest corn cropping systems, we must increase the overall
adoption of CR. However, due to the yield reduction potential (6%) for corn
planted after CR termination, CR is primarily recommended before soybean. To
increase CR adoption, we must develop adaptive fertilizer management practices
that achieve competitive grain yields relative to cropping systems where CR is
not adopted. Therefore, the objectives of this study are to determine (1) the
effect of CR and starter nitrogen rate on corn growth and nitrogen content. (2)
the optimum starter nitrogen rate to achieve agronomic optimum corn yield
following CR. (3) the impact of phosphorus (P) at starter on plant growth,
nitrogen content, and yield with the inclusion of CR. For our study, five
starter N rates were applied in a 5x5 cm band to both CR and non-CR plots,
concentrations ranged from 0-84 kg N ha<sup>-1 </sup>in 28 kg N ha<sup>-1</sup>
intervals. Total N applied was the same for each treatment, relative to its
location, and was split between starter N at planting and sidedress applied at
growth stage V6 relatively. Although CR termination took place at least two
weeks before planting, CR decreased corn grain yield at one of three locations
by an average of 8%, nitrogen recovery efficiency (NRE) by 27%, and R6 total N content
by 23%, relative to the conventional control (non-CR 0N), when no starter N was
applied. At one of three locations, starter N rates of 56 kg N ha<sup>-1</sup>,
56 kg N ha<sup>-1 </sup>plus 17 kg P ha<sup>-1</sup>, and 84 kg N ha<sup>-1</sup>
increased corn grain yield, in CR plots, and 56 kg N ha<sup>-1</sup> plus 17 kg
P ha<sup>-1</sup> increased corn grain yield in non-CR plots. Phosphorus increased
corn grain N content at growth stage R6 in one of three locations and did not
impact corn grain yield at all locations. We conclude that the inclusion of
starter N at planting has the potential to increase agronomic productivity in
CR corn cropping systems in soil environments with a high capacity to
mineralize soil N. However, further research is required to refine our starter
N results to find an optimum starter N rate to apply before planting corn
following CR.
|
102 |
Legacy phosphorus under long-term soil and fertilizer management in crop production / Legado do fósforo sob manejo a longo prazo do solo e fertilizantes fosfatados na produção agrícolaCoelho, Marta Jordana Arruda 11 March 2019 (has links)
Phosphorus (P) is the second macronutrient that most limits the agricultural production due to its low level of availability in the soils, thus requires high demand to obtain high crops efficiency in the short-term, however, it is a non-renewable resource. In long-term, differents P fertilizer placement can effect, particularly the preferential forms of P retained and legacy in the soil pool and their contribution to increasing P use efficiency by crops over time. In this context, in the present thesis, in the chapter two, we aimed to assess changes in soil P pools (labile, moderately labile and non-labile) and legacy soil P accumulation after long-term P fertilization with an initial soil P buildup and annual P applications. P pools in the soil showed a significant effect of P application on labile P fractions with the adoption of annual rates of 60, 90 and 120 kg P2O5 ha-1, while effects of the initial P application were less significant for this tropical high weathered soil. Thus, P accumulation from annual rates in the labile fractions of P could help to improve the soil legacy P availability and represent a profitable strategy to reduce large inputs of inorganic P fertilizer in tropical crop production systems. in the chapter three, we evaluated the influence of long-term P fertilizer placement on soil P pools and legacy soil P accumulation under a corn-soybean long-term rotation. Significant changes in soil P pools were observed by the long-term effect of P fertilizer placement. Broadcast P fertilizer placement increased the labile P and moderately labile P in the topsoil (0-7.5 cm), and had a greater P fertilizer use efficiency compared to deep band placement. The use of combined placement strategies will contribute to maintain the available P pools maximizing P fertilization efficiency in reduced tillage systems. in the chapter four, we evaluated the effects of long-term P fertilizer placement (initial placement and annual rates and placement of P) in the transition of pasture to double-crop of soybean and corn under no-till crop production on changes in the soil P pools and legacy soil P accumulation. Results of P pools in the soil showed a significant effect of P application on labile P fractions in soil surface with the adoption of annual rates and placement of 100B and 100SP kg P2O5 ha-1 under all initial P application, and 100B for the all others P fractions and soil depths, while effects of the initial P application were less significant for this tropical high weathered soil. Thus, P accumulation from the initial (P remains in the soil after five years) and annual P fertilizer application in the labile P pools could help (at least in part) to reduce current high dependency and large inputs of inorganic P fertilizer in tropical no-till systems. / O fósforo (P) é o segundo macronutriente que mais limita a produção agrícola devido seu baixo nível de disponibilidade nos solos, exigindo alta demanda para obter alta eficiência das culturas em curto-prazo, porém, é um recurso não renovável. Em longo-prazo, diferentes adições desse fertilizante podem afetar as formas e o legado do P no solo e sua contribuição para aumentar a eficiência do seu uso pelas culturas ao longo do tempo. Neste contexto, no capítulo dois, avaliamos as mudanças nos pools de P do solo (lábeis, moderadamente lábeis e não lábeis) e o acúmulo do legado do P no solo após a fertilização P a longo prazo com o aumento do P inicial do solo com o uso de doses iniciais de P e aplicações anuais de P. As frações de P do solo mostraram um efeito significativo à aplicação de P nas frações lábeis de P com a adoção das doses anuais de 60, 90 e 120 kg de P2O5 ha-1 , enquanto os efeitos da aplicação inicial de P foram menos significativas para este solo tropical altamente intemperizado. Assim, o acúmulo de P nas frações lábeis promovidas pelas doses anuais de P poderia ajudar a melhorar a disponibilidade e legado do P no solo e representar uma estratégia lucrativa para reduzir grandes entradas de fertilizantes fosfatados inorgânicos nesses sistemas tropicais de cultivo. no capítulo três, avaliou-se a influência da adubação fosfatada a longo-prazo nas frações e legado do P do solo, sob rotação milho-soja. Foram observadas mudanças significativas nas frações de P do solo pelo efeito da aplicação de fertilizantes fosfatados em longo-prazo. A colocação do fertilizante fosfatado a lanço aumentou o P lábil e moderadamente lábil na camada superficial do solo (0-7,5 cm) e teve maior eficiência de uso deste fertilizante em comparação à apliacação profunda. O uso de estratégias de aplicações combinadas contribuirá para manter as fraçães de P disponíveis maximizando a eficiência da fertilização fosfatada nos sistemas de cultivo reduzido. no capítulo quatro, avaliamos os efeitos da adubação fosfatada a longo-prazo (aplicação inicial e doses e aplicações anuais de P), na transição do pasto para cultivo de soja e milho safrinha sob plantio direto, nas mudanças e acumulação das frações e legado do P no solo. As frações de P no solo mostraram um efeito significativo à aplicação de P nas frações lábeis na superfície do solo com a adoção das doses e aplicações anuais de 100B e 100SP kg P2O5 ha-1 em todas as aplicações iniciais de P, e 100B para todas as outras frações de P e profundidades do solo, enquanto os efeitos da aplicação inicial de P foram menos significativos para este solo tropical altamente intemperizado. Assim, o acúmulo de P da aplicação inicial (efeito residual do P no solo após cinco anos) e as aplicações anuais do fertilizante fosfatado nas frações de P lábil podem ajudar (pelo menos em parte) a reduzir a alta dependência atual às grandes entradas de fertilizante fosfatos inorgânico nos sistema de plantio direto.
|
103 |
Prozessbasierte Modellierung von Erosion, Deposition und partikelgebundenem Nähr- und Schadstofftransport in der Einzugsgebiets- und RegionalskalaSchindewolf, Marcus 20 April 2012 (has links) (PDF)
The process based soil erosion simulation model EROSION 3D is applied on regional scale for the federal state of Saxony/Germany. This survey is aimed on modeling soil loss, sediment transport, deposition resp. the input of particle attached nutrient and pollutant input into surface water bodies for 10years storm event and three land use scenarios. The available region-wide geo-data were preprocessed to be used in the parameterization interface DPROC. This software has been extended to parameterize large areas as well as small catchments. The basis of parameterization is a relational data base consisting of measured or estimated specific model soil parameters. These values have been derived by heavy rainfall simulation experiments below field conditions. The data base has been extended by the new results, which cover different soil tillage practices. The new experiments were conducted with a newly developed methodology. The experimental results show a significant relation of soil loss from the mechanical impact due to soil tillage. Only the non-tillage practice is able to protect soils efficiently from erosional soil losses. In order to describe particle attached nutrient and pollutant transport, soil samples were analyzed determining the element content of different particle fractions. The regional scale simulations identify the Saxonian Loess Belt as hotspot of soil erosion. However considerable amounts can also be expected in certain areas of the low mountain range. Particle attached element inputs into surface water bodies correspond to main sediment delivery areas. The amounts of erosional soil losses could be reduced to 90 % in case of consequently and area-wide transformation to conservation tillage practices. The calculated phosphorous inputs into surface waters on catchment scale are proofed to be valid. Compared to empirical based phosphorous and heavy metal yields the results in this study exceed this findings by a wide range. The differences are caused by lacking an event based consideration, which disregards system maximal impacts. Since erosion is an exclusive non continuous process, those maximal impacts are highly relevant and have to be considered in case of planning and execution of erosion and water protection concepts. / In der vorliegenden Arbeit wird das prozessbasierte Erosionsprognosemodell EROSION 3D flächendeckend auf regionaler Ebene für den Freistaat Sachsen angewendet. Ziel der Untersuchungen ist es, Bodenabtrag, Sedimenttransport und -deposition bzw. den Eintrag partikelgebundener Nähr- und Schadstoffe in Oberflächengewässer für ein 10jähriges Starkniederschlagsereignis und drei verschiedene Landnutzungsszenarien zu beschreiben. Dazu wurden im Vorfeld verfügbare Geo-Basisdaten so aufbereitet, dass sie für die semiautomatische Parametrisierung mit der Software DPROC verwendet werden können. Diese Software wurde so erweitert, dass sowohl größere Einzugsgebiete als auch einzelne Teileinzugsgebiete parametrisiert werden können. Grundlage der Parametrisierung bildet eine relationale Datenbank, die auf Messwerten bzw. davon abgeleiteten Schätzwerten aus Starkregenexperimenten unter Feldbedingungen basiert. Der vorhandene Datenfundus wurde durch neue Ergebnisse zu verschiedenen Verfahren der ackerbaulichen Bodenbearbeitung mittels neu entwickelter Methodik korrigiert und erweitert. Die experimentellen Ergebnisse zeigen eine deutliche Abhängigkeit des Feststoffaustrages von der Eingriffsintensität bei der Bodenbearbeitung. Dabei ist die Direktsaat die einzige Bewirtschaftungsform, die den Boden effektiv vor Erosion schützt. Um den selektiven partikelgebundenen Nähr- und Schadstofftransport prozessbasiert abzuschätzen, wurden die Stoffgehalte für die Partikelfraktionen Sand, Schluff und Ton an Bodenproben bestimmt. Die regionalskalierten Simulationen identifizieren die sächsische Lössregion als Schwerpunkt der Bodenerosion in Sachsen. Beträchtliche Bodenabträge sind darüber hinaus in den sächsischen Mittelgebirgen zu erwarten. Partikelgebundene Stoffeinträge in Oberflächengewässer verteilen sich in Abhängigkeit von den Sedimentliefergebieten. Die Bodenumlagerungsprozesse einschließlich der damit verbundenen partikelgebundenen Stoffeinträge lassen sich bei konsequenter Umstellung auf konservierende Bewirtschaftungsmethoden entsprechend den Modellergebnissen um mehr als 90 % reduzieren. Im Rahmen der Modellvalidierung konnte die Zuverlässigkeit der berechneten Phosphorausträge auf Einzugsgebietsebene belegt werden. Verglichen mit empirisch basierten mittleren jährlichen Abschätzungen sind die in dieser Arbeit berechneten ereignisbezogenen Phosphor- und Schwermetallausträge um ein Vielfaches höher. Zurückzuführen sind diese Unterschiede vor allem darauf, dass bei den rein empirischen Ansätzen, die maximale Belastungsspitzen unberücksichtigt bleiben. Da Erosion stets ein diskontinuierlicher Prozess ist, sind diese Belastungsspitzen im höchsten Maße relevant und bei der Planung und Durchführung von Erosions- und Gewässerschutzkonzepten unbedingt zu berücksichtigen.
|
104 |
Prozessbasierte Modellierung von Erosion, Deposition und partikelgebundenem Nähr- und Schadstofftransport in der Einzugsgebiets- und RegionalskalaSchindewolf, Marcus 27 January 2012 (has links)
The process based soil erosion simulation model EROSION 3D is applied on regional scale for the federal state of Saxony/Germany. This survey is aimed on modeling soil loss, sediment transport, deposition resp. the input of particle attached nutrient and pollutant input into surface water bodies for 10years storm event and three land use scenarios. The available region-wide geo-data were preprocessed to be used in the parameterization interface DPROC. This software has been extended to parameterize large areas as well as small catchments. The basis of parameterization is a relational data base consisting of measured or estimated specific model soil parameters. These values have been derived by heavy rainfall simulation experiments below field conditions. The data base has been extended by the new results, which cover different soil tillage practices. The new experiments were conducted with a newly developed methodology. The experimental results show a significant relation of soil loss from the mechanical impact due to soil tillage. Only the non-tillage practice is able to protect soils efficiently from erosional soil losses. In order to describe particle attached nutrient and pollutant transport, soil samples were analyzed determining the element content of different particle fractions. The regional scale simulations identify the Saxonian Loess Belt as hotspot of soil erosion. However considerable amounts can also be expected in certain areas of the low mountain range. Particle attached element inputs into surface water bodies correspond to main sediment delivery areas. The amounts of erosional soil losses could be reduced to 90 % in case of consequently and area-wide transformation to conservation tillage practices. The calculated phosphorous inputs into surface waters on catchment scale are proofed to be valid. Compared to empirical based phosphorous and heavy metal yields the results in this study exceed this findings by a wide range. The differences are caused by lacking an event based consideration, which disregards system maximal impacts. Since erosion is an exclusive non continuous process, those maximal impacts are highly relevant and have to be considered in case of planning and execution of erosion and water protection concepts.:Inhaltsverzeichnis I
Abbildungsverzeichnis V
Tabellenverzeichnis IX
Abkürzungsverzeichnis XI
Symbole und Einheiten XIII
Zusammenfassung XV
Abstract XVI
1 Einleitung 1
1.1 Motivation 1
1.2 Aufbau der Arbeit 4
1.3 Stand der Forschung 6
1.3.1 Prozesse und Skalen der Bodenerosion 6
1.3.2 Einflussgrößen der Bodenerosion 8
1.3.3 Erosionsschäden 13
1.3.4 Gesetzliche Regelungen zum Erosionsschutz 15
1.3.5 Erosionsmodellierung 16
1.3.6 Niederschlagssimulationen zur Parametererfassung 25
1.3.7 Kornfraktionsspezifische Verteilung partikelgebundener Nähr- und Schadstoffe 27
2 Material und Methoden 30
2.1 Untersuchungsgebiet 30
2.1.1 Allgemeine Charakteristik 30
2.1.2 Flächennutzung 31
2.1.3 Boden und Relief 31
2.1.4 Gewässer 33
2.1.5 Klima 34
2.1.6 Planungsebenen 34
2.2 Simulationsmodell EROSION 3D 36
2.2.1 Modellgrundlagen 36
2.2.2 Modellalgorithmen 39
2.2.3 Modellparameter 48
2.3 Parametrisierungsinterface DPROC 50
2.3.1 Programmgrundlagen 50
2.3.2 Datenbank 51
2.3.3 Flächenauswahl und Datenzuschnitt 53
2.4 Experimentelle Untersuchungen 56
2.4.1 Untersuchungsstandorte 56
2.4.2 Durchführung von Erosionsexperimenten mit Starkregensimulation 59
2.4.3 Parameterableitung 62
2.4.4 Korrektur- und Erweiterung der DPROC-Datenbank 65
2.5 Ermittlung der Phosphor- und Schwermetalleinträge in Oberflächengewässer 68
2.5.1 Regionalisierung und Validierung amtlicher Datenquellen 68
2.5.2 Probenahmen und Laboranalysen 68
2.5.3 Bestimmung der kornfraktionsspezifischen Phosphor- und Schwermetallgehalte 70
2.5.4 Ermittlung der Phosphor- und Schwermetalleinträge in Oberflächengewässer unter Verwendung der Simulationsergebnisse 71
2.6 Statistische Auswertung der experimentellen Daten 73
2.7 GIS-Daten und Datenaufbereitung 74
2.7.1 Reliefdaten 74
2.7.2 Bodendaten 75
2.7.3 Landnutzung und Bodenbearbeitung 75
2.7.4 Niederschlagsdaten 77
2.7.5 Andere Flächendaten 78
2.8 Simulationsrechnungen 79
2.8.1 Aufteilung in Untereinheiten 79
2.8.2 Szenarien 79
2.9 Risikoabschätzung 81
2.9.1 Landwirtschaftliche Nutzflächen 81
2.9.2 Oberflächengewässer 82
2.10 Modellvalidierung 84
2.10.1 Gebietsauswahl und Gebietscharakteristik 84
2.10.2 Datengrundlagen der Modellvalidierung 85
2.10.3 Modellparametrisierung 86
3 Ergebnisse 90
3.1 Experimentelle Ergebnisse 90
3.1.1 Starkregensimulationen 90
3.1.2 Ableitung sachsenweiter kornfraktionsspezifischer Stoffgehalte 91
3.2 Ergebnisse aus GIS-Operationen 98
3.2.1 Reliefdaten 98
3.2.2 Landnutzungsdaten 98
3.2.3 Andere GIS-Daten 99
3.3 Ergebnisse aus Simulationsrechnungen 105
3.3.1 Landwirtschaftliche Nutzflächen 105
3.3.2 Oberflächengewässer 112
3.4 Ergebnisse zur Modellvalidierung 126
3.4.1 Aus Messdaten abgeleitete Ergebnisse 126
3.4.2 Simulationsrechnungen zur Modellvalidierung 130
4 Diskussion 132
4.1 Experimentelle Ergebnisse 132
4.1.1 Messdaten 132
4.1.2 Abgeleitete Daten 135
4.1.3 Zusammenfassende Bewertung der experimentellen Daten 141
4.1.4 Kornfraktionsspezifische Stoffgehalte und -verteilungen 142
4.2 GIS-Daten 145
4.2.1 Reliefdaten 145
4.2.2 Bodendaten 145
4.2.3 Landnutzungsdaten 146
4.2.4 Regionalisierte Stoffgehalte 147
4.3 Weiterentwicklung und Korrektur der DPROC-Datenbank 149
4.4 Modellvalidierung 153
4.5 Simulationsrechnungen 156
4.5.1 Bodenabtrag und Deposition 156
4.5.2 Sediment- und partikelgebundener Stofftransport 163
5 Schlussfolgerung 170
6 Literatur 176
Anhang II
A I Erosionsmodelle i
A II DPROC-Übersetzungstabellen ii
A III GIS-Daten viii
A IV Interpolierte Oberboden-Schwermetallgehalte xii
A V Daten der Starkregensimulationen xix
A VI Elementgehalte der Bodenproben lxi
A VII Simulationsrechnungen lxxi / In der vorliegenden Arbeit wird das prozessbasierte Erosionsprognosemodell EROSION 3D flächendeckend auf regionaler Ebene für den Freistaat Sachsen angewendet. Ziel der Untersuchungen ist es, Bodenabtrag, Sedimenttransport und -deposition bzw. den Eintrag partikelgebundener Nähr- und Schadstoffe in Oberflächengewässer für ein 10jähriges Starkniederschlagsereignis und drei verschiedene Landnutzungsszenarien zu beschreiben. Dazu wurden im Vorfeld verfügbare Geo-Basisdaten so aufbereitet, dass sie für die semiautomatische Parametrisierung mit der Software DPROC verwendet werden können. Diese Software wurde so erweitert, dass sowohl größere Einzugsgebiete als auch einzelne Teileinzugsgebiete parametrisiert werden können. Grundlage der Parametrisierung bildet eine relationale Datenbank, die auf Messwerten bzw. davon abgeleiteten Schätzwerten aus Starkregenexperimenten unter Feldbedingungen basiert. Der vorhandene Datenfundus wurde durch neue Ergebnisse zu verschiedenen Verfahren der ackerbaulichen Bodenbearbeitung mittels neu entwickelter Methodik korrigiert und erweitert. Die experimentellen Ergebnisse zeigen eine deutliche Abhängigkeit des Feststoffaustrages von der Eingriffsintensität bei der Bodenbearbeitung. Dabei ist die Direktsaat die einzige Bewirtschaftungsform, die den Boden effektiv vor Erosion schützt. Um den selektiven partikelgebundenen Nähr- und Schadstofftransport prozessbasiert abzuschätzen, wurden die Stoffgehalte für die Partikelfraktionen Sand, Schluff und Ton an Bodenproben bestimmt. Die regionalskalierten Simulationen identifizieren die sächsische Lössregion als Schwerpunkt der Bodenerosion in Sachsen. Beträchtliche Bodenabträge sind darüber hinaus in den sächsischen Mittelgebirgen zu erwarten. Partikelgebundene Stoffeinträge in Oberflächengewässer verteilen sich in Abhängigkeit von den Sedimentliefergebieten. Die Bodenumlagerungsprozesse einschließlich der damit verbundenen partikelgebundenen Stoffeinträge lassen sich bei konsequenter Umstellung auf konservierende Bewirtschaftungsmethoden entsprechend den Modellergebnissen um mehr als 90 % reduzieren. Im Rahmen der Modellvalidierung konnte die Zuverlässigkeit der berechneten Phosphorausträge auf Einzugsgebietsebene belegt werden. Verglichen mit empirisch basierten mittleren jährlichen Abschätzungen sind die in dieser Arbeit berechneten ereignisbezogenen Phosphor- und Schwermetallausträge um ein Vielfaches höher. Zurückzuführen sind diese Unterschiede vor allem darauf, dass bei den rein empirischen Ansätzen, die maximale Belastungsspitzen unberücksichtigt bleiben. Da Erosion stets ein diskontinuierlicher Prozess ist, sind diese Belastungsspitzen im höchsten Maße relevant und bei der Planung und Durchführung von Erosions- und Gewässerschutzkonzepten unbedingt zu berücksichtigen.:Inhaltsverzeichnis I
Abbildungsverzeichnis V
Tabellenverzeichnis IX
Abkürzungsverzeichnis XI
Symbole und Einheiten XIII
Zusammenfassung XV
Abstract XVI
1 Einleitung 1
1.1 Motivation 1
1.2 Aufbau der Arbeit 4
1.3 Stand der Forschung 6
1.3.1 Prozesse und Skalen der Bodenerosion 6
1.3.2 Einflussgrößen der Bodenerosion 8
1.3.3 Erosionsschäden 13
1.3.4 Gesetzliche Regelungen zum Erosionsschutz 15
1.3.5 Erosionsmodellierung 16
1.3.6 Niederschlagssimulationen zur Parametererfassung 25
1.3.7 Kornfraktionsspezifische Verteilung partikelgebundener Nähr- und Schadstoffe 27
2 Material und Methoden 30
2.1 Untersuchungsgebiet 30
2.1.1 Allgemeine Charakteristik 30
2.1.2 Flächennutzung 31
2.1.3 Boden und Relief 31
2.1.4 Gewässer 33
2.1.5 Klima 34
2.1.6 Planungsebenen 34
2.2 Simulationsmodell EROSION 3D 36
2.2.1 Modellgrundlagen 36
2.2.2 Modellalgorithmen 39
2.2.3 Modellparameter 48
2.3 Parametrisierungsinterface DPROC 50
2.3.1 Programmgrundlagen 50
2.3.2 Datenbank 51
2.3.3 Flächenauswahl und Datenzuschnitt 53
2.4 Experimentelle Untersuchungen 56
2.4.1 Untersuchungsstandorte 56
2.4.2 Durchführung von Erosionsexperimenten mit Starkregensimulation 59
2.4.3 Parameterableitung 62
2.4.4 Korrektur- und Erweiterung der DPROC-Datenbank 65
2.5 Ermittlung der Phosphor- und Schwermetalleinträge in Oberflächengewässer 68
2.5.1 Regionalisierung und Validierung amtlicher Datenquellen 68
2.5.2 Probenahmen und Laboranalysen 68
2.5.3 Bestimmung der kornfraktionsspezifischen Phosphor- und Schwermetallgehalte 70
2.5.4 Ermittlung der Phosphor- und Schwermetalleinträge in Oberflächengewässer unter Verwendung der Simulationsergebnisse 71
2.6 Statistische Auswertung der experimentellen Daten 73
2.7 GIS-Daten und Datenaufbereitung 74
2.7.1 Reliefdaten 74
2.7.2 Bodendaten 75
2.7.3 Landnutzung und Bodenbearbeitung 75
2.7.4 Niederschlagsdaten 77
2.7.5 Andere Flächendaten 78
2.8 Simulationsrechnungen 79
2.8.1 Aufteilung in Untereinheiten 79
2.8.2 Szenarien 79
2.9 Risikoabschätzung 81
2.9.1 Landwirtschaftliche Nutzflächen 81
2.9.2 Oberflächengewässer 82
2.10 Modellvalidierung 84
2.10.1 Gebietsauswahl und Gebietscharakteristik 84
2.10.2 Datengrundlagen der Modellvalidierung 85
2.10.3 Modellparametrisierung 86
3 Ergebnisse 90
3.1 Experimentelle Ergebnisse 90
3.1.1 Starkregensimulationen 90
3.1.2 Ableitung sachsenweiter kornfraktionsspezifischer Stoffgehalte 91
3.2 Ergebnisse aus GIS-Operationen 98
3.2.1 Reliefdaten 98
3.2.2 Landnutzungsdaten 98
3.2.3 Andere GIS-Daten 99
3.3 Ergebnisse aus Simulationsrechnungen 105
3.3.1 Landwirtschaftliche Nutzflächen 105
3.3.2 Oberflächengewässer 112
3.4 Ergebnisse zur Modellvalidierung 126
3.4.1 Aus Messdaten abgeleitete Ergebnisse 126
3.4.2 Simulationsrechnungen zur Modellvalidierung 130
4 Diskussion 132
4.1 Experimentelle Ergebnisse 132
4.1.1 Messdaten 132
4.1.2 Abgeleitete Daten 135
4.1.3 Zusammenfassende Bewertung der experimentellen Daten 141
4.1.4 Kornfraktionsspezifische Stoffgehalte und -verteilungen 142
4.2 GIS-Daten 145
4.2.1 Reliefdaten 145
4.2.2 Bodendaten 145
4.2.3 Landnutzungsdaten 146
4.2.4 Regionalisierte Stoffgehalte 147
4.3 Weiterentwicklung und Korrektur der DPROC-Datenbank 149
4.4 Modellvalidierung 153
4.5 Simulationsrechnungen 156
4.5.1 Bodenabtrag und Deposition 156
4.5.2 Sediment- und partikelgebundener Stofftransport 163
5 Schlussfolgerung 170
6 Literatur 176
Anhang II
A I Erosionsmodelle i
A II DPROC-Übersetzungstabellen ii
A III GIS-Daten viii
A IV Interpolierte Oberboden-Schwermetallgehalte xii
A V Daten der Starkregensimulationen xix
A VI Elementgehalte der Bodenproben lxi
A VII Simulationsrechnungen lxxi
|
Page generated in 0.0352 seconds