• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 9
  • 1
  • 1
  • 1
  • Tagged with
  • 30
  • 30
  • 11
  • 11
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Nanocomposites based on nanocellulose whiskers

Saxena, Amit 09 January 2013 (has links)
Environmental concerns arising from the use of non-degradable plastics have resulted in search for suitable substitutes. The thesis deals with new nanostructured composites based on reinforcement of nanocellulose whiskers in "green" polymers such as xylan. Since the reinforcement filler and the matrix are both biobased and are thereby environmental friendly. Xylan incorporated with cellulose whiskers films provided with improved water and oxygen barrier properties. It appears that the high degree of crystallinity of cellulose whiskers, dense composite structure formed by the whiskers and rigidly hydrogen-bonded cellulose whiskers can cause cellulose whiskers to form integrated matrix which contribute to substantial benefit in the overall reduction of transmission rate. The spectral data obtained for the NCW/xylan nanocomposite films showed that the amount of xylan adsorbed to cellulose increases with the addition of NCW in the matrix. In addition, NMR T2 relaxation experiments studies were conducted to investigate the change in the nature of carbohydrate-water interactions as a result of NCW incorporation. These results facilitated an improved understanding of the mechanisms involved in the superior barrier and mechanical properties of xylan-whisker nanocomposite films. XRD studies show that when a xylan-whisker nanocomposite films is formed the mixing occurs on the atomic scale and NCW loading increases the matrix crystallinity.
22

PLA and cellulose based degradable polymer composites

Oka, Mihir Anil 06 April 2010 (has links)
We studied PLA-microcrystalline cellulose composites, focusing on the effects of processing, particle size and surface modification. The thermal and mechanical properties of these PLA based composites were studied and the effect of cellulose addition on PLA degradation was analyzed. For our system, the degradation rate was found to depend on initial sample crystallinity, pH of the degradation media and cellulose content of the composite. Composites were prepared using solution processing and melt mixing methods. The processing methods influenced the polymer's ability to crystallize affecting the mechanical properties. Isothermal crystallization studies carried out to study the kinetics of crystallization showed melt processed samples to have lower half time for crystallization and higher value for the Avrami exponent. The crystallization rate of PLA was also found to depend on surface chemical composition of cellulose particles and the particle size. Influence of filler surface modification on the composite properties was studied via grafting of lactic acid and polylactic acid to cellulose particles and the effect of filler size was studied using hydrolyzed microcrystalline cellulose particles. A simple esterification reaction that required no external catalyst was used for surface modification of cellulose particles. Surface modification of cellulose particles enhanced the static and dynamic mechanical properties of the composite samples due to improvement in the PLA-cellulose compatibility that resulted in better interfacial interactions. The utility of cellulose, available from a renewable resource, as an effective reinforcement for PLA is demonstrated.
23

Biodegradable polymeric delivery systems for protein subunit vaccines

Heffernan, Michael John 17 June 2008 (has links)
The prevention and treatment of cancer and infectious diseases requires vaccines that can mediate cytotoxic T lymphocyte-based immunity. A promising strategy is protein subunit vaccines composed of purified protein antigens and immunostimulatory adjuvants, such as Toll-like receptor (TLR) agonists. In this research, we developed two new biodegradable polymeric delivery vehicles for protein antigens and TLR agonists, as model vaccine delivery systems. This work was guided by the central hypothesis that an effective vaccine delivery system would have stimulus-responsive degradation and release, biodegradability into excretable non-acidic degradation products, and the ability to incorporate various TLR-inducing adjuvants. The first vaccine delivery system is a cross-linked polyion complex micelle which efficiently encapsulates proteins, DNA, and RNA. The micelle-based delivery system consists of a block copolymer of poly(ethylene glycol) (PEG) and poly(L-lysine), cross-linked by dithiopyridyl side groups to provide transport stability and intracellular release. The second delivery system consists of solid biodegradable microparticles encapsulating proteins, nucleic acids, and hydrophobic compounds. The microparticles are composed of pH-sensitive polyketals, which are a new family of hydrophobic, linear polymers containing backbone ketal linkages. Polyketals are synthesized via a new polymerization method based on the acetal exchange reaction and degrade into non-acidic, excretable degradation products. In addition, the technique of hydrophobic ion pairing was utilized to enhance the encapsulation of ovalbumin, DNA, and RNA in polyketal microparticles via a single emulsion method. Using in vitro and in vivo immunological models, we demonstrated that the micelle- and polyketal-based vaccine delivery systems enhanced the cross-priming of cytotoxic T lymphocytes. The model vaccines were composed of ovalbumin antigen and various TLR-inducing adjuvants including CpG-DNA, monophosphoryl lipid A, and dsRNA. The results demonstrate that the cross-linked micelles and polyketal microparticles have considerable potential as delivery systems for protein-based vaccines.
24

Avaliação do sistema de mobilização de poli-3-hidroxibutirato em Burkholderia sacchari. / Evaluation of poly-3-hydroxybutyrate (P3HB) mobilization system in Burkholderia sacchari.

Nuri Andrea Merchan Castellanos 19 October 2010 (has links)
O sistema de mobilização intracelular de poli-3-hidroxibutirato (P3HB) em Burkholderia sacchari foi analisado. A busca em genomas de Burkholderia spp. identificou duas oligômero hidrolases (PhaY1 e PhaY2) e pelo menos três P3HB despolimerases intracelulares (PhaZa1, PhaZa2 e PhaZd1). Mutantes de B. sacchari afetados na mobilização de P3HB e complementados com genes de Ralstonia eutropha apresentaram um aumento expressivo nas taxas de mobilização de P3HB, especialmente quando o gene phaZa1 foi superexpresso. A superexpressão dos genes phaZa2 ou phaZa3 também conduziu a aumentos nas taxas de mobilização embora em um grau menor que os valores obtidos com phaZa1. Dois mutantes afetados na mobilização de P3HB foram obtidos utilizando o transposon mini-Tn5 (NAM03 e NAM04). NAM03 apresentou interrupção em gene que codifica uma P3HB despolimerase intracelular (PhaZa1). NAM04 apresentou interrupção em gene anotado como serino peptidase LonA. Este pode representar um ativador da mobilização ou uma nova P3HB despolimerase intracelular. / The intracellular poly-3-hydroxybutyrate (P3HB) mobilization system in Burkholderia sacchari was analyzed. A search in Burkholderia spp. genomes identified two oligomer hydrolases (PhaY1 and PhaY2) and at least three intracellular P3HB depolymerase (PhaZa1, PhaZa2 e PhaZd1). B. sacchari mutants affected on P3HB mobilization and complemented by Ralstonia eutropha genes showed an expressive increase on P3HB mobilization rates, especially when phaZa1 was overexpressed. The overexpression of phaZa2 or phaZa3 also increased the mobilization rates though to a lesser extent than phaZa1. Two mutants affected on P3HB mobilization were obtained using the transposon mini-Tn5 (NAM03 and NAM04) .NAM03 was disrupted in a gene encoding an intracellular P3HB depolymerase (PhaZa1). NAM04 was disrupted in a gene annotated as a serine peptidase LonA. This could be a mobilization activator or a new intracellular P3HB depolymerase.
25

Modelo de proceso de producción mediante el uso de Herramientas Lean Manufacturing para aumentar la productividad de una fábrica de bolsas plásticas biodegradables / En el Perú, la industria del plástico abarca un 4 % del PBI nacional y produce más de 52 000 empleos. En la actulidad, la productividad de una empresa es un referente de su competitividad en el sector. El sector de plásticos, el cúal esta siendo golpeado por regulaciones gubernamentales, necesita cambios rápidos en materia prima y procesos productivos, en donde la productividad y calidad del producto puede ser un diferenciador trascendente para su adaptación al nuevo mercado eco amigable. Ante la problemática de productividad en la mayoría de los sectores económicos, se ha trabajado en desarrollar metodologías y herramientas que permitan solucionar este problema. La importancia radica en que las empresas deben trabajar eficientemente en sus procesos así como, análogamente, aumentar su disponibilidad y mejorar el desempeño del trabajo para aumentar la productividad de la empresa. Por lo tanto, se propone establecer un modelo para la administración de la producción en base a la metodología de Manufactura Esbelta hacienda uso de sus diversas herramientas, como SMED y 5’s. Para validar la efectividad de nuestro modelo propuesto, se realizará la simulación en el programa Arena Simulation e Input Analyzer, lo cual representa una oportunidad de mejora factible en la actualidad. Esto nos permitirá aumentar la productividad a un 61% y la calidad de los productos, obteniendo un aumento en la utilidad neta de 25 mil soles. Por lo cual, sirve como una guía inicial para las empresas que buscan aumentar la productividad de sus procesos

Rodriguez Flores, Bryan Fabricio, Cabello Minaya, Demy Lucero 11 December 2020 (has links)
En el Perú, la industria del plástico abarca un 4 % del PBI nacional y produce más de 52 000 empleos. En la actulidad, la productividad de una empresa es un referente de su competitividad en el sector. El sector de plásticos, el cúal esta siendo golpeado por regulaciones gubernamentales, necesita cambios rápidos en materia prima y procesos productivos, en donde la productividad y calidad del producto puede ser un diferenciador trascendente para su adaptación al nuevo mercado eco amigable. Ante la problemática de productividad en la mayoría de los sectores económicos, se ha trabajado en desarrollar metodologías y herramientas que permitan solucionar este problema. La importancia radica en que las empresas deben trabajar eficientemente en sus procesos así como, análogamente, aumentar su disponibilidad y mejorar el desempeño del trabajo para aumentar la productividad de la empresa. Por lo tanto, se propone establecer un modelo para la administración de la producción en base a la metodología de Manufactura Esbelta hacienda uso de sus diversas herramientas, como SMED y 5’s. Para validar la efectividad de nuestro modelo propuesto, se realizará la simulación en el programa Arena Simulation e Input Analyzer, lo cual representa una oportunidad de mejora factible en la actualidad. Esto nos permitirá aumentar la productividad a un 61% y la calidad de los productos, obteniendo un aumento en la utilidad neta de 25 mil soles. Por lo cual, sirve como una guía inicial para las empresas que buscan aumentar la productividad de sus procesos. / In Peru, the plastics industry accounts for 4% of the national GDP and produces more than 52,000 jobs. Currently, the productivity of a company is a benchmark of its competitiveness in the sector. The plastics sector, which is being hit by government regulations, needs rapid changes in raw materials and production processes, where productivity and product quality can be a transcendent differentiator for its adaptation to the new eco-friendly market. Faced with the productivity problem in most economic sectors, work has been done to develop methodologies and tools to solve this problem. The importance lies in the fact that companies must work efficiently in their processes as well as, similarly, increase their availability and improve work performance to increase the productivity of the company. Therefore, it is proposed to establish a model for production management based on the Lean Manufacturing methodology using its various tools, such as SMED and 5's. To validate the effectiveness of our proposed model, the simulation will be carried out using the Arena Simulation and Input Analyzer program, which represents an opportunity for improvement that is currently feasible. This will allow us to increase productivity to 61% and the quality of the products, obtaining an increase in net income of 25 thousand soles. Therefore, it serves as an initial guide for companies seeking to increase the productivity of their processes. / Trabajo de investigación
26

Life cycle assessment of the unbleached bamboo sanitary pad : A case study performed at Hempur

Mirzaie, Azita January 2021 (has links)
Women's most common menstrual product is sanitary pads. Most disposable sanitary pads are constructed of up to 90% non-biodegradable plastics and bleached wood pulp. Throughout the sanitary pad's life cycle, there is a risk of exposure to toxic emissions harmful to humans and ecosystems. In contrast, disposable sanitary pads' health and environmental consequences have received little attention due to cultural stigma associated with menstruation and a lack of information regarding the chemical components used in sanitary pads. A case study has been performed at the Hempur company in Stockholm, Sweden, to evaluate potential environmental impacts of a sanitary disposal pad made almost entirely of unbleached bamboo pulp and polylactic plastic (PLA). The study's objectives were accomplished using a comparative life cycle assessment methodology to identify potential trade-offs between Hempur disposable sanitary pads and a conventional disposable sanitary pad consisting of non-biodegradable polymers and bleached wood pulp. Thus, understanding the study's results allows the implementation of recommendations to improve the environmental performance of Hempur sanitary pads. The study results indicate that Hempur plant-based sanitary pads, even though shipped to Sweden from China, have lower adverse environmental impacts —on average 40% less than conventional sanitary pads created using traditional materials and manufacturing sites in European countries. More than 80% of the overall impacts of the conventional sanitary pad were attributed to bleached wood pulp and low-density polyethylene. The upstream operations of Hempur sanitary pads were identified as the least environmentally friendly phase of the product due to the use of unbleached wood pulp and polylactic plastic, which together account for between 40% and 80% of all impact categories, most notably water scarcity and abiotic element depletion. Other factors and assumptions identified during the sensitivity analysis suggested the potential for reducing the environmental footprint of Hempur sanitary pads. By transitioning from coal to hydropower to generate electricity for bamboo pulp manufacturing, Hempur's upstream operations will dramatically improve their environmental performance, resulting in a reduction in global warming and acidification. Finally, this study suggests that other alternatives for PLA and use bamboo in the core part of Hempur sanitary pad should be considered and assessed. In this study, however, parts of the life cycle inventory process were omitted due to a lack of data on the materials and process method, which may affect the precision of the results.
27

Produção de plásticos biodegradáveis utilizando hidrolisado hemicelulósico de bagaço de cana-de-açúcar. / Production of biodegradable plastics using sugarcane bagasse hemicellulosic hydrolysate.

Lopes, Mateus Schreiner Garcez 15 June 2010 (has links)
O objetivo deste trabalho foi produzir poli-3-hidroxibutirato (P3HB) e poli-3-hidroxibutirato-co-3-hidroxivalerato (PHB-co-3HV), polímeros biodegradáveis, utilizando hidrolisado hemicelulósico, rico em xilose, de bagaço de cana-de-açúcar. O estudo dos fluxos metabólicos de xilose in silico indicou que, através do redirecionamento do metabolismo, é possível aumentar o rendimento P3HB a partir de xilose de 0.25 g g-1 para 0.40 g g-1. Obtiveram-se mutantes no sistema repressão catabólica nos quais se verificaram consumo simultâneo de carboidratos e redução do tempo de consumo dos açúcares. Porém, diferenças de fluxos de carbono resultaram em menores valores de crescimento e produção de PH3B em relação às linhagens parentais. Um programa de bioprospecção destacou Burkholderia sp. F24, em experimentos em biorreator obteve-se 25.04 g l-1 de biomassa, 49.31% de acúmulo de P3HB na massa seca celular, alcançando uma produtividade de 0.28 g l-1 h-1. Além disso, foi possível controlar a fração molar de 3HV na síntese PHB-3HV em F24 utilizando xilose e ácido levulínico. / The aim of this thesis is to produce poly3-hydroxybutyrate (P3HB) and poli-3-hidroxibutirate-co-3-hydroxyvalerate (PHB-co-3HV), biodegradable polymers, using hemicellulosic hydrolysate, rich in xylose, from sugarcane bagasse. Metabolic flux analysis in silico of xylose metabolism indicated that, though metabolism redirection is possible to increase P3HB yield from 0.25 g g-1 to 0.40 g g-1. It was observed simultaneous consumption of sugars and reduction of time necessary to exhaust of all sugars in the media culture in mutants with catabolite repression partially abolished. However, differences in carbon flux resulted in lower growth and P3HB production in comparison to the parental strain. A bioprospecting program selected Burkholderia sp. F24, in experiments in bioreactor it reached 25.04 g l-1, 49.31% of P3HB accumulation of the dry cell mass and 0.28 g l-1 h-1 of productivity. Moreover, it was possible to modulate to molar fraction of 3HV in PHB-co-3HV biosyntheses with Burkholderia sp. F24 using xylose and levulinic acid.
28

Produção de plásticos biodegradáveis utilizando hidrolisado hemicelulósico de bagaço de cana-de-açúcar. / Production of biodegradable plastics using sugarcane bagasse hemicellulosic hydrolysate.

Mateus Schreiner Garcez Lopes 15 June 2010 (has links)
O objetivo deste trabalho foi produzir poli-3-hidroxibutirato (P3HB) e poli-3-hidroxibutirato-co-3-hidroxivalerato (PHB-co-3HV), polímeros biodegradáveis, utilizando hidrolisado hemicelulósico, rico em xilose, de bagaço de cana-de-açúcar. O estudo dos fluxos metabólicos de xilose in silico indicou que, através do redirecionamento do metabolismo, é possível aumentar o rendimento P3HB a partir de xilose de 0.25 g g-1 para 0.40 g g-1. Obtiveram-se mutantes no sistema repressão catabólica nos quais se verificaram consumo simultâneo de carboidratos e redução do tempo de consumo dos açúcares. Porém, diferenças de fluxos de carbono resultaram em menores valores de crescimento e produção de PH3B em relação às linhagens parentais. Um programa de bioprospecção destacou Burkholderia sp. F24, em experimentos em biorreator obteve-se 25.04 g l-1 de biomassa, 49.31% de acúmulo de P3HB na massa seca celular, alcançando uma produtividade de 0.28 g l-1 h-1. Além disso, foi possível controlar a fração molar de 3HV na síntese PHB-3HV em F24 utilizando xilose e ácido levulínico. / The aim of this thesis is to produce poly3-hydroxybutyrate (P3HB) and poli-3-hidroxibutirate-co-3-hydroxyvalerate (PHB-co-3HV), biodegradable polymers, using hemicellulosic hydrolysate, rich in xylose, from sugarcane bagasse. Metabolic flux analysis in silico of xylose metabolism indicated that, though metabolism redirection is possible to increase P3HB yield from 0.25 g g-1 to 0.40 g g-1. It was observed simultaneous consumption of sugars and reduction of time necessary to exhaust of all sugars in the media culture in mutants with catabolite repression partially abolished. However, differences in carbon flux resulted in lower growth and P3HB production in comparison to the parental strain. A bioprospecting program selected Burkholderia sp. F24, in experiments in bioreactor it reached 25.04 g l-1, 49.31% of P3HB accumulation of the dry cell mass and 0.28 g l-1 h-1 of productivity. Moreover, it was possible to modulate to molar fraction of 3HV in PHB-co-3HV biosyntheses with Burkholderia sp. F24 using xylose and levulinic acid.
29

High throughput characterization of cell response to polymer blend phase separation

Zapata, Pedro José 12 July 2004 (has links)
Combinatorial techniques, which overcome limitations of actual models of material research permitting to effectively address this large amount of variables, are utilized in this work to prepare combinatorial libraries of the blend of the biodegradable polymers Poly(e-caprolactone) and Poly(lactic acid). These libraries present continuous composition and temperature gradients in an orthogonal fashion that permit to obtain multiple surface morphologies with controllable microstructures due to the blends low critical solution phase behavior (LCST). The goal of this study is to investigate the effect of surface morphology (surface chemical patterning and surface topography) on cell behavior. The varied surface topography of the libraries is used as a valuable tool that permits to assay the interaction between MC3T3-E1 cells and hundreds of different values of critical surface properties, namely, surface roughness and microstructure size. The outcome of this tool is a rapid screening of the effect of surface topography on cell behavior that is orders of magnitude faster than the standard 1-sample for 1 measurement techniques. The results obtained show that cells are very sensitive to surface topography, and that the final effect of surface properties on cell function is intimately related with the stage of the cell developmental process. Meaning that, for example, areas with optimal characteristics to elicit enhancement of cell attachment is not necessarily the same that promotes cell proliferation. This study imparts an improved understanding of an often neglected factor in biomaterials performance: surface morphology (particularly surface topography). The results provide a new insight into the importance of taking into consideration both chemistry and physical surface features for superior biomaterial design.
30

微生物の高密度連続培養に関する研究

山根, 恒夫, 上田, 俊策 03 1900 (has links)
科学研究費補助金 研究種目:一般研究(C) 課題番号:05650796 研究代表者:山根 恒夫 研究期間:1993-1994年度

Page generated in 0.1095 seconds