• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 760
  • 303
  • 111
  • 85
  • 29
  • 25
  • 25
  • 23
  • 21
  • 17
  • 13
  • 7
  • 5
  • 4
  • 3
  • Tagged with
  • 1722
  • 360
  • 254
  • 237
  • 213
  • 197
  • 194
  • 168
  • 152
  • 139
  • 112
  • 103
  • 95
  • 86
  • 83
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
451

Influence of Erosive and Abrasive Cycling on Bonding of Diferent Adhesive Systems Enamel: An in situ study

Ciccone Giacomini,Marina, Casas-Apayco, Leslie, Moreira Machado,Camila, Carvalho de Almendra Freitas,Maria Cristina, Atta,Maria Teresa, Wang, Linda January 1900 (has links)
This study evaluated the impact of orange juice on the bond strength (BS) of dentin bonding systems (DBSs) to enamel surface after simulation with an in situ/ ex vivo erosive cycling. One hundred and ninety two bovine enamel fragments (4x4x2 mm) were obtained and randomized regarding superficial microhardness and distributed to palatal devices for 8 volunteers, in three phases (one for each DBS), containing 8 blocks, which were, allocated in 4 pairs. Daily, these pairs were subjected extraorally to the following conditions: CONTneither erosive nor abrasive challenge; ERO- erosive challenge only; ABR- abrasive challenge only and ERO + ABR- with erosive and abrasive challenges. Erosive cycles (immersion in orange juice, 3 times/day/5 min/5 days) or/and abrasive challenges (electric toothbrush, 3 times/day/1 min/5 days) were performed. After these cycles, all specimens were restored with the adhesive systems Adper Scotchbond Multi Purpose (MP), Adper Single Bond 2 (SB) or Clearfil SE Bond (SE), and the composite resin Filtek Z250. After 7 days, sticks (area ≅1 mm2) were obtained and subjected to the microtensile bond strength test (μTBS) at 0.5 mm/min. Data was statistically analyzed by ANOVA and Tukey tests (a=0.05). Failure modes were determined using a digital microscope (40×). DBS was the only statistical significant factor. SE was the unique DBS not affected in any challenge, whereas MP and SB performed according to the scenario. The adhesive and mixed failures were predominant in all groups. Overall performance suggested that BS to enamel after erosive /abrasive challenged by orange juice was not affected and it was material-dependent
452

Efeito do plasma seminal sobre a ligação de espermatozoides da cauda do epidídimo equino aos explantes da tuba uterina

Canuto, Lucas Emanuel Ferreira January 2019 (has links)
Orientador: Frederico Ozanam Papa / Resumo: A recuperação de espermatozoides da cauda do epidídimo é uma das principais alternativas nos casos de óbito inesperado, eutanásia, processos obstrutivos ou castração terapêutica. Nessa técnica os espermatozoides não entram em contato com o plasma seminal, não incorporando seus constituintes, que interferem nos processos fisiológicos importantes para fertilização, como a ligação dos espermatozoides ao reservatório da tuba uterina, que aumenta a vida útil do espermatozoide e diminui as chances de poliespermia. Nesse sentido o objetivo do presente trabalho foi comparar a cinética e ligação da tuba uterina aos espermatozoides recuperados da cauda do epidídimo com e sem adição de plasma seminal. Utilizou-se 8 garanhões da raça Minihorse para o resgate de espermatozoides da cauda do epidídimo pela técnica de fluxo retrógrado. Após a colheita foi dividido em 4 grupos, LD apenas com diluente a base de leite desnatado, GO recebeu adição de diluente para congelação a base de gema de ovo, PSB plasma seminal de garanhão com alta fertilidade e capacidade de refrigeração, e PSR plasma seminal de garanhão com fertilidade e capacidade de refrigeração inferiores. Foi avaliado cinética, integridade de membrana espermática e a taxa de ligação à explantes da tuba uterina. Não apresentaram diferença na integridade da membrana nem na taxa de ligação, no entanto, observou-se diferença quanto a cinética espermática. Conclui-se que a adição de plasma seminal de diferentes garanhões interferiu, de for... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Sperm retrieval from the tail of the epididymis is one of the main alternatives in cases of unexpected death, euthanasia, obstructive processes, therapeutic castration. In this technique spermatozoa do not come into contact with the seminal plasma, not incorporating their constituents, which interfere in the physiological processes important for fertilization, such as sperm binding to the uterine tube reservoir, which increases sperm life and decreases the chances of polyspermia. In this sense, the objective of the present study was to compare the kinetics and uterine tubal attachment to the spermatozoa recovered from the tail of the epididymis with and without addition of seminal plasma. Eight minihorse stallions were used to retrieve spermatozoa from the tail of the epididymis by the retrograde flow technique. After harvesting was divided into 4 groups, LD only with diluent the skim milk base, GO received addition of diluent for freezing the egg yolk, PSB seminal stallion plasma with high fertility and cooling capacity, and PSR seminal plasma fertility and lower cooling capacity. Kinetics, spermatic membrane integrity and the rate of binding to the explants of the uterine tube were evaluated. There was no difference in membrane integrity or binding rate, however, a difference was observed in spermatic kinetics. It was concluded that the addition of seminal plasma of different stallions interfered, differently in spermatozoa kinetics of the tail of the epididymis increased t... (Complete abstract click electronic access below) / Mestre
453

Optimisation des efforts dans un ancrage courbe collé acier/composites / Optimization of stresses in an adhesive bonded curved joint (Steel/composite)

Chafi, Haysam 14 December 2017 (has links)
Les matériaux composites connaissent un intérêt croissant dans la majorité des secteurs de l’industrie en raison de leur faible poids propre et de leurs propriétés physico-chimiques intéressantes. Cependant, l’utilisation de ces matériaux a nécessité de conduire en parallèle des réflexions sur leur assemblage avec d’autres matériaux qui a donné naissance au développement de la technologie d’assemblage par collage structural. Cette technique qui permet de pouvoir assembler des matériaux de nature différente en limitant par exemple l’augmentation du poids propre de la structure n’est pas encore totalement maîtrisée. Pour cela, des développements sur la qualification des efforts d’adhésion ou sur la compréhension de la durabilité sont encore nécessaires. Cette thèse aborde la problématique de l’optimisation des assemblages collés et vise en particulier à étudier de manière plus précise l’utilisation de la courbure afin d’optimiser le transfert des efforts au sein du joint de colle. Deux types de colle, présentant l’une un comportement élastique fragile et l’autre un comportement élastoplastique ont été étudiés dans ce travail sur les différents volets analytique, numérique, et, expérimental. Il s’est avéré que la plasticité de l’adhésif semble améliorer la capacité de résistance du joint collé et sera alors un paramètre essentiel dans leur optimisation. Une étude de la géométrie courbe des joints collés acier/composite a été ensuite menée et il ressort de cette étude que cette géométrie est efficace pour augmenter la résistance d'un joint collé à la rupture. De plus, afin d’approfondir les connaissances sur le comportement mécanique du joint collé courbe, et en absence d’étude bibliographique suffisante sur ce type de collage, nous avons ensuite eu recours à la modélisation par la méthode des zones cohésives pour pouvoir aussi valider l’atout de la géométrie courbe par rapport à la géométrie plane. Ce travail s’est enfin intéressé à la durabilité mécanique de cette solution en abordant la thématique de la fatigue ; même si des investigations supplémentaires seront nécessaires, nous avons d’ores et déjà constaté que l’optimisation du joint par l’utilisation d’une colle élastoplastique et une géométrie courbe permet d’améliorer le comportement en fatigue de l’assemblage collé / Composite materials are gaining increasing interest in most of the industry sectors due to their low self-weight and their interesting physico-chemical properties. However, the use of these materials called for parallel reflections on their assembly with other materials which gave rise to the development of the structural bonding technology. This technique which allows to assemble materials of different natures by limiting, for example, the increase in the self-weight of the structure, is not fully mastered yet. For this purpose, further development on the qualification of the adhesion forces or on the understanding of durability are still necessary. This thesis addresses the problem of the optimization of adhesive bonded joints and aims in particular to study, more precisely, the use of the curvature in order to optimize the transfer of forces within the bonded joint. Two types of adhesive, one exhibiting a fragile elastic behavior and the other an elastoplastic behavior, have been studied in this work on the various analytical, numerical, and experimental aspects. We presumed that the plasticity of the adhesive appears to improve the strength of the bonded joints and; hence, shall be considered as an essential parameter in their optimization. A study of the curved geometry of the steel / composite bonded joints was then carried out, where it emerged that this geometry was effective in increasing the strength of the bonded joint and its ultimate capacity. Moreover, in order to extend the knowledge on the mechanical behavior of the curved bonded joints, and in the absence of sufficient bibliographical references on this type of bonding, we then resorted to the modeling by using the cohesive zone method to also validate the advantage of the curved geometry with respect to the plane geometry. This work finally focuses on the mechanical durability of this solution by addressing the fatigue thematic; even if additional investigations are needed, we have already found that the optimization of the joint by the use of an elastoplastic adhesive, and a curved geometry can improve the fatigue behavior of the adhesive bonded joints
454

The adhesive effects in dental restoration

Unknown Date (has links)
The dental field shows proliferation in the market of new adhesives. The purpose of this study is to evaluate the mechanical properties on total restoration, based on the manufacturer's technical specifications, experimental and mechanical test results. The optimal dentist's selection will be when the most appropriate adhesive can be chosen for one specific restoration, avoiding wasted time, material and exposure to marginal infections with a failure restoration. This research was developed in stages. The first step is the study of the tooth morphological information. Following, there is the structure identification type and the chemical composition of six different pure adhesives. Next, perform the X-R Diffraction, Energy Disperse Spectroscopy (EDS), and Scanning Electron Microscopy (SEM). The final step is to perform the mechanical test, computer simulation, and discuss the results to obtain the best dental adhesive with and the new finding. Result: The samples show an amorphous structure and a chemical composition in the X-R Diffraction, SEM and EDS experiments. The mechanical test shows real mechanical properties under tension and sheer rupture stress. Poisson ratio, strain, and another relationship will be used in the computer simulation test. Results will be reflected in the Discussion and Conclusion. Significance: The first conclusion is that the amorphous structure is present in all six adhesives experiments. In addition, it shows strong possibilities of bonding with another neighbor's molecules. The discussion will be extended to the bonding advantages for this type of structure in the total dental restoration. / Findings: First, we found that the time delay of photo polymerization was controlled with the variable water evaporation of the etching treatment. In addition, it was found that the variable size of the wavelength of the curing light obtained better molecular organization and avoided internal stress and bonding defect. Lastly, the chemical composition was a variable that provided the opportunity to predict the type of bond and strength. / by Raul Vargas. / Thesis (Ph.D.)--Florida Atlantic University, 2008. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2008. Mode of access: World Wide Web.
455

Avalição \'in vitro\' da resistência ao cisalhamento de braquetes colados em diferentes sistemas cerâmicos / In vitro short-term evaluation of shear strength of brackets bonded to different porcelain systems

Bonfante, Luiz Fernando 24 January 2007 (has links)
O tratamento ortodôntico em adultos, nos últimos tempos, tem ganhado popularidade na tentativa de melhorar a estética e a função. No entanto, é uma característica comum nestes pacientes, ter os dentes restaurados com facetas de resina, coroas metalo-cerâmicas e/ou porcelana pura. Neste contexto, o ortodontista se defronta com o desafio de colar braquetes em diferentes sistemas cerâmicos, de capacidade desconhecida de resistir às forças de cisalhamento. Portanto, os objetivos deste trabalho foram: 1) Verificar se a força de cisalhamento em braquetes colados em superfícies de porcelana feldspática e AllCeram é afetada por diferentes tempos de ataque com ácido hidrofluorídrico e 2) Observar se existe uma relação direta entre os valores obtidos da força de cisalhamento e o índice remanescente de adesivo (IRA). Sessenta espécimes de porcelana em formato cilíndrico foram aleatoriamente divididos em 3 grupos de 20 espécimes de acordo com o tempo de ataque do ácido hidrofluorídrico de 1 minuto, 30 segundos e 15 segundos (grupos 1, 2 e 3 respectivamente). Outros sessenta espécimes de porcelana AllCeram, com o mesmo formato e divididos da mesma maneira de acordo com o tempo de ataque ácido (grupos 4, 5 e 6 respectivamente). A colagem dos braquetes na superfície cerâmica incluiu aplicação de silano, colocação de resina fotoativada sobre a base do braquete e cimentação com força padronizada de 500g. Vinte e quatro horas após a cimentação, os espécimes foram submersos em água destilada a 37OC e submetidos ao teste de resistência ao cisalhamento em uma máquina de ensaio universal, com velocidade de 0,5 mm/min, cujos valores registrados em Kgf e convertidos em MPa. O tipo de falha também foi egistrado usando o IRA através de um estereoscópio com magnificação de 4x. A força de cisalhamento mais alta foi registrada no grupo 1 (21.21 MPa), que foi significativamente diferente dos grupos 2, 3, 4, 5 e 6 (11.01, 10.64, 14.31, 10.59, 10.39 MPa, respectivamente). Os valores mais baixos encontrados nos grupos remanescentes não diferiram entre si. A mediana dos escores do IRA para os grupos 1, 2, 3, 4, 5 e 6 foi 2, 3, 3, 0, 3, e 3, respectivamente. O grupo 1 (porcelana feldspática 1 minuto) foi afetado pelos diferentes tempos de ataque com ácido hidrofluorídrico, quando comparado aos grupos 2 e 3, ao passo em que os grupos 4, 5 e 6 de porcelana AllCeram não foram. Não houve relação direta entre o escore do IRA e os valores da força de cisalhamento. / Orthodontic treatment in the adult population has lately gained popularity in an attempt to improve esthetic and function. It is, however, a common feature in these patients, that their dentition is restored by resin veneers, porcelain fused to metal and all ceramic crowns. In this context, the orthodontist faces the challenge of bonding brackets to different porcelain based materials, of unknown ability to resist shear forces. Thus, the aim of this investigation was: 1) to test the null hypothesis that shear strength of brackets bonded to feldspathic and AllCeram porcelain surfaces is not affected by different hydrofluoridric etching times and 2) to test the null hypothesis that there is no direct relation between shear strength values and the adhesive remanescent index (ARI). Sixty feldspathic porcelain disc shaped specimens were randomly divided into 3 groups of 20 each, according to hydrofluoridric acid etching time of either 15, 30 seconds and 1 minute (groups 1, 2 and 3, respectively). Another 60 AllCeram specimens of the same shape were subjected to the same division, according to etching time (groups 4, 5, and 6 respectively). Bonding the brackets to the porcelain surfaces included silane coating, an overlying photoactivated resin and a standardized 500g cementation force. Twenty-four hours after cementation, at 37oC in destilled water, specimens were subjected to a shear force in a universal testing machine at a cross-head speed of 0,5mm/min and shear values registered in Kgf and then converted to MPa. Type of failure was lso recorded using ARI by means of a stereoscope at 4x augmentation. The highest shear strength was found for group 1 (21.21 MPa), which was significantly different than groups 2, 3, 4, 5, and 6 (11.01, 10.64, 14.31, 10.59, 10.39 MPa). The lower values found in the remaining groups were not different among each other. Median ARI scores for groups 1, 2, 3, 4, 5, and 6 were 2, 3, 3, 0, 3, and 3, respectively. The first hypothesis must be partially rejected since only feldspathic porcelain group 1 was affected by different hydrofluoric etching times, when compared to groups 2 and 3, while AllCeram groups 4, 5, and 6 were not. On the other hand, the second null hypothesis must be accepted since no direct relation between ARI score and shear strength values could be determined.
456

Influência da erosão dentária na adesão de braquetes ortodônticos colados ao esmalte com diferentes materiais / The influence of dental erosion on bond strength of orthodontic brackets bonded to enamel with different materials

Machado, Fabricio Monteiro de Castro 01 July 2016 (has links)
O diagnóstico das lesões incipientes de erosão em esmalte é difícil de ser realizado e, em situações clínicas, poderá ocorrer a colagem de braquetes em superfícies erodidas. Este trabalho in vitro avaliou a adesão de braquetes ortodônticos ao esmalte dentário bovino hígido e previamente erodido, utilizando dois materiais para colagem. Os fatores em estudo foram condição prévia do esmalte em 2 níveis (com e sem erosão) e tipo de material de colagem em 2 níveis (Transbond XT e Fuji Ortho LC). A amostra foi composta por 160 coroas de incisivos bovinos, sendo metade dela submetida a desafio erosivo para formação de lesões artificiais de erosão e a outra metade permaneceu hígida. Na ciclagem erosiva as coroas foram imersas 8X/dia em Coca-cola® (10 min), seguido da imersão em saliva artificial (2 h), durante 5 dias. A outra metade da amostra ficou em saliva artificial por 5 dias. Braquetes de incisivo central superior foram colados às coroas hígidas (H) e erodidas (E), seguindo orientações dos fabricantes de cada material. As variáveis de resposta foram resistência ao cisalhamento e índice de remanescente adesivo (IRA). Os dados de resistência ao cisalhamento foram analisados por ANOVA 2 critérios e Teste de Tukey (p<0,05). Os resultados, expressos em megapascal, não mostraram diferenças na resistência ao cisalhamento entre esmalte erodido e hígido, tanto no grupo colado com resina (RH = 15,25 +3,72; RE = 15,79 +4,41) quanto colado com ionômero (IH = 10,70 +3,73; IE = 11,26 +3,70). A resina apresentou resistência à colagem superior ao ionômero. Na comparação do índice de remanescente adesivo, por meio do teste de Mann Whitney, o esmalte erodido apresentou valores mais altos para o IRA, evidenciando uma maior quantidade de material remanescente no esmalte, tanto no grupo colado com resina (p=0,044) quanto com ionômero (p<0,001). Conclui-se que a presença da lesão de erosão não interfere na resistência ao cisalhamento de braquetes colados ao esmalte tanto com resina quanto com cimento de ionômero de vidro. No entanto, independentemente do material de colagem, o índice de remanescente adesivo evidenciou uma maior adesão ao esmalte com erosão. / The diagnosis of initial erosion lesions on enamel is difficult and in some clinical situations, the professional bonds brackets to eroded surfaces without noting.This in vitro study evaluated the bond strength of orthodontic brackets bonded to eroded and sound bovine enamel with two different materials. The factors under study were enamel condition in two levels (with and without erosion) and type of bonding material in two levels (Transbond® XT and Fuji Ortho LC). The sample consisted of 160 bovine lower incisor teeth, half of the specimens was subjected to erosive challenge to form artificial erosive lesions and the other half remained sound. In the erosive cycling tooth crowns were immerged 8x/day in Coca-cola® (10 min), followed by immersion in artificial saliva for (2 h), for 5 days. The other half of the sample was maintained in artificial saliva for 5 days. At sequence, brackets were bonded to eroded (E) and sound (S) enamel, according to manufacturing recommendations of each material. The response variables were shear bond strength and adhesive remnant index (ARI). Shear bond strength data were analyzed by Two-way ANOVA and Tukeys test (p<0,05). The results, expressed in megapascal, did not show any difference between eroded and sound enamel, in both composite resin (RS = 15,25 +3,72; RE = 15,79 +4,41) and glass ionomer (IS = 10,70 +3,73; IE = 11,26 +3,70) groups. Composite resin showed higher shear bond strength compared to glass ionomer cement. In the comparison of adhesive remnant index using Mann Whitney test, eroded enamel presented higher scores for ARI, showing greater amount of material remaining on enamel, in both resin (p=0,04) and ionomer (p<0,001) groups. It was concluded that the presence of erosion lesions did not interfere on shear bond strength of brackets bonded to enamel with composite resin or glass ionomer cement. However, independently of the bonding material, adhesive remnant index showed higher bond strength to eroded enamel.
457

The Halogen Bond: X-Ray Crystallography and Multinuclear Magnetic Resonance Investigation

Szell, Patrick 24 May 2019 (has links)
The halogen bond has recently risen in prominence as a non-covalent interaction for use in supramolecular chemistry, allowing for the rational design of materials, pharmaceuticals, and functional molecules. The occurrence of the σ-hole opposite to the C-X covalent bond (X = F, Cl, Br, I) renders the halogen bond a highly directional and tuneable interaction, offering desirable features to crystal engineers. The halogen bond can be divided into its two components: the halogen bond donor bearing the halogen atom, and the electron-rich halogen bond acceptor. In this thesis, we investigate the nature of the halogen bond, its role in supramolecular assembly and impact on the local dynamics, along with developing synthetic methods to prepare this class of materials. We begin by fully characterizing the halogen bond donor by using 35Cl ultra-wideline solid-state nuclear magnetic resonance (NMR) spectroscopy on a series of single-component chloronitriles exhibiting the C-Cl···N halogen bond. We then perform the first modern nuclear quadrupole resonance (NQR) investigations of the halogen bond, observing the 79/81Br and 127I nuclei in a series of cocrystals exhibiting the C-Br···N and C-I···N halogen bond, respectively. Computational results attribute the observed increases in the quadrupolar coupling constants (CQ) to a reduction in the carbon-halogen σ-bonding contribution to V33 and an increase in the lone-pair and core orbital contributions, providing the first model of the electronic changes occurring on the halogen bond donor upon the formation of the halogen bond. Attention is then turned on characterizing the halogen bond acceptor and its surrounding environment, beginning by investigating a solid-state NMR approach relying on the 19F nucleus to characterize perfluorinated cocrystals. This strategy has reduced analysis times from hours to minutes while providing higher sensitivity and resolution, with the resulting chemical shifts permitting the unambiguous identification of the halogen bond and allowing for the refinement of X-ray crystal structures. The halogen bond acceptor is then investigated in a series of isomorphous dimers exhibiting both the halogen bond and hydrogen bond in the C≡C-I···X-···H-N+ motif, revealing the halogen bond’s relative contribution to the electric field gradient increasing in the order of Cl- > Br- > I-, contrasting the contributions of the hydrogen bond. We then explore the impact of the halogen bond on the surrounding environment, using the rotating methyl groups of 2,3,5,6-tetramethylpyrazine as a model. Upon the introduction of a halogen bond, we observe a reduction in the rotational energy barrier of 56% on average, overshadowing the 36% reduction observed in the hydrogen bonded cocrystals. This is the first instance of the halogen bond directly catalyzing the local dynamics, coining the term “dynamics catalyst”. These results provide an effective strategy of enhancing the dynamics in molecular systems, such as molecular machines, supramolecular catalyst, as well as correcting the faulty dynamics encountered in diseased proteins. The role of halogen bonding in crystal engineering is then explored, reporting the first supramolecular triangle, a series of discrete charged dimers, and supramolecular architectures built from 1,3,5-tri(iodoethynyl)-2,4,6-trifluorobenzene, with the potential of creating fully organic porous structures for gas absorption. Mechanochemistry is then investigated as a synthetic method, allowing for the preparation of cocrystals featuring 3-iodoethynylbenzoic acid as the donor, with the resulting structures exhibiting concurrent halogen and hydrogen bonding. Mechanochemical ball milling is shown to reduce preparation times of powdered cocrystals from days to a single hour, while using a fraction of the organic solvent. Lastly, we pioneer cosublimation as a solvent-free synthetic technique for rapidly preparing halogen bonded cocrystals, yielding quality single crystals within a few hours, and a microcrystalline product within 15 minutes. Among its advantages, cosublimation offers a significant acceleration of discovery, while eliminating the environmental footprint associated with conventional synthetic methods.
458

A light activated approach for large gap peripheral nerve repair

Fairbairn, Neil G. January 2016 (has links)
Introduction: Conventional suture repair of peripheral nerves following injury is associated with several limitations such as technical difficulty, intra- and extra-neural scar formation, axonal escape and the leakage of neurotrophic factors. These limitations are particularly relevant following nerve grafting when regenerating axons must traverse two coaptation sites. Outcomes following suture repair are notoriously poor, providing large impetus for the development of alternative methods. Photochemical tissue bonding (PTB) uses visible light to create sutureless, non-thermal bonds between two closely apposed tissue surfaces stained with a photoactive dye. When used with a human amnion nerve wrap for end-to end nerve repair, this technique results in superior functional and histological outcomes in comparison to conventional epineurial suture. When initially applied to large gap injury and nerve grafting, outcomes were unsuccessful due to proteolytic degradation of amnion and photochemical bonds during extended periods of recovery. Chemical crosslinking of nerve wraps prior to PTB may improve wrap durability and efficacy of technique. This thesis provides a comprehensive three-phase assessment of the efficacy of this novel approach when applied to the repair of large gap injuries with nerve grafts. Phase 1 assesses the ex vivo biomechanical properties of nerve wraps and light activated bonds in addition to the in vivo performance of photochemically sealed crosslinked nerve wraps against several other clinically relevant fixation methods in a rodent sciatic nerve isograft model. Following major multi-limb injury and amputation, demand for autogenous nerve graft may exceed that which can be supplied by the patient. Acellular nerve allograft (ANA) is an alternative option in these circumstances although outcomes are typically inferior to autograft. Phase 2 assesses the performance of the optimum repair strategy from phase 1 against conventional epineurial suture when applied to ANA. Most studies investigating the efficacy of novel repair techniques tend to perform repairs immediately following injury, a situation that rarely occurs clinically. Delays of weeks or months are not uncommon and have been shown to have a detrimental effect on regeneration and outcome. Phase 3 assesses the efficacy of PTB when applied to delayed nerve grafting. Additional work investigating a novel imaging technique for visualizing nerve revascularisation following injury and repair has been included. Optical frequency domain imaging (OFDI) uses low power infrared light to provide real time in vivo imaging of tissue microvasculature and flow characteristics. Originally applied to the study of tumour biology, this technique may prove useful for outcome assessment in preclinical research and eventually for the assessment of nerve viability in the clinical setting. Experiments investigating the early development of a brain body interface system (BBI) for upper limb reanimation following spinal cord injury (SCI) have also been included. The ultimate aim of this project is to restore autonomous motor control in a non-human primate (NHP) using cortically driven stimulation of peripheral nerves via implantable nerve cuffs. The experiments reported in this thesis detail the development of a selective, reversible paralysis model of elbow flexion in a NHP and demonstrate selective fascicular stimulation using acute and chronically implanted nerve cuffs in rodent and murine models. Methods: Phase 1: Three candidate nerve wraps (human amnion (HAM), crosslinked human amnion (xHAM), crosslinked swine intestinal sub-mucosa (xSIS)) and 3 fixation methods (suture, fibrin glue, PTB) were investigated. Crosslinking was performed using (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS). Biomechanical tests were performed using a tensiometer. Ex vivo wrap durability was assessed using a type- 2 collagenase degradation assay. Under isoflurane anaesthesia, 110 inbred male Lewis rats had 15mm left sciatic nerve defects created and repaired with reversed isografts. 9 groups (n=10) had isografts secured by one of the aforementioned wrap/fixation combinations. PTB repairs had nerve wraps and nerve ends stained with photoactive dye (Rose Bengal) and, once nerve ends were apposed and wrapped circumferentially, the interface was illuminated with a 532nm laser. Fibrin repairs had nerve ends apposed, wrapped circumferentially and secured with Tisseel fibrin glue. Suture repairs had nerve ends apposed, wrapped circumferentially and then secured with two 10-0 nylon sutures at each coaptation site (one either side of each repair). Positive and negative control groups (n=10) were repaired with graft+suture (10-0 nylon) and no repair respectively. Phase 2: 20 sciatic nerves were harvested from Sprague Dawley rats and sent to AxoGen Inc. for decellularisation. An additional 20 male inbred Lewis rats were randomized into 2 groups (n=10). All rats had 15mm left sciatic nerve defects created and repaired with processed ANA. 1 group had nerves secured using conventional epineurial suture. The remaining group had ANA secured using photochemically sealed amnion wraps. Phase 3: 40 inbred male Lewis rats were randomized into 4 groups (n=10). All 40 rats had 15mm left sciatic nerve gaps created and reconstructed with reversed isografts harvested from donor Sprague Dawley rats. In groups 1 and 2, nerve gaps were repaired immediately with either conventional epineurial suture or photochemically sealed amnion wraps, respectively. In groups 3 and 4, repair took place 30- days following injury using either conventional epineurial suture or photochemically sealed amnion wraps, respectively. All outcomes were assessed using walking track analysis and calculation of sciatic function index (SFI). Walking track analysis and SFI was performed pre-operatively, after the 30-day delay (phase 3) and at 30-day intervals following surgery. Following sacrifice after 5-months, left (experimental) and right (control) gastrocnemius muscles were excised and weighed for calculation of muscle mass retention. Nerves were excised for histomorphometric analysis including axon count, fiber diameter, axon diameter, myelin thickness and G-ratio. For all in vivo experiments, statistical analysis was performed using ANOVA, repeated measures ANOVA and the post hoc Bonferroni test. Optical Frequency Domain Imaging (OFDI) pilot study: eight rodents were randomized into 4 groups (n=2): (1) crush injury, (2) transection and end-to-end repair, (3) transection and repair of 10mm nerve gap using contralateral autograft, (4) transection and repair of 10mm nerve gap using ANA. Under ketamine/xylazine anaesthesia, all rodents had sciatic nerves exposed through hind limb dorsolateral incisions. Imaging was performed immediately pre-injury, immediately post-injury and on post-operative days 1, 3, 5 and 7. Rodents were secured firmly to polystyrene platforms in order to reduce movement artifact during imaging Brain-Body Interface (BBI) experiments: In the upper limb of a Rhesus macaque nonhuman primate, the median nerve branch to brachialis and radial nerve branch to brachioradialis were transected, leaving elbow flexion entirely reliant on the musculocutaneous nerve. The musculocutaneous nerve was transposed into a subcutaneous position. Ultrasound guided nerve block resulted in a highly selective, reversible paralysis of elbow flexion. Under ketamine/xylazine anaesthesia, Sprague Dawley rats (n=5) and C57 Black 6 mice (n=5) had sciatic nerves exposed through dorsolateral, muscle splitting incisions. 8-channel stimulating cuff electrodes were wrapped around sciatic nerves and connected to a Tucker14 Davies stimulation/recording system. Electromyography (EMG) needle electrodes were inserted into the tibialis anterior (TA) and gastrocnemius (G) muscles to record muscle activity.
459

Selective benzylic carbon hydrogen bond activation of toluenes and aromatic carbon halogen bond activation of halobenzenes by rhodium(III) porphyrins.

January 2006 (has links)
by Chiu Peng Fai. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 82-87). / Abstracts in English and Chinese. / Table of Contents --- p.i / Acknowledgements --- p.iv / Abbreviations --- p.v / Abstract --- p.vi / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- Definition of Carbon Hydrogen Bond Activation (CHA) by Transition Metal Comple --- p.1 x / Chapter 1.2 --- The Importance of Alkane CHA and its Potential Use --- p.1 / Chapter 1.3 --- Difficulties in Alkane CHA --- p.3 / Chapter 1.4 --- The Use of Transition Metal Complexes in CHA Reactions --- p.4 / Chapter 1.5 --- Classification of CHA Reactions --- p.6 / Chapter 1.6 --- The Importance of Toluene and Benzene CHA --- p.11 / Chapter 1.7 --- Difficulties and Challenges in CHA of Toluene --- p.11 / Chapter 1.8 --- Selectivity Control and Rate Promotion --- p.12 / Chapter 1.9 --- Structural Features of Rhodium Porphyrins --- p.17 / Chapter 1.10 --- CHA by Rhodium Porphyrins --- p.19 / Chapter 1.11 --- Objective of Work --- p.21 / Chapter Chapter 2 --- CHA Reactions of Toluenes by Rhodium Porphyrin Chlorides / Chapter 2.1 --- Synthesis of Rhodium Porphyrin Chlorides --- p.22 / Chapter 2.2 --- Temperature Effects of CHA in Toluene --- p.22 / Chapter 2.3 --- Inter and Intra Molecular Exchange of Alkyl Rhodium Porphyrin Complexes --- p.24 / Chapter 2.4 --- Electronic Effect of Rhodium Porphyrin Chlorides --- p.24 / Chapter 2.5 --- Electronic Effect of Toluene Towards CHA --- p.25 / Chapter 2.6 --- X-Ray Data --- p.26 / Chapter 2.7 --- Mechanistic Studies --- p.30 / Chapter 2.8 --- Ligand and Base Effects --- p.32 / Chapter 2.9 --- Optimization of Reaction Conditions --- p.35 / Chapter 2.10 --- Electronic Effect of Toluenes --- p.36 / Chapter 2.11 --- Concentraction Effects of Toluenes (Reactions in Benzene) --- p.38 / Chapter 2.12 --- Porphyrin Effects in CHA of Toluene --- p.39 / Chapter 2.13 --- Mechanistic Studies --- p.40 / Chapter 2.14 --- Conclusion --- p.42 / Chapter 2.15 --- Reaction between Rh(ttp)Me and Toluenes --- p.42 / Chapter 2.16 --- Selective Benzylic CHA --- p.42 / Chapter 2.17 --- Isotope Effect --- p.44 / Chapter 2.18 --- Discussion --- p.44 / Chapter 2.19 --- Exploratory Studies of Other Base-Promoted Reactions --- p.45 / Chapter 2.20 --- Benzylic CHA and Aromatic Carbon Halogen Bond Activation (CXA) Reactions --- p.45 / Chapter 2.21 --- Base-Enhanced Aromatic CXA --- p.48 / Chapter 2.22 --- X-Ray Data --- p.49 / Chapter 2.23 --- Base-Enhanced Benzylic Carbon Carbon Bond Activation (CCA) Reactions --- p.51 / Chapter 2.24 --- Summary --- p.52 / Chapter Chapter 3 --- Experimental Sections --- p.53 / References --- p.82 / Appendix I Crystal Data and Processing Parameters --- p.88 / Appendix II List of Spectra --- p.123 / Spectra --- p.125
460

Multicomponent Cocrystals and Solid Solutions based on a Two-Point Hydrogen Bond Synthon

Emery, Paul Ralph 15 January 2009 (has links)
Herein we describe a straight-forward and reproducible method for the preparation of homogeneous, multicomponent cocrystals and supramolecular solid solutions. We prepared these multicomponent materials based on small organic molecules that employ a two-point supramolecular hydrogen bond synthon. We report the creation and characterization of two, three, four, five, and seven component crystals containing a variety of 2-aminopyridines and monosubstituted benzoic acids. These systems exhibit the ability to accommodate multiple components in varying proportions while coordinating into an identical packing structure. The flexibility of the system to incorporate multiple components also gives rise to gradual modulation of physical properties.

Page generated in 0.1138 seconds