• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2312
  • 603
  • 320
  • 318
  • 305
  • 144
  • 73
  • 42
  • 38
  • 37
  • 29
  • 19
  • 18
  • 15
  • 12
  • Tagged with
  • 5438
  • 661
  • 552
  • 537
  • 502
  • 461
  • 428
  • 409
  • 332
  • 312
  • 311
  • 301
  • 293
  • 274
  • 267
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1331

Annoyance thresholds of tones in noise as related to building services equipment

Guochenhao Song (9755876) 14 December 2020 (has links)
<div><div><div><p>Tonal sounds are a particular problem of concern in building environments, arising from the widely used rotating machinery (e.g., compressors, fans, motors, trans- formers, etc.). In the recent trend of designing and manufacturing high-performance building mechanical systems, higher output power and higher rotation speed are pursued, this inevitably results in a more severe noise problem, since the equipment noise not only becomes louder but also shifts to a higher frequency region (which, in most cases, results in a poorer sound quality due to the shift in spectral balance and tonal components moving into the frequency regions where people are most sensitive to tones). Tonal sounds from rotary machines can be annoying, even at relative low levels.</p><p>Currently, noise criteria guidelines in Chapter 48 of the ASHRAE HVAC Applications Handbook can be used to design the building mechanical system, but this does not apply well for tonal noise. Reducing the limit for noise with perceptible tones is one common strategy in the industry. However, it’s not adequate for some cases, over-design in others. Thus, an adequate understanding of the annoyance threshold of tonal noises associated with building services equipment is valuable technical information not only in the design and manufacture of machines but also in the development of noise regulations related to building services equipment.</p><p>This research aims to develop a sound quality model that cooperates with sound level and tonalness and relates tonal building noises to the perceived annoyance.</p></div></div></div>
1332

Predicting flow-generated noise from HVAC components

Kårekull, Oscar January 2015 (has links)
More energy efficient fans, i.e. larger sizes running at lower speeds, in Heating Ventilation and Air Conditioning (HVAC) systems decrease the fan noise and increase the importance of flow generated noise in other system components, e.g., dampers and air terminal devices. In this thesis, an extended prediction model, using semi-empirical scaling laws, for flow noise prediction in HVAC systems at low Mach number flow speeds is presented. The scaling laws can be seen as a combination of a generalized noise spectrum based on experimental data and constriction flow characteristics, where the latter can be gained from ComputationalFluid Dynamics (CFD) simulations. The flow generated noise can be predicted by semi-empirical scaling laws to avoid a time consuming, fully resolved simulation or measurement. Here, an approach is suggested where the general noise spectra are combined with turbulent data obtained from Reynolds Average Navier Stokes (RANS) simulations. A model is proposed using a momentumflux assumption of the dipole source strength and a frequency scaling based on the constriction pressure loss. To evaluate the applicability of the semi-emprical scaling law on different HVAC geometries both literature data and new measurement data are considered. Focus is at comparing geometries of high and low pressure loss but also to discuss the differences in other properties, e.g. radiation characteristics. A general noise reference spectrum is determined bya best fit calculation of measurement data including orifice, damper and bend geometries. Air terminal devices at the end of a duct are also evaluated and compared to constrictions inside ducts. The expected accuracy of the suggested model and its challenges as a tool for flow noise prediction of non-rotating components in HVAC systems are discussed. / På grund av ökade energieffektivitetskrav har större fläktar som roterar med lägre hastighet börjat användas i byggnaders ventilationssystem(HVAC). De lägre hastigheterna har minskat ljudnivån från fläkten och ökat betydelsen av strömningsalstrat ljud från andra systemkomponenter, t.ex. spjäll och luftdon. I denna avhandling presenteras en förbättrad prediktionsmodell, utifrån semi-empiriska skalningslagar, för strömningsalstrat ljud i ventilationssystem. Skalningslagarna kan ses som en kombination av generellaljudspektra och strypningens specifika flödesegenskaper, där det senare kan fås från Computational Fluid Dynamics (CFD) simuleringar. Semiempiriska skalningslagar är ett alternativ för att undvika tidskrävandemätningar eller fullt upplösta simuleringar. Ett tillvägagångssätt presenteras här där det generella spektrat, bestämt utifrån experimentell data, kombineras med data från Reynolds Average Navier Stokes (RANS) simuleringar. En prediktionsmodell föreslås där källstyrkan hos dipolkrafterna definieras utifrån rörelsemängd och frekvensskalningen utifrån strypningens tryckfall. För att utvärdera vilka HVAC geometrier som kan ingå i den generella modellen analyseras både resultat från litteraturen samt nya mätningar. Avhandlingsarbetet fokuserar på att jämföra geometrier av högt och lågt tryckfall men också på att diskutera skillnader i andra egenskaper såsom strålningskarakteristik t.ex. genom att jämföra luftdon i slutet av en kanal med strypningar inuti kanalen. Ett generellt ljudspektrum föreslås utifrån en anpassning av mätdata för strypningar, spjäll och böjar. Modellens förväntade noggrannhet och dess utmaningar som prediktionsverktyg för icke-roterande komponenter i ventilationssystem diskuteras. / <p>QC 20150518</p>
1333

Noise impact - a liveable or unbearable disturbance - A case study in noise impact during the construction phase of Citybanan and Norra länken. / Bullerpåverkan - uthärdlig eller outhärdlig störning. En fallstudie om bullerpåverkan under konstruktionsfasen av Citybanan och Norra länken.

Strömberg, Caisa January 2011 (has links)
Noise is today defined as an unwanted sound that invades the lives of many people in their homes and at work. During a construction phase a large amount of noise is generated that often leads to community complaints. The construction business has to face this issue today when larger infrastructure projects are performed in highly dense areas. Therefore the aim of this Master’s Thesis is to investigate the effect construction noise has on humans and the perceived annoyance in the concerned studied areas, which Bilfinger Berger is contractor for. The impact was studied on both the third party around a construction site on Södermalm, Stockholm and on Bilfinger Berger’s employees on the site. The work concerns three areas, which are situated in the inner city of Stockholm and represent contracts of the infrastructure pro-jects Citybanan and Norra länken. The extensive noise emission during an infrastructure project is affecting the surrounding environment both due to the high noise level that is generated from a number of machines and work activities. Also due to the extensive time frame a project of this kind has. Therefore it is a complex problem to handle and essential for both contractor and client to handle properly. By using appropriate mitigation measures through both the planning stage, the construction phase and clear information towards all parties the impact can be reduced. Through a literature study among the existing science and observations of which mitigation measures are used today to reduce the noise level on sites, a base of theoretical knowledge could be built up for this study. The real noise impact among the affected parties was performed through a survey, which gave results that could be evaluated and discussed. The results from the surveys show that the third party around the workplace is definitely affected by the noise generated from the production. It is also possible to assume that the most affected are persons, which spend a lot of the daytime at home, and therefore feels the noise very disturbing and has to adapt their life after the project’s progress. Through the survey among the employees at Bilfinger Berger a certain acceptance exist towards the noise even if they feel disturbed by the noise. The conclusion drawn from this is that the human attitude to noise impact becomes more positive if they have the knowledge about why and how it arises even if the noise has the same impact on everyone. Therefore the noise issue has to be raised in future projects, even during the tender phase when noise is always easier to control in an earlier stage.
1334

Ursäkta, vad sa du? : En studie om buller, dess påverkan på tredje man och möjliga åtgärder / Excuse me, what did you say? : A study of noise disturbance, its impact on third parties and possible solutions

Karlin, Carl, Åhström, Desiré January 2014 (has links)
Vid både ny- till- och ombyggnation sker ofta arbete tätt inpå redan befintlig bebyggelse. Då dessa innehåller både kontor, bostäder samt övriga verksamheter är risken stor att dessa påverkas negativt av buller från närliggande byggarbetsplatser. I dagsläget finns allmänna råd som Naturvårdsverket har tagit fram. I dessa går det att utläsa vilka ljudnivåer buller från byggarbetsplatser inte bör överstiga samt under vilka tider på dygnet dessa gäller. Det är viktigt att komma ihåg att allmänna råd inte är bindande utan endast riktvärden som i möjligaste mån bör följas. Tillsynsmyndigheten på Länsstyrelsen ansvarar för att dessa följs och tar beslut i samband med byggnation vilka bullernivåer som är lämpliga. Trots förekomsten av de allmänna råden uppkommer det i stor utsträckning tvister mellan den byggande parten och tredje man. Det behöver inte enbart handla om att råden inte efterföljs utan kan i fler fall bero på andra faktorer, till exempel att informationen om kommande störningar varit otydlig. Klagomål kan även förekomma då riktvärdena följs.   Genom att diskutera bullerproblematiken med byggföretaget STRABAG Projektutveckling AB har kunskap om deras syn och erfarenhet av ämnet inhämtats. Företaget lägger stort fokus på att informera tredje man genom att skylta om kommande störningar. Enligt oss bör företaget dock arbeta mer med bland annat planering av avskärmningar mot omgivande bebyggelse. Hur bullerskärmar bör placeras i förhållande till omgivningen, hur de ska utformas och vilka områden som ska skyddas är viktiga frågor att ta upp redan under planering av projekt. Ytterligare information har inhämtats genom en enkätundersökning och intervjuer med Naturvårdsverket, kommuner och Tillsynsmyndigheten. / Construction work is often performed in close contact to existing buildings such as offices, homes and stores. The people working and living in these buildings may thereby be affected negatively by the noise occurring from the construction site. There are guidelines compiled by Environmental Protection Agency regarding the level of noise that should not be exceeded. It’s important to remember that these guidelines are only guidelines and not binding values. “Tillsynsmyndigheten” at “Länsstyrelsen” is responsible for the adherence of the guidelines and make decisions related to which noise levels are appropriate at the construction site. Even though the existence of the guidelines there are times when the construction company can disturb the third party. This does not always have to do with the fact that the noise levels have been exceeded. It could also occur if the information about upcoming disturbances has been unclear. Complaints may also occur when the guidelines are followed. By interviewing representatives at STRABAG Projektutveckling AB about disturbance caused by noise we have received their opinions and experience in the matter.  The company puts great effort to distribute the information about upcoming noise and posting it on billboards. By our opinion more effort should be added to planning upcoming projects and deciding what kind of protection should be used and the most efficient way of placing it due to its surroundings. These are questions that are to be decided in an early stage of the planning process. Additional information has been obtained through a questionnaire survey and interviews with Environmental Protection Agency, municipality and “Tillsynsmyndigheten”.
1335

Maturation of speech-in-noise performance in children using binaural diotic and antiphasic digits-in-noise testing

Wolmarans, Jenique January 2019 (has links)
Digits-in-noise (DIN) tests have become very popular over the past 15 years for hearing loss detection. Several recent studies have highlighted the potential utility of digits-in-noise (DIN) as a school-aged hearing test. However, age may influence test performance in children. In addition, a new antiphasic stimulus paradigm has been introduced. This study determined the maturation of speech recognition for diotic and antiphasic DIN in children and evaluated DIN self-testing in young children. A cross-sectional, quantitative, quasi-experimental research design was used in this study. Participants with confirmed normal hearing were tested with diotic and antiphasic DIN test. During the DIN test, arrangements of three spoken digits were presented in noise via headphones at varying signal-to-noise ratios (SNRs). The researcher entered each three-digit sequence the participant said on a smartphone keypad. Six hundred and twenty-one normal hearing (bilateral pure tone threshold of ≤ 20 dB HL at 1, 2, and 4kHz) children between the ages of 6-13 years with normal hearing were recruited in order to examine the comparative maturation of diotic and antiphasic performance. A further sample of 30 first grade (7-year-old) children with normal hearing were recruited to determine the validity of self-testing on a smartphone. Multiple regression analysis including age, gender, and English additional language (i.e. Person whose first language or home language is not English) showed only age to be a significant predictor for both diotic and antiphasic SRT (p < 0.05). Speech reception thresholds improved by 0.15 dB and 0.35 dB SNR per year for diotic and antiphasic SRT, respectively. Post hoc multiple age group comparisons using Bonferroni adjustment for multiple comparisons (by year) showed SRTs for young children (6 to 9 years old) differed significantly from older children (11 to 13 years old) (p < 0.05). There was no significant difference in SRT between age 10 and upward. Self- and facilitated testing in young children was significantly (p > 0.05) different for the antiphasic condition and demonstrated poor reliability in diotic and antiphasic conditions. Increasing age was significantly associated with improved SRT using diotic and antiphasic DIN. Beyond 10 years of age, SRT results of children became more adult-like. However, age effects were only significant up to 10 and 12 years for antiphasic and diotic SRT, respectively. Furthermore, between self- and facilitated testing, the SRT difference was not significant (p > 0.05). / Dissertation (MA)--University of Pretoria, 2019. / Speech-Language Pathology and Audiology / MA / Unrestricted
1336

Low-Noise High-Precision Readout Circuits for Capacitive MEMS Accelerometer

Yang, Kuilian 04 1900 (has links)
Over the past two decades, Micro-Electro-Mechanical System (MEMS) based accelerometers, benefiting from relatively simple structure, low-power consumption, high sensitivity, and easy integration, have been widely used in many industrial and consumer electronics applications. For the high precision accelerometers, a significant technical challenge is to design a low-noise readout circuit to guarantee the required high resolution of the entire integrated system. There are three main approaches for improvement of the noise and offset of the readout circuit, namely auto-zero (AZ) and correlated double sampling (CDS) for the switched- capacitor (SC) circuit and chopper stabilization (CHS) for the continuous-time circuit. This thesis investigates the merits and drawbacks of all three techniques for reading the capacitance of a low noise MEMS accelerometer developed in our group. After that, we compare the different effects of the three technologies on noise, offset, output range, linearity, dynamic range, and gain. Next, we present the design of the most suitable structure for our sensor to achieve low noise, low offset, and high precision within the working frequency. In this thesis, the design and post-layout simulation of the circuit is proposed, and the fabrication is currently in progress. The readout circuit has reached the noise floor of the sub-μg, which meets the strict requirements of low noise MEMS capacitance-to-voltage converter. A high-performance accelerometer system is regarded as the core of a low-noise, high-resolution geophone. We show that together with the MEMS accelerometer sensor, the readout circuit provides competitive overall system noise and guarantees the required resolution.
1337

Characteristics of the Audiometric 4,000 Hz Notch (744,553 Veterans) and the 3,000, 4,000, and 6,000 Hz Notches (539,932 Veterans)

Wilson, Richard H., McArdle, Rachel 25 March 2013 (has links)
The purpose of this study was to examine the prevalence and characteristics of audiograms that are notched (1) at 4,000 Hz and (2) at 3,000, 4,000, and/or 6,000 Hz. Bilateral audiograms from 1,000,001 veterans were obtained from Department of Veterans Affairs archives; after "cleaning" algorithms were applied, 744,553 participants (mean age = 63.5 yr) were included in the 4,000 Hz notch analysis (group 1) and 539,932 participants (mean age = 62.2 yr) were included in the 3,000, 4,000, and/or 6,000 Hz notch analysis (group 2). A notch was defined when the threshold at the notch frequency (3,000, 4,000, or 6,000 Hz) minus the 2,000 Hz threshold and the threshold at the notch frequency minus the 8,000 Hz threshold both were greater than or equal to 10 dB. In group 1, 77.1% did not have a notch at 4,000 Hz. In group 2, 65.3% did not have a notch at 3,000, 4,000, or 6,000 Hz; 12.4% had bilateral notches, 11.7% had left ear notches, and 10.7% had right ear notches. The notches were about twice as deep on the low-frequency side of the notch than on the high-frequency side. The mean left ear and right ear notch depths were about the same (23 dB), with mode notch depths in the 15.0 to 17.5 dB range.
1338

Characteristics of the Audiometric 4,000 Hz Notch (744,553 Veterans) and the 3,000, 4,000, and 6,000 Hz Notches (539,932 Veterans)

Wilson, Richard H., McArdle, Rachel 25 March 2013 (has links)
The purpose of this study was to examine the prevalence and characteristics of audiograms that are notched (1) at 4,000 Hz and (2) at 3,000, 4,000, and/or 6,000 Hz. Bilateral audiograms from 1,000,001 veterans were obtained from Department of Veterans Affairs archives; after "cleaning" algorithms were applied, 744,553 participants (mean age = 63.5 yr) were included in the 4,000 Hz notch analysis (group 1) and 539,932 participants (mean age = 62.2 yr) were included in the 3,000, 4,000, and/or 6,000 Hz notch analysis (group 2). A notch was defined when the threshold at the notch frequency (3,000, 4,000, or 6,000 Hz) minus the 2,000 Hz threshold and the threshold at the notch frequency minus the 8,000 Hz threshold both were greater than or equal to 10 dB. In group 1, 77.1% did not have a notch at 4,000 Hz. In group 2, 65.3% did not have a notch at 3,000, 4,000, or 6,000 Hz; 12.4% had bilateral notches, 11.7% had left ear notches, and 10.7% had right ear notches. The notches were about twice as deep on the low-frequency side of the notch than on the high-frequency side. The mean left ear and right ear notch depths were about the same (23 dB), with mode notch depths in the 15.0 to 17.5 dB range.
1339

Clinical Experience With the Words-in-Noise Test on 3430 Veterans: Comparisons With Pure-Tone Thresholds and Word Recognition in Quiet

Wilson, Richard H. 01 July 2011 (has links)
Background: Since the 1940s, measures of pure-tone sensitivity and speech recognition in quiet have been vital components of the audiologic evaluation. Although early investigators urged that speech recognition in noise also should be a component of the audiologic evaluation, only recently has this suggestion started to become a reality. This report focuses on the Words-in-Noise (WIN) Test, which evaluates word recognition in multitalker babble at seven signal-to-noise ratios and uses the 50% correct point (in dB SNR) calculated with the Spearman-Kärber equation as the primary metric. The WIN was developed and validated in a series of 12 laboratory studies. The current study examined the effectiveness of the WIN materials for measuring the word-recognition performance of patients in a typical clinical setting. Purpose: To examine the relations among three audiometric measures including pure-tone thresholds, word-recognition performances in quiet, and word-recognition performances in multitalker babble for veterans seeking remediation for their hearing loss. Research Design: Retrospective, descriptive. Study Sample: The participants were 3430 veterans who for the most part were evaluated consecutively in the Audiology Clinic at the VA Medical Center, Mountain Home, Tennessee. The mean age was 62.3 yr (SD = 12.8 yr). Data Collection and Analysis: The data were collected in the course of a 60 min routine audiologic evaluation. A history, otoscopy, and aural-acoustic immittance measures also were included in the clinic protocol but were not evaluated in this report. Results: Overall, the 1000-8000 Hz thresholds were significantly lower (better) in the right ear (RE) than in the left ear (LE). There was a direct relation between age and the pure-tone thresholds, with greater change across age in the high frequencies than in the low frequencies. Notched audiograms at 4000 Hz were observed in at least one ear in 41% of the participants with more unilateral than bilateral notches. Normal pure-tone thresholds (≤20 dB HL) were obtained from 6% of the participants. Maximum performance on the Northwestern University Auditory Test No. 6 (NU-6) in quiet was ≥90% correct by 50% of the participants, with an additional 20% performing at ≥80% correct; the RE performed 1-3% better than the LE. Of the 3291 who completed the WIN on both ears, only 7% exhibited normal performance (50% correct point of ≤6 dB SNR). Overall, WIN performance was significantly better in the RE (mean = 13.3 dB SNR) than in the LE (mean = 13.8 dB SNR). Recognition performance on both the NU-6 and the WIN decreased as a function of both pure-tone hearing loss and age. There was a stronger relation between the high-frequency pure-tone average (1000, 2000, and 4000 Hz) and the WIN than between the pure-tone average (500, 1000, and 2000 Hz) and the WIN. Conclusions: The results on the WIN from both the previous laboratory studies and the current clinical study indicate that the WIN is an appropriate clinic instrument to assess word-recognition performance in background noise. Recognition performance on a speech-in-quiet task does not predict performance on a speech-in-noise task, as the two tasks reflect different domains of auditory function. Experience with the WIN indicates that word-in-noise tasks should be considered the "stress test" for auditory function.
1340

Magnetoelectric (ME) composites and functional devices based on ME effect

Gao, Junqi 03 June 2013 (has links)
Magnetoelectric (ME) effect, a cross-coupling effect between magnetic and electric orders, has stimulated lots of investigations due to the potential for applications as multifunctional devices. In this thesis, I have investigated and optimized the ME effect in Metglas/piezo-fibers ME composites with a multi-push pull configuration. Moreover, I have also proposed several devices based on such composites. In this thesis, several methods for ME composites optimization have been investigated. (i)  the ME coefficients can be enhanced greatly by using single crystal fibers with high piezoelectric properties; (ii) the influence of volume ratio between Metglas and piezo-fibers on ME coefficients has been studied both experimentally and theoretically. Modulating the volume ratio can increase the ME coefficient greatly; and (iii) the annealing process can change the properties of Metglas, which can enhance the ME response as well. Moreover, one differential structure for ME composites has been proposed, which can reject the external vibration noise by a factor of 10 to 20 dB. This differential structure may allow for practical applications of such sensors in real-world environments. Based on optimized ME composites, two types of AC magnetic sensor have been developed. The objective is to develop one alternative type of magnetic sensor with low noise, low cost and room-temperature operation; that makes the sensor competitive with the commercially available magnetic sensor, such as Fluxgate, GMR, SQUID, etc. Conventional passive sensors have been fully investigated, including the design of sensor working at specific frequency range, sensitivity, noise density characterization, etc. Furthermore, the extremely low frequency (< 10-3 Hz) magnetic sensor has undergone a redesign of the charge amplifier circuit. Additionally, the noise model has been established to simulate the noise density for this device which can predict the noise floor precisely. Based on theoretical noise analysis, the noise floor can be eliminated greatly. Moreover, another active magnetic senor based on nonlinear ME voltage coefficient is also developed. Such sensor is not required for external DC bias that can help the sensor for sensor arrays application. Inspired by the bio-behaviors in nature, the geomagnetic sensor is designed for sensing geomagnetic fields; it is also potentially used for positioning systems based on the geomagnetic field. In this section, some works for DC sensor optimization have been performed, including the different piezo-fibers, driving frequency and magnetic flux concentration. Meanwhile, the lock-in circuit is designed for the magnetic sensor to replace of the commercial instruments. Finally, the man-portable multi-axial geomagnetic sensor has been developed which has the highest resolution of 10 nT for DC magnetic field. Based on the geomagnetic sensor, some demonstrations have been finished, such as orientation monitor, magnetic field mapping, and geomagnetic sensing. Other devices have been also developed besides the magnetic sensor: (i) magnetic energy harvesters are developed under the resonant frequency condition. Especially, one 60 Hz magnetic harvester is designed which can harvester the magnetic energy source generated by instruments; and (ii) frequency multiplication tuned by geomagnetic field is investigated which potentially can be used for frequency multiplier or geomagnetic guidance devices. / Ph. D.

Page generated in 0.1937 seconds