• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 234
  • 62
  • 51
  • 40
  • 37
  • 8
  • 7
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 533
  • 86
  • 81
  • 80
  • 67
  • 63
  • 62
  • 60
  • 60
  • 54
  • 48
  • 46
  • 46
  • 44
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Pulse Compression in a Mid-infrared Synchronously Pumped Optical Parametric Oscillator

Kurti, R. Steven, Jr. 20 January 2005 (has links)
No description available.
242

Harmonic Resonance Dynamics of the Periodically Forced Hopf Oscillator

Wiser, Justin Allen 03 September 2013 (has links)
No description available.
243

The Analysis and Design of Phase-tunable Low-Power Low-Phase-Noise I/Q Signal Sources for Analog Phase Calibrated Transceivers

Chamas, Ibrahim 06 1900 (has links)
Due to the demand for low-cost, small-form factor and large-scale integration of system-on-chip wireless transceivers, the image-reject, zero-IF and low-IF receiver architectures have become the main topologies used in mainstream wireless communication systems. Consequently, signal sources with quadrature phase outputs [quadrature oscillators (QOs)] are therefore essential, and their phase noise, driving capability, tuning range, oscillation frequency, and power consumption have a major impact on the overall receiver performance. Additionally, it is required that the QO synthesize precise I/Q waveforms across the signal bandwidth over process, voltage, and temperature variations for adequate image-rejection and signal modulation/demodulation. While the use of symmetrical layout and large inter-digitated devices minimize both systematic and random mismatches, this solution alone may not succeed in achieving the stringent performance requirements dictated by modern wireless standards particularly as the technology scales into the sub-100nm regime, necessitating both phase and gain calibration of the mismatched I/Q channels post-fabrication. Given the necessity for precise RF quadrature signal synthesis, the goal of this work is to investigate low-power low-phase-noise quadrature oscillator (QVCO) topologies with an integrated phase calibration feature. The first part of this work focuses on the analysis and modeling of cross-coupled LC QVCOs. The analysis focuses on understanding the oscillator basic performance characteristics, design trade-offs, phase-noise performance, effect of including phase shift in the coupling paths, and on examining the quadrature accuracy in presence of process variations. New design parameters and circuit insight are developed and a generalized first order linear model and a one-port model are proposed. Particularly, we introduce the concept of an effective core and coupling transconductances to explain various oscillator properties. Additionally, a new incremental circuit element — the quadrature resistance — is introduced to evaluate the effect of coupling on the open-loop quality factor and hence on the oscillator phase noise performance. Mechanisms affecting the mode selectivity are identified and modeled. A qualitative and quantitative study of the effect of mismatch on the phase imbalance and amplitude error is presented. Particularly, closed-form intuitive expressions of the phase imbalance and amplitude error are derived and verified via circuit simulation. Based on our understanding of the various mechanisms affecting the quadrature accuracy, the second part of this work introduces a very efficient quadrature phase calibration technique based on the disconnected-source parallel-coupled LC QVCO topology. The phase-tunable LC QVCO (PT-QVCO) achieves an ultra-wide I/Q phase tuning range without affecting the relative amplitude error or consuming additional power or chip area. Additionally, in restoring the phase balance, it is observed that the proposed method restores the phase noise performance to its optimal value which presents a potential advantage over classical calibration techniques. Time domain measurements performed on a 5 GHz prototype show that I/Q signals with phase error up to ~±30°, beyond which the VCO cores are unlocked, can be driven to perfect quadrature phase. The PT-QVCO can be tuned from 3.87-4.45 GHz at the negative mode and 4.4-5.4 GHz at the positive mode, a total of ~1.5 GHz. The fabricated circuit including pad structures occupies an area of 1.1x0.7 mm² and drains 18mW (excluding buffer circuits) from a 1.8 V supply voltage. The third part of this work introduces a new low-power, low-phase-noise super harmonic injection-coupled LC QVCO (IC-QVCO) topology. Analysis of the waveform accuracy reveals an inverse dependence of the quadrature error on the tank quality factor thus allowing circuit optimization for both low phase noise and precise quadrature synthesis. Additionally, a tunable tail filter (TTF) is incorporated to calibrate the residual quadrature imbalance in presence of a 3-σ variation in the device parameters. An X-band IC-QVCO prototype with a TTF implemented in a 0.18μm RF CMOS process, achieves a measured phase noise figure-of-merit ranging from 177.3 to 182.6 dBc/Hz along the 9.0 to 9.6 GHz frequency tuning range while dissipating only 9mW from the 1.8V supply. The TTF reduces both the 1/f² and 1/f³ phase noise and calibrates the residual phase error within ±11° post-fabrication without affecting the relative amplitude error or the phase noise performance. The circuit performance compares favorably with recently published work. In the fourth part of this work, we explore the implementation of LC QVCOs as potential I/Q sources at millimeter-wave (MMW) frequencies. Among the several design challenges that emerge as the oscillator frequency is scaled into the MMW band, precise quadrature synthesis and adequate frequency tuning range are among the hardest to achieve. After describing the limitation of using an MOS varactor and a digitally controlled switch capacitor array for frequency tuning, we propose an alternative frequency tuning technique based on the fundamental operation of LC QVCOs. The off-resonance operation, which is defined by the coupling network, suggests varying the coupling current to achieve frequency tuning. In essence, by modifying the bias current of the coupling transistors (G<sub>Mc</sub>-tuning), a wide and linear frequency tuning range can be achieved. Extensive simulation results of a 60 GHz prototype, implemented in a 90 nm commercial RF CMOS process, demonstrates a 5 GHz of frequency tuning range (57.5 GHz → 62.5 GHz), a tuning sensitivity of 1GHz/mA, and a 4dB improvement in the phase noise compared to a varactor solution. Finally, the Appendix includes recent research work on the analysis and design of g<sbu>m</sub>-boosted common-gate low-noise amplifiers (CG-LNAs). While this topic seems to diverge from the main theme of the dissertation, we believe that the comprehensive analysis and the originality of the circuit design introduced in this work are worth acknowledging. / Ph.D. / While resting in bed due to illness, the Dutch scientist Christiaan Huygens keenly observed that the pendulums of two clocks hanging on the wall moved synchronously when the clocks were hung close to each other. He concluded that these two oscillatory systems were forced to move in unison by virtue of mechanical coupling through the wall. In essence, each pendulum injected mechanical vibrations into the wall that was strong enough to lock the adjacent pendulum into synchronous motion. Injection locking of oscillatory systems plays a critical role in communication systems ranging from frequency division, to generating clocks (oscillators) with finer phase separation, to the synthesis of orthogonal (quadrature) clocks. All communication systems have the same basic form. Firstly, there will some type of an information or data source which can be a keyboard or a microphone in a smartphone. The source is connected to a receiver by some sort of a channel. In wireless systems, the channel is the air medium. Moreover, to comply with the FCC and 3GPP requirements, data can only be transmitted wirelessly within a predefined set of frequencies and with stringent emission requirements to avoid interference with other wireless systems. These frequencies are generated by high fidelity clock sources, also known as oscillators. Consider a group of people sharing the same room and hence the same channel want to share information. Without regulating the “loudness” of each communicating ensemble, the quality of communication can be severely impaired. Moreover, it is to be expected that information can be shared more efficiently if each pair is allocated non-overlapping timeslots – speak when others are quiet. Called time orthogonality, all wireless systems require precise orthogonal (quadrature) clock sources to improve the communication efficiency. The precision of quadrature clocks is determined by the amplitude and phase accuracy. This dissertation takes a deep dive into the analysis and implementation of high accuracy quadrature (I/Q) clock sources using the concept of injection locking. These I/Q clocks or oscillators, also known as quadrature voltage controlled oscillators (QVCOs), have gained enormous popularity in the last decade. The first part of this work focuses on the analysis and modeling of QVCOs. The analysis focuses on understanding the oscillator basic performance characteristics, and on examining the quadrature accuracy in presence of process variations. New design parameters and circuit insight are developed and a generalized first order linear model and a one-port model are proposed. A qualitative and quantitative study of the effect of mismatch on the phase imbalance and amplitude error is presented. Particularly, closed-form intuitive expressions of the phase imbalance and amplitude error are derived and verified via circuit simulation. Based on our understanding of the various mechanisms affecting the quadrature accuracy, the second part of this work introduces a very efficient quadrature phase calibration technique based The phase-tunable QVCO (PT-QVCO) achieves an ultra-wide I/Q phase tuning range without affecting the oscillator other performance metrics. The proposed topology was successfully verified in silicon using a 5GHz prototype. The third part of this work introduces a new low-power, low-phase-noise injection coupled QVCO (IC-QVCO) topology. An X-band IC-QVCO prototype was successfully verified in a 0.18m RF CMOS process. In the fourth part of this work, we explore the implementation of QVCOs as potential I/Q sources at millimeter-wave (MMW) frequencies. Among the several design challenges that emerge as the oscillator frequency is scaled into the MMW band, precise quadrature synthesis and adequate frequency tuning range are among the hardest to achieve. After describing the limitation of using an conventional frequency tuning techniques, we propose an alternative approach based on the fundamental operation of QVCOs that outperforms existing solutions.
244

DIGITAL RECEIVER PROCESSING TECHNIQUES FOR SPACE VEHICLE DOWNLINK SIGNALS

Natali, Francis D., Socci, Gerard G. 10 1900 (has links)
International Telemetering Conference Proceedings / October 28-31, 1985 / Riviera Hotel, Las Vegas, Nevada / Digital processing techniques and related algorithms for receiving and processing space vehicle downlink signals are discussed. The combination of low minimum signal to noise density (C/No), large signal dynamic range, unknown time of arrival, and high space vehicle dynamics that is characteristic of some of these downlink signals results in a difficult acquisition problem. A method for rapid acquisition is described which employs a Fast Fourier Transform (FFT). Also discussed are digital techniques for precise measurement of space vehicle range and range rate using a digitally synthesized number controlled oscillator (NCO).
245

Low frequency sinusoidal oscillator for impedance spectroscopy

Revanna, Nagaraja 22 July 2014 (has links)
Impedance measurement as a function of frequency is being increasingly used for the detection of organic molecules. The main building block required for this is a sinusoidal oscillator whose frequency can be varied in the range of a few KHz to tens of MHz. The thesis describes the design of Integrated CMOS Oscillator Circuits. There are 2 designs presented in the thesis, one of which is based on the Wien Bridge and the other, on an LC architecture. They provide both in-phase and quadrature outputs needed for the determination of the real and imaginary parts of complex impedances. The inductor in the LC tank is realized by gyration of a capacitor. This needs two variable transconductance elements. Linear transconductance elements with decoupled transconductance gm and output conductance go is presented. A novel circuit for detecting and controlling the amplitude of oscillation is described. A current mode technique to scale the capacitance is also discussed. Since this oscillator is used in an inexpensive hand-held instrument, both power consumption and chip area must be minimized. A comparison between the Wien Bridge and the LC tank based oscillator is presented. Simulation results pertaining to the design of the different blocks of the circuit are made available. / text
246

Wide-Band Multi-Mode Voltage Tuning Oscillators utilizing Phase-Change Switches

Khairi, Ahmad B. 01 September 2016 (has links)
With the emergence of multi-standard and cognitive radios, the need for reconfigurable RF circuits increased. Such circuits require wide-band quadrature voltage controlled oscillators (QVCOs) to provide the local oscillator (LO) signal for up and down conversion. Wide-band QVCOs performance has lagged behind their narrowband VCO counterparts and numerous circuit techniques have been introduced to bridge the gap. This dissertation presents techniques that have been used to implement wide-band reconfigurable QVCOs with focus on dual-resonance based circuits. System and circuit analysis are performed to understand the tuning-range, phase noise, and power tradeoffs and to consider quadrature phase errors. An 8.8-15.0 GHz actively coupled QVCO and a 13.8-20GHz passively coupled QVCO are presented. Both oscillators employ dual-resonance to achieve extended tuning ranges. Impulse sensitivity functions were used to study the impact of different passive and active device noises on the overall phase noise performance of the dual-resonance oscillator and the actively and passively coupled quadrature oscillators. The quadrature phase error due to the different architecture parameters were investigated for the actively and passively coupled quadrature oscillators. The advantages of using switched capacitor tuning as a major part of passive tuning are identified, and the advantage of employing switches with large bandwidths, such as those associated with phase change materials, is mathematically quantified. Furthermore, a novel method for accurate off chip phase error measurement using discrete components and phase shifters that does not require calibration is introduced.
247

Study of phase-matching geometries in bulk and periodically-poled lithium niobate and their use in intracavity terahertz optical parametric oscillators

Thomson, Caroline L. January 2012 (has links)
This thesis describes the experimental implementation of novel intersecting cavity terahertz optical parametric oscillators based on bulk and periodically-poled magnesium oxide-doped lithium niobate. Both collinear and non-collinear phase-matching geometries have been demonstrated and injection-seeding has been implemented in devices using periodically-poled material to reduce threshold and increase the down-conversion efficiency. A comprehensive characterisation of the original intracavity terahertz OPO was undertaken, which revealed the parameters having the greatest impact on OPO efficiency (idler mirror reflectivity and cavity length) and led to a better understanding of the losses in the system. During the characterisation process, generation of further terahertz radiation at the same frequency as that generated by the parametric process was observed and identified as being a result of difference frequency generation (DFG) between the parametrically-generated idler and terahertz waves. This phenomenon had previously only been observed when periodically-poled materials were employed in the system. The effect of this additional DFG process has been analysed in terms of the enhancement of the terahertz field on the basis of the coupled wave equations and physically measured quantities. The use of periodically-poled lithium niobate has been a major part of the research presented in this thesis. A comprehensive study of the modified phase-matching conditions was carried out and both collinear and novel hybrid non-collinear phase-matching geometries were identified. Several computer models were developed to assess the performance of any given grating design in these different geometries and the effects of temperature tuning and pump wavelength variation were also investigated using the models. Experimental studies confirmed the viability of the modelling approach but material limitations (particularly the early onset of crystal damage) limited the outcomes of the experiments. A detailed comparison of the poled and bulk materials was made to highlight the present drawbacks of the poled material. Finally, injection seeding was used to improve the efficiency of the collinear phase-matched PPLN OPOs. When seeding was used the depletion of the pump pulse was increased to the point of being measurable, reaching an upper level of 10%. Coupling constraints placed on the seed laser limited the amount of depletion attained. The potential for injection seeding to be used in the hybrid non-collinear phase-matching scheme was also identified but not realised during the course of this work. Were this technique successful, the tuning range of the intersecting cavity terahertz OPO could be extended to encompass the sub-1THz region, something that has previously been limited by the available idler cavity angles.
248

Contribution à l’étude des architectures de radiocommunications à références d’horloges hautes fréquences : application des résonateurs BAW à la génération de fréquence de référence dans les systèmes de communication mobile / High-frequency reference clock for radio-communication architectures : application of BAW resonators for reference frequency generation in mobile communication systems

Guillot, Pierre 17 October 2011 (has links)
Ces travaux de thèse portent principalement sur la génération de signal d'horloge haute fréquence. Dans un premier temps, la faisabilité d'un oscillateur à base de BAW y est démontrée par la conception d'un circuit en technologie CMOS 65 nm. Les deux principales innovations sont les performances en terme de stabilité (bruit de phase de -128dBc/Hz à 100kHz de la porteuse) et en précision (implémentation d'une banque de capacités ayant un pas de 0.4ppm) de l'oscillateur. Sa consommation est optimisée (0.9mW). Il est suivi d'un diviseur faible bruit (-140dBc/Hz à 100kHz de la porteuse) délivrant un signal à 500MHz. Dans un second temps, les imperfections des résonateurs BAW sont analysées. Une procédure de calibration comprenant une calibration initiale et une calibration en boucle ouverte est alors proposée. Cette dernière repose sur l'identification et l'utilisation d'un modèle comportemental du dispositif, régulièrement mis à jour grâce à un filtre de Kalman. Une précision de 0.4 ppm est atteinte / This thesis deals with the gigahertz range reference frequency generation. In a first part, this document presents the design of a 500 MHz oscillator in a 65 nm CMOS process using a 2 GHz Bulk Acoustic Wave resonator. A digital frequency control is implemented using a switched capacitor bank in parallel to the resonator. The tuning range is up to 500 kHz with a minimum step of 200 Hz. The oscillator core uses a differential topology and is designed for low phase noise (-128 dBc/Hz at 100 kHz offset) at low power consumption (0.9 mW). It is followed by a low noise divider which provides a 500 MHz output with a phase noise of -139 dBc/Hz at 100 kHz offset from the carrier. In a second part, we consider a method for the calibration of a BAW based frequency reference. In fact, the frequency variations of a BAW oscillator against process, supply, temperature and aging effects make difficult its use as a frequency reference. We propose here a method based on Kalman filtering to identify with high precision a behavioral model of this BAW reference, thus enabling its use in an open loop frequency tuning. A precision of 0.4 ppm is achieved
249

Development of active integrated antennas and optimization for harmonic suppression antennas : simulation and measurement of active antennas for amplifiers and oscillators and numerical solution on design and optimization of active patch antennas for harmonic suppression with adaptive meshing using genetic algorithms

Zhou, Dawei January 2007 (has links)
The objectives of this research work are to investigate, design and implement active integrated antennas comprising active devices connected directly to the patch radiators, for various applications in high efficiency RF front-ends, integrated oscillator antennas, design and optimization of harmonic suppression antennas using a genetic algorithm (GA). A computer-aided design approach to obtain a class F operation to optimizing the optimal fundamental load impedance and designing the input matching circuits for an active integrated antenna of the transmitting type is proposed and a case study of a design for 1.6 GHz is used to confirm the design principle. A study of active integrated oscillator antennas with a series feed back using a pseudomorphic high electronmobility transistor (PHEMT) confirms the design procedure in simulation and measurement for the oscillator circuit connected directly to the active antenna. Subsequently, another design of active oscillator antenna using bipolar junction transistor (BJT) improves the phase noise of the oscillation and in addition to achieve amplitude shift keying (ASK) and amplitude modulation (AM) modulation using the proposed design circuit. Moreover, the possibility of using a sensor patch technique to find the power accepted by the antenna at harmonic frequencies is studied. A novel numerical solution, for designing and optimizing active patch antennas for harmonic suppression using GA in collaboration with numerical electromagnetic computation (NEC), is presented. A new FORTRAN program is developed and used for adaptively meshing any planar antenna structure in terms of wire grid surface structures. The program is subsequently implemented in harmonic suppression antenna design and optimization using GA. The simulation and measurement results for several surface structures show a good agreement.
250

Electroniques dédiées à l'asservissement d'oscillateurs et à la mesure physique à l'aide de capteurs à ondes élastiques / Electronics dedicated to oscillators and psysical mesurement using elastic wave sensors

Chretien, Nicolas 27 June 2014 (has links)
Le travail en bande de base permet de s’affranchir du bruit de multiplication de fréquenced’un signal. Cependant, la conception d’un oscillateur fonctionnant à haute fréquence nécessited’avoir un composant sélectif en fréquence, fonctionnant à haute fréquence et avec un facteurde qualité élevée. L’approche proposée dans cette thèse consiste à évaluer un composant à ondeélastique de volume à harmoniques élevées, le HBAR, pour la réalisation d’un oscillateur compactet stable, travaillant en bande de base à 2,45 GHz, à des fins d’utilisation de source defréquence pour un système RADAR. Les oscillateurs réalisés présentent un bruit de phase de-100 dBc/Hz pour un écart à la porteuse de 1 kHz, avec une perspective d’amélioration d’une dizainede dBc/Hz de cette valeur d’après la simulation. L’étude porte également sur l’analyse del’influence du bruit de phase de l’oscillateur local sur la résolution d’une mesure RADAR dontl’effet est démontré expérimentalement en utilisant une ligne à retard à onde élastique de surface(SAW) comme cible RADAR coopérative. Le travail effectué sur cette cible coopérative apermis d’aboutir à un prototype d’électronique embarqué pour l’interrogation de lignes à retardà ondes élastiques utilisées en tant que capteurs passifs interrogeables à distance. L’architecturede l’interrogateur combine une méthode RADAR impulsionnelle à un système d’échantillonnageen temps équivalent permettant de réduire l’importance de la puissance de calcul dansle traitement de la réponse. Les inconvénients de l’échantillonnage en temps équivalent sontminimisés par une interrogation judicieuse pour acquérir seulement les points nécessaires à lamesure. Les mesures effectuées sur un capteur de température commercial présentent une résolutionde 0,2°C avec une bande passante de 35 kHz. Pour les applications nécessitant une bandepassante plus élevée (allant jusqu’à 200 kHz), un second prototype n’ayant pas de restrictionsur les ressources de calcul mises en oeuvre est également présenté dans cette thèse, combinantla même méthode impulsionnelle avec un échantillonnage en temps réel. / Eliminating the step of frequency multiplication, by working in baseband, reduces the phasenoise of an oscillator. However, the design of a high frequency oscillator requires a frequencyselective component, which operates at high frequency and with a high quality factor. The approachproposed in this thesis is to evaluate a High-overtone Bulk Acoustic-wave Resonator,the HBAR, for the realization of a compact and stable oscillator at 2.45 GHz for a RADAR system.The designed oscillator exhibits a phase noise of −100 dBc/Hz at 1 kHz from the carrier,with an expected improvement of a dozen dBc/Hz according to the simulation. The study alsofocuses on the analysis of the local oscillator phase noise impact on the resolution of a RADARmeasurement and an experimental demonstration is done using a delay line surface acousticwave (SAW) as cooperative RADAR target. The work on this cooperative target has lead to aprototype of an embedded electronics for interrogating surface acoustic wave delay lines usedas passive sensors remotely interrogated through a wireless link. The architecture combines thepulsed RADAR signal generation method with an equivalent time sampling system in orderto reduce the computing power needed to process the response. The disadvantages of equivalenttime sampling are minimized by a smart interrogation strategy to acquire only mandatorysamples. Measurements on a commercial temperature sensor have a resolution of 0.2°C witha 35 kHz bandwidth. For applications in need of higher bandwidth (up to 200 kHz), a secondprototype with no restriction on computing resources is also presented in this thesis, combiningthe same impulse RADAR method with real-time sampling.

Page generated in 0.0594 seconds