Spelling suggestions: "subject:"oberflächenmodifizierung""
11 |
Herstellung und Anwendung periodischer Mikrostrukturen auf nichtmetallischen Materialien mittels geformter LaserstrahlungBerger, Jana 22 December 2017 (has links)
In dieser Arbeit wurden Techniken untersucht, die die zur Verfügung stehende Pulsenergie von Hochleistungslasern effektiv nutzen und in einem Schritt eine Vielzahl einzelner periodisch angeordneter Strukturen herstellen. Dazu wird durch optische Strahlformung ein Laserstrahl mit mehreren Intensitätsmaxima hergestellt. Dazu wurden das Direkte Laserinterferenzstrukturieren (DLIP) und die Microlensarray-Strukturierung (MLAS) genutzt. Beide Verfahren bieten die Möglichkeit, großflächig periodische Strukturen in einem einstufigen Verfahren herzustellen. Beim DLIP werden mit einem Laserpuls, aufgrund von Interferenzeffekten mehrere tausend Linien oder Punkte auf bis zu Quadratzentimeter großen Flächen erzeugt. Microlensarrays (MLA) sind optische Elemente mit einer periodischen Linsenanordnung, die mehrere Brennpunkte aus einem einzigen Laserstrahl erzeugen. Durch die Verwendung als Fokussieroptik können einige tausend Laserpunkte mit einem einzigen Puls erzeugt werden.
Anhand verschiedener Materialien werden die Möglichkeiten und Grenzen dieser Techniken untersucht und die Qualität der Strukturen im Hinblick auf die geplante Anwendung untersucht. Die für diese Arbeit genutzten Materialien sind ausschließlich nichtmetallische Werkstoffe. Es werden die Keramiken Hydroxylapatit, Aluminium- und Zirkonoxid, die leitfähigen Dünnschichten aluminium- und bordotiertes Zinkoxid und Indiumzinnoxid auf Glassubstrat und der Kunststoff PET untersucht. Hydroxylapatit ist eine Keramik die aufgrund ihrer guten Biokompatibilität in Knochen- und Zahnimplantaten verwendet wird. Eine Oberflächenstrukturierung ermöglicht eine Verbesserung des Zellwachstums. Aluminium- und Zirkonoxid werden ebenfalls in Gelenkimplantaten verwendet jedoch als Gleitfläche. Eine Strukturierung dieser Flächen verringert möglicherweise Reibung und Verschleiß in ähnlicher Weise wie bei Metallen bereits mehrfach gezeigt. Hier werden aufgrund der benötigten Strukturgrößen mit Perioden von mehreren Mikrometern sowohl DLIP als auch MLAS genutzt.
Die leitfähigen Schichten und das PET finden vorrangig in optischer Elektronik Anwendung. Diese findet zunehmende Bedeutung in Form von Solarzellen und Lichtemittierenden Dioden. Die periodische Strukturierung des Substrates oder des beschichteten Substrates bringt ein Beugungsgitter in diese Elemente ein. Bestehende Untersuchungen haben bereits einen positiven Effekt von lithografisch hergestellten Beugungsgittern nachgewiesen. In dieser Arbeit wird untersucht, ob DLIP ebenfalls einen positiven Effekt hat.:1 Einleitung 1
2 Stand der Technik 4
2.1 Verfahren zur Herstellung periodischer Strukturen 4
2.1.1 Überblick 4
2.1.2 Laserabtragende Verfahren 5
2.1.3 Photolithografische Verfahren 16
2.2 Ausgewählte Anwendungen von Oberflächenstrukturen 19
2.2.1 Optimierung der Effizienz von organischer Elektronik 19
2.2.2 Veränderung der biologischen Eigenschaften 25
2.2.3 Veränderung der tribologischen Eigenschaften 27
3 Materialien und Methoden 29
3.1 Verwendete Materialien 29
3.1.1 Eigenschaften der verwendeten Keramiken 29
3.1.2 Eigenschaften der verwendeten transparenten leitfähigen Oxide 30
3.1.3 Eigenschaften des verwendeten Polyethylenterephthalat 31
3.1.4 Übersicht zu allen Materialkennwerten 32
3.2 Experimenteller Aufbau 33
3.2.1 Verwendetes Lasersystem 33
3.2.2 Bestimmung der Ablationsschwellfluenzen 33
3.2.3 Klassischer Laserinterferenzstrukturierungsaufbau 35
3.2.4 Strukturierung mittels Microlensarray (MLA) 37
3.2.5 Übersicht der untersuchten Materialien und Methoden 38
3.3 Charakterisierungsmethoden 39
3.3.1 Charakterisierung der Oberflächentopographie 39
3.3.2 Charakterisierung der optischen Eigenschaften 40
3.3.3 Charakterisierung der elektrischen Eigenschaften 40
3.3.4 Charakterisierung der tribologischen Eigenschaften 41
3.4 Thermische Simulation 41
4 Ergebnisse und Diskussion der Oberflächenstrukturierung 43
4.1 Strukturierung von Keramiken 43
4.1.1 Bestimmung der Ablationsschwellen der Keramiken 43
4.1.2 Direkte Laserinterferenzstrukturierung der Keramiken 46
4.1.3 Microlensarray-Strukturierung der Keramiken 59
4.2 Ergebnisse der Strukturierung der transparenten leitfähigen Oxide 73
4.2.1 Bestimmung der Ablationsschwellen 73
4.2.2 Strukturierung von Aluminiumdotiertem Zinkoxid (AZO) 75
4.2.3 Strukturierung von bordotiertem Zinkoxid (ZnO:B) 89
4.2.4 Strukturierung von Indiumzinnoxid (ITO) 100
4.3 Ergebnisse der Strukturierung von PET 106
4.4 Übersicht der ermittelten Parameter 118
5 Entwicklung neuer Strukturierungskonzepte und deren Möglichkeiten 121
5.1 Vergleich der Strukturierung von Keramiken mit MLAS und DLW 121
5.2 Kombination der DLIP Technik mit einem Galvanometer-Scanner 126
5.3 Konzept zur Integration der DLIP Technik in ein Rolle-zu-Rolle-Herstellungsverfahren 131
5.4 Theoretisch Erreichbare Strukturierungsgeschwindigkeiten der neuen Bearbeitungskonzepte 134
6 Zusammenfassung 136
Literatur 141
|
12 |
Large area micro-/nano-structuring using direct laser interference patterningLasagni, Andrés F., Kunze, Tim, Bieda, Matthias, Günther, Denise, Gärtner, Anne, Lang, Valentin, Rank, Andreas, Roch, Teja 06 August 2019 (has links)
Smart surfaces are a source of innovation in the 21^st Century. Potential applications can be found in a wide range of fields where improved optical, mechanical or biological properties can enhance the functions of products. In the last years, a method called Direct LaserInterference Patterning (DLIP) has demonstrated to be capable of fabricating a wide range of periodic surface patterns even with resolution at the nanometer and sub-micrometer scales. This article describes recent advances of the DLIP method to process 2D and 3D parts. Firstly, the possibility to fabricate periodic arrays on metallic substrates with sub-micrometer resolution is shown. After that, different concepts to process three dimensional parts are shown, including the use of Cartesian translational stages as well as an industrial robot arm. Finally, some application examples aredescribed.
|
13 |
Direct laser interference patterning, 20 years of development: From the basics to industrial applicationsLasagni, Andrés F., Gachot, Carsten, Trinh, Kim E., Hans, Michael, Rosenkranz, Andreas, Roch, Teja, Eckhardt, Sebastian, Kunze, Tim, Bieda, Matthias, Günther, Denise, Lang, Valentin, Mücklich, Frank 09 August 2019 (has links)
Starting from a simple concept, transferring the shape of an interference pattern directly to the surface of a material, the method of Direct Laser Interference Patterning (DLIP) has been continuously developed in the last 20 years. From lamppumped to high power diode-pumped lasers, DLIP permits today for the achievement of impressive processing speeds even close to 1 m²/min. The objective: to improve the erformance of surfaces by the use of periodically ordered microand nanostructures. This study describes 20 years of evolution of the DLIP method in Germany. From the structuring of thin metallic films to bulk materials using nano- and picosecond laser systems, going through different optical setups and industrial systems which have been recently developed. Several technological applications are discussed and summarized in this article including: surface micro-metallurgy, tribology, electrical connectors, biological interfaces, thin film organic solar cells and electrodes as well as decorative elements and safety features. In all cases, DLIP has not only shown to provide outstanding surface properties but also outstanding economic advantages compared to traditional methods.
|
14 |
World record in high speed laser surface microstructuring of polymer and steel using direct laser interference patterningLang, Valentin, Roch, Teja, Lasagni, Andrés Fabián 29 August 2019 (has links)
Periodic surfaces structures with micrometer or submicrometer resolution produced on the surface of components can be used to improve their mechanical, biological or optical properties. In particular, these surfaces can control the tribological performance of parts, for instance in the automotive industry. In the recent years, substantial efforts have been made to develop new technologies capable to produce functionalized surfaces. One of these technologies is Direct Laser Interference Patterning (DLIP), which permits to combine high fabrication speed with high resolution even in the sub-micrometer range. In DLIP, a laser beam is split into two or more coherent beams which are guided to interfere on the work piece surface. This causes modulated laser intensities over the component’s surface, enabling the direct fabrication of a periodic pattern based on selective laser ablation or melting. Depending on the angle between the laser beams and the wavelength of the laser, the pattern’s spatial period can be perfectly controlled. In this study, we introduce new modular DLIP processing heads, developed at the Fraunhofer IWS and the Technische Universität Dresden for high speed surface laser patterning of polymers and metals. For the first time it is shown that effective patterning speeds of up to 0.90 m2/min and 0.36 m²/min are possible on polymer and metals, respectively. Line- and dot-like surface architectures with spatial periods between 7 μm and 22 μm are shown.
|
15 |
Funktionalisierung von Carbon Black und multi-walled Carbon Nanotubes mit PolyelektrolytenPiasta, Doreen 05 May 2015 (has links)
Die Modifizierung von Carbon Black Partikeln und multi-walled Carbon Nanotubes mit Poly(vinylformamid-co-vinylamin) wurde in Abhängigkeit vom pH-Wert untersucht, um primäre Aminogruppen auf die Oberfläche der Kohlenstoffspezies einzuführen. Mit einer anschließenden Pfropfreaktion der Aminogruppen tragenden Nanotubes mit Maleinsäureanhydrid-Copolymeren sind eine Vereinzelung und ein Stabilisieren der der Carbon Nanotubes möglich. Durch eine Auswahl an Maleinsäureanhydrid-Copolymeren war nach einer Funktionalisierung der mit PVFA-co-PVAm beschichteten Carbon Nanotubes die Änderung der Oberflächeneigenschatften von hydrophil bis hin zu ultrahydrophob möglich. Die Charakterisierung der Partikel und Nanotubes erfolgte mit Hilfe der Elementaranalyse, BET-Untersuchungen, XPS, Kontaktwinkelmessungen, TGA-Untersuchungen, elektrokinetischer Messungen und REM-Aufnahmen.
|
16 |
Surface Functionalization of LiNi₇.₀Co₀.₁₅Mn₀.₁₅O₂ with Fumed Li₂ZrO₃ via a Cost-Effective Dry-Coating Process for Enhanced Performance in Solid-State BatteriesCangaz, Sahin, Hippauf, Felix, Takata, Ryo, Schmidt, Franz, Dörfler, Susanne, Kaskel, Stefan 05 March 2024 (has links)
Applying a thin film coating is a vital strategy to enhance long term and interface stability of Ni-rich layered oxide cathode materials (NRLOs), especially when they are matched with sulfidic solid electrolytes (SSEs) in solid-state batteries (SSBs). The coating prevents direct contact between the cathode active material (CAM) and the SSE, shielding against parasitic side reactions at the cathode electrolyte interface (CEI). Conventional coatings are based on wet-chemical methods and therefore harmful to the environment and require long-lasting processing and high costs. In this study, we present a versatile, facile and highly-scalable dry-coating method (with suitable equipment up to 500 kg per batch) successfully employed for both multiand single-crystalline LiNi₇.₀Co₀.₁₅Mn₀.₁₅O₂ (NCM70) particles by fumed Li₂ZrO₃ nanostructured particles (LZONPs) via high intensity mixing process. The resulting porous coating layer stays firmly attached at the CAM particle surface without a need of post-calcination step at elevated temperatures. The electrochemical testing results signify enhanced rate capability up to 1.5 mAcm⁻² for both particle types and cyclic stability up to 650 cycles with a capacity retention of 86.1% for singlecrystalline NCM70. We attribute the enhanced performance to the reduced CEI reactions as cathodic charge transfer resistance depressed significantly after dry-coating by LZONPs, being an important step towards sulfidic solid-state batteries.
|
17 |
Amino Functionalization Optimizes Potential Distribution: A Facile Pathway Towards High-Energy Carbon-Based Aqueous SupercapacitorsYu, Minghao, Wang, Zifan, Zhang, Haozhe, Zhang, Panpan, Zhang, Tao, Lu, Xihong, Feng, Xinliang 16 April 2021 (has links)
Resolving the mismatch between the practical potential window (PPW) and the available capacitive potential window of supercapacitor electrodes provides a feasible way to expand the operating voltage of supercapacitors, which further boosts energy density. Here, our research unveils a unique approach to manually control the PPW of the corresponding carbon-based supercapacitors (CSCs) by rational functionalization with amino groups. The extra pair of electrons from amino N atoms naturally adsorbs cations in the electrolyte, which rationalizes the surface charge of the carbon electrode and adjusts the PPW. A remarkable voltage expansion is achieved for CSCs, from 1.4 V to its maximum limit, 1.8 V, correspondently resulting in an approximately 1-fold increase in the energy density. Importantly, such a simple strategy endows our CSCs with an outstanding maximum energy density of 7.7 mWh cm⁻³, which is not only among the best values reported for thin-film CSCs but also comparable to those reported for Li thin-film batteries. These encouraging results are believed to bring fundamental insights into the nature of potential control in energy storage devices.
|
18 |
Oberflächenspezifische Adsorption von Peptiden zur Funktionalisierung gedruckter MusterGroße, Steffi 08 February 2017 (has links)
Im Rahmen der vorliegenden Arbeit wird eine neue, kostengünstige und effiziente Strategie zur selektiven Beschichtung gedruckter Muster auf Papier entwickelt. Mittels Phagen-Display werden Peptide identifiziert, die materialspezifische Adsorption zeigen und effektiv zwischen Cellulose als Hauptbestandteil von Papier und dem Toner eines mit einem handelsüblichen Laserdrucker gedruckten Musters unterscheiden können. Diese genetisch selektierten 12mer Peptide können selektiv entweder nicht bedruckte Cellulose oder gedruckte Tonerstrukturen beschichten. Es werden vielfältige Adsorptionsuntersuchungen einzelner Peptide an den jeweiligen separaten Oberflächen und an gedruckten Mustern durchgeführt und diskutiert. Des Weiteren wird eine Ligationschemie mit Triazolindion genutzt, um z. Bsp. Farbstoffe oder funktionale Peptide selektiv auf einer Oberflächenbeschichtung zu lokalisieren. Diese Methodik bietet einen einfachen Zugang zur Funktionalisierung von Mustern auf papierbasierten Materialien, wodurch neue Wege zur Realisierung kostengünstiger diagnostischer oder biomedizinischer Geräte aufgezeigt werden können. / Within the scope of this thesis, a new, cost-effective and efficient strategy for the selective coating of printed patterns on paper is developed. Phage display biopanning identifies peptides that show material selective adsorption, effectively distinguishing between cellulose of paper and printed toner of standard office laser printers. These genetically selected 12mer peptides can selectively coat either non-printed cellulose or printed toner patterns. Numerous adsorption studies of individual peptides on the respective separated surfaces and on printed patterns are carried out and discussed. Furthermore, triazolindione ligation chemistry is exploited to introduce e.g. dyes or functional peptides selectively to the coatings. The strategy offers an easy access toward patterned functionalization of paper based materials, which potentially is of relevance for low cost diagnostics or biomedical devices.
|
19 |
Development of dual mode labels for the quantitative analysis of surface functional groups with XPS and fluorescenceFischer, Tobias 31 March 2017 (has links)
In dieser Arbeit sollte eine Derivatisierungsmethode entwickelt werden, die die duale Quantifizierung funktioneller Gruppen an Oberflächen mittels Röntgenphotoelektronenspektroskopie (XPS) und Fluoreszenz ermöglicht. Verschiedene Farbstoffe, die robuste Fluoreszenzeigenschaften mit hohen Fluorgehalten für XPS kombinieren, wurden auf ihre selektive Reaktion mit Aminogruppen getestet und der Prototyp einer tiefergehenden Analyse auf einer Oberfläche unterzogen. Durch Fluoreszenzlöschung konnten die Möglichkeiten der bimodalen Analyse nur begrenzt abgeschätzt werden, obwohl in XPS und Fluoreszenz intensive Signale gemessen wurden. Die Herstellung der Modelloberflächen mittels Gasphasenabscheidung von Silanen konnte durch Kontaktwinkelmessungen schrittweise optimiert werden. Die Kombination zweier Monoalkoxysilane ermöglichte die Herstellung von Oberflächen mit variabler Funktionalgruppendichte. Nach Reaktion mit dem dualen Marker ließen sich die Messungen aus XPS und Fluoreszenz mindestens über eine Größenordnung korrelieren. Durch Synchrotron-XPS (SR-XPS) und Röntgenfluoreszenz unter Totalreflektion (TXRF) konnte eine absolute und rückführbare Quantifizierung erzielt werden. Weitere Modelloberflächen auf Basis von Trialkoxysilanen zeigten, dass bei anwendungsnahen Proben Fluoreszenzlöschung auftritt. Diese konnte in einem gewissen Maße mittels Fluoreszenzlebensdauer berechnet werden. Darüberhinaus konnte mit der Photometrie eine unabhängige Methode gefunden werden, die die Quantifizierung des Farbstoffs an der Oberfläche in hoher Präzision ermöglicht und mit Hilfe der XPS auch der funtionellen Gruppen. Die Cavity Ring-Down Spektroskopie (CRDS) wurde als Laserbasierte Methode zur empfindlichen und ortsaufgelösten Messung der Absorption auf transparenten Substraten untersucht und erste vielversprechende Ergebnisse gewonnen. Weiterhin wurde ein modulares Farbstoffsystem entwickelt, das sowohl Variation der spektralen als auch der Bindungseigenschaften erlaubt. / This work aimed on the development of dual-mode labelling method that combines X-ray photoelectron spectroscopy (XPS) with fluorescence measurements for surface functional group quantification. Label dyes combining robust fluorescence properties with high fluorine contents were investigated towards their selective reaction with surface amino groups and the lead candidate subjected to detailed analysis on a surface. Fluorescence quenching precluded a detailed investigation of the capabilities of dual-mode labelling, despite providing sufficient signal in XPS and fluorescence scanning. The fabrication of surfaces using vapour deposition (VD) of silanes in toluene was optimized under aid of contact angle measurements. Binary mixtures of mono-alkoxy silanes were used to prepare surfaces with variable functional group density. Treatment with the label dye showed that XPS and fluorescence provide a linear overlap in signal generation over at least one order of magnitude. The combination of synchrotron radiation XPS (SR-XPS) and total reflection X-ray fluorescence spectroscopy (TXRF) provided an absolute and traceable quantification . Different model surfaces based on trialkoxy silanes showed strong fluorescence quenching. A fluorescence lifetime based correction was developed to account for such quenching effects. Additionally, the application of spectrophotometry provided a independent method of quantification for the surface bound dye and in combination with information obtained from XPS, to determine the surface functional group density. With cavity ring-down spectroscopy (CRDS), a laser based technique for highly sensitive and spatially resolved absorption measurements on transparent substrates could be developed and applied in a proof-of-concept. A modular system for the fabrication of label dyes with adjustable spectral properties and different binding sites was investigated using prototype candidates to prove the general applicability of such systems.
|
20 |
Direct laser interference patterning of metallic sleeves for roll-to-roll hot embossingLang, Valentin, Rank, Andreas, Lasagni, Andrés Fabián 05 September 2019 (has links)
Surfaces equipped with periodic patterns with feature sizes in the micrometer, submicrometer and nanometer range present outstanding surface properties. Many of these surfaces can be found on different plants and animals. However, there are few methods capable to produce such patterns in a one-step process on relevant technological materials. Direct laser interference patterning (DLIP) provides both high resolution as well as high throughput. Recently, fabrication rates up to 1 m²·min-1 could be achieved. However, resolution was limited to a few micrometers due to typical thermal effects that arise when nanosecond pulsed laser systems are used. Therefore, this study introduces an alternative to ns-DLIP for the fabrication of multi-scaled micrometer and submicrometer structures on nickel surfaces using picosecond pulses (10 ps at a wavelength of 1064 nm). Due to the nature of the interaction process of the metallic surfaces with the ultrashort laser pulses, it was not only possible to directly transfer the shape of the interference pattern intensity distribution to the material (with spatial periods ranging from 1.5 μm to 5.7 μm), but also to selectively obtain laser induce periodic surface structures with feature sizes in the submicrometer and nanometer range. Finally, the structured nickel sleeves are utilized in a roll-to-roll hot embossing unit for structuring of polymer foils. Processing speeds up to 25 m·min-1 are reported.
|
Page generated in 0.1529 seconds