231 |
NOISE SPECTRUM OF A QUANTUM POINT CONTACT COUPLED TO A NANO-MECHANICAL OSCILLATORVaidya, Nikhilesh Avanish January 2017 (has links)
With the advance in nanotechnology, we are more interested in the "smaller worlds". One of the practical applications of this is to measure a very small displacement or the mass of a nano-mechanical object. To measure such properties, one needs a very sensitive detector. A quantum point contact (QPC) is one of the most sensitive detectors. In a QPC, electrons tunnel one by one through a tunnel junction (a "hole"). The tunnel junction in a QPC consists of a narrow constriction (nm-wide) between two conductors. To measure the properties of a nano-mechanical object (which acts as a harmonic oscillator), we couple it to a QPC. This coupling effects the electrons tunneling through the QPC junction. By measuring the transport properties of the tunneling electrons, we can infer the properties of the oscillator (i.e. the nano-mechanical object). However, this coupling introduces noise, which reduces the measurement precision. Thus, it is very important to understand this source of noise and to study how it effects the measurement process. We theoretically study the transport properties of electrons through a QPC junction, weakly coupled to a vibration mode of a nano-mechanical oscillator via both the position and the momentum of the oscillator. %We study both the position and momentum based coupling. The transport properties that we study consist of the average flow of current through the junction, given by the one-time correlation of the electron tunneling event, and the current noise given by the two-time correlation of the average current, i.e, the variance. The first comprehensive experimental study of the noise spectrum of a detector coupled to a QPC was performed by the group of Stettenheim et al. Their observed spectral features had two pronounced peaks which depict the noise produced due to the coupling of the QPC with the oscillator and in turn provide evidence of the induced feedback loop (back-action). Benatov and Blencowe theoretically studied these spectral features using the Born approximation and the Markovian approximation. In this case the Born approximation refers to second order perturbation of the interaction Hamiltonian. In this approximation, the electrons tunnel independently, i.e., one by one only, and co-tunneling is disregarded. The Markovian approximation does not take into account the past behavior of the system under time evolution. These two approximations also enable one to study the system analytically, and the noise is calculated using the MacDonald formula. Our main aim for this thesis is to find a suitable theoretical model that would replicate the experimental plots from the work of Stettenheim et al. Our work does not use the Markovian approximation. However, we do use the Born approximation. This is justified as long as the coupling between the oscillator and QPC is weak. We first obtain the non-Markovian unconditional master equation for the reduced density matrix of the system. Non-Markovian dynamics enables us to study, in principle, the full memory effects of the system. From the master equation, we then derive analytical results for the current and the current noise. Due to the non-Markovian nature of our system, the electron tunneling parameters are time-dependent. Therefore, we cannot study the system analytically. We thus numerically solve the current noise expression to obtain the noise spectrum. We then compare our noise spectrum with the experimental noise spectrum. We show that our spectral noise results agree better with the experimental evidence compared to the results obtained using the Markovian approximation. We thus conclude that one needs non-Markovian dynamics to understand the experimental noise spectrum of a QPC coupled to a nano-mechanical oscillator. / Physics
|
232 |
Investigation of Non-Traditional Applications of the Physical Level in Reconfigurable ComputingCouch, Jacob D. 29 April 2016 (has links)
Multiple research projects are proposed that utilize low-level knowledge of Field Programmable Gate Array (FPGA) and Application Specific Integrated Circuit (ASIC) design processes to enable additional research avenues. In order to accomplish these projects, Tools for Open Reconfigurable Computing (TORC) is utilized to provide a robust environment for circuit analysis and modifications. These projects rely on looking at the low-level constructs of the internals of these microchips. Through this knowledge, techniques for performing supply chain evaluations are proposed utilizing a non-binary comparison of multiple characteristic vectors between different FPGA manufacturing lots, and FPGAs that have been exposed to different environmental conditions. Second, techniques are proposed that look at design recovery by performing fuzzy segmentation and fuzzy matching algorithms to a problem area that has traditionally focused on exact graph sub-isomorphism solutions. Through these projects, additional research vectors are opened to protect and analyze the engineering efforts that are exerted in the design of FPGA and ASIC projects. / Ph. D.
|
233 |
Study of Physical Unclonable Functions at Low Voltage on FPGAPriya, Kanu 15 September 2011 (has links)
Physical Unclonable Functions (PUFs) provide a secure, power efficient and non-volatile means of chip identification. These are analogous to one-way functions that are easy to create but impossible to duplicate. They offer solutions to many of the FPGA (Field Programmable Gate Array) issues like intellectual property, chip authentication, cryptographic key generation and trusted computing. Moreover, FPGA evolving as an important platform for flexible logic circuit, present an attractive medium for PUF implementation to ensure its security.
In this thesis, we explore the behavior of RO-PUF (Ring Oscillator Physical Unclonable Functions) on FPGA when subjected to low voltages. We investigate its stability by applying environmental variations, such as temperature changes to characterize its effectiveness. It is shown with the help of experiment results that the spread of frequencies of ROs widens with lowering of voltage and stability is expected. However, due to inherent circuit challenges of FPGA at low voltage, RO-PUF fails to generate a stable response. It is observed that more number of RO frequency crossover and counter value fluctuation at low voltage, lead to instability in PUF. We also explore different architectural components of FPGA to explain the unstable nature of RO-PUF. It is reasoned out that FPGA does not sustain data at low voltage giving out unreliable data. Thus a low voltage FPGA is required to verify the stability of RO-PUF. To emphasize our case, we look into the low power applications research being done on FPGA. We conclude that FPGA, though flexible, being power inefficient, requires optimization on architectural and circuit level to generate stable responses at low voltages. / Master of Science
|
234 |
Islanding Detection and Cybersecurity in Inverter-Based Microgrids Under a High-Noise EnvironmentAmini, Hossein 21 August 2024 (has links)
Islanding occurs when a connected load to the grid is disconnected from the grid and energized solely by local generators. Islanding can result in frequency and voltage instability, changes in current, and overall poor power quality. Poor power quality can interrupt industrial operations, damage sensitive electrical equipment, and induce outages upon the resynchronization of the island with the grid. This study proposes an islanding detection method employing Duffing oscillators to analyze fluctuations at the point of common coupling (PCC) under a high-noise environment, focusing on decreasing detection period, zero power mismatch nondetection zone, and power quality degradation. Unlike existing methods, which overlook the noise effect, this study mitigates noise impact on islanding detection. Power system noise in PCC measurements arises from switching transients, harmonics, grounding issues, voltage sags, voltage swells, electromagnetic interference, and power quality issues that affect islanding detection. Transient events, like lightning-induced traveling waves can also introduce noise levels exceeding the voltage amplitude, disturbing conventional detection techniques~cite{IEEE1313}. The noise interferes with measurements and increases the nondetection zone (NDZ), causing failed or delayed islanding detection. Duffing oscillator nonlinear dynamics enable detection capabilities at a high noise level. The proposed methods are designed to detect the PCC measurement fluctuations based on the IEEE standard 1547 through the Duffing oscillator. The basic idea is that the Duffing oscillator phase trajectory changes from periodic to chaotic mode and sends an islanded operation command to the inverter. The proposed islanding detection method can distinguish switching transients and faults from an islanded operation. / Master of Science / This study introduces a method to detect one of the important power grid issues, called islanding. Islanding occurs when a power grid section becomes isolated and continues to operate independently, leading to power quality problems and safety hazards. The method is developed using a Duffing oscillator that can detect special signals under a high-noise environment. The proposed method monitors electrical characteristics for islanding detection, including frequency, phase angle, and voltage amplitude. The method can quickly and accurately identify when an islanded operation occurs by analyzing these signals. This method combines the advantages of passive and active detection methods while avoiding common drawbacks, such as failed and delayed detection and power quality degradation. The proposed method is tested on a setup and meets IEEE standard 1547 criteria for safety and performance. The method is important because it detects islanded operations in a high-noise environment when the other methods cannot detect islanded operations correctly. The method maintains accuracy with decreased power quality degradation in noise. This method is a cost-effective solution for modern power grids increasingly integrating renewable energy resources.
|
235 |
Effective Field Theory Based on the Quantum Inverted Harmonic Oscillator and the Inverse Square Potential with Applications to Schwinger Pair CreationSundaram, Sriram January 2024 (has links)
In this thesis we focus on two elementary unstable quantum systems, the inverted
harmonic oscillator and the inverse square potential, using the methods of effective
field theory (EFT) and the renormalization group (RG). We demonstrate that the
phenomenon of fall to the centre associated with the inverse square potential is an
example of a PT symmetry breaking transition. We also demonstrate a mapping
between the inverted harmonic oscillator and the inverse square potential including a
one-to-one mapping between the quantum states and boundary conditions using an
EFT framework in a renormalization group invariant way. We apply these methods
to the phenomenon of Schwinger pair production and study finite size effects using
the RG scheme for the quantum inverted harmonic oscillator. / Thesis / Doctor of Philosophy (PhD)
|
236 |
Theoretical analysis and simulation of microwave-generation from a coaxial vircatorHägg, Martin January 2017 (has links)
High-power microwave, HPM, systems can be used as non-lethal weapons with the ability to destroy or disturb electronics, by damaging internal circuits and inducing high currents. Today microwave sources are being developed with peak powers exceeding 1 GW, one of these devices is the vircator, a narrowband source which is unique to the HPM community. In order to understand and develop microwave sources like the vircator it is necessary to have computer models, as simulations gives an invaluable understanding of the mechanisms involved during operation, saving time and development costs. This thesis presents the results from a theoretical analysis and a simulation study using a well known electromagnetic particle-in-cell code, Computer Simulation Technology Particle Studio. The results are then compared to measured data from a HPM system, the Bofors HPM Blackout. The results show that CST PS can be used to design and study the coaxial vircator with good results.
|
237 |
Conception de générateurs d'impulsions et des circuits de mise en forme reconfigurables associés / Design of pulse generator and reconfigurable shaping circuitsMuhr, Eloi 04 November 2016 (has links)
Depuis 2002, différentes bandes de fréquences de plusieurs GHz dites « Ultra-Large Bande » (ULB), généralement comprises entre 3,1GHz et 10,6GHz, ont été libérées de par le monde pour la transmission d’informations sans fil. La largeur de ces bandes est telle qu’il devient envisageable d’utiliser des impulsions comme support de l’information en lieu et place d’une porteuse modulée comme cela est le cas habituellement. En effet, le spectre d’une impulsion étant inversement proportionnel à sa durée, une large plage de fréquences est requise pour la transmission d’informations via des impulsions. Cependant, il devient possible d’accroitre les débits en rapprochant les impulsions émises lorsque ceci est nécessaire, tout en offrant la possibilité d’éteindre les circuits et donc réduire la consommation lorsque deux impulsions sont suffisamment éloignées dans le temps.Le travail de recherche de cette thèse est dans ce contexte de proposer une structure d’émetteur impulsionnel reconfigurable disposant d’un contrôle suffisamment fin pour s’adapter aux différents canaux des standards IEEE 802.15.4 et 802.15.6 et ce, en n’utilisant que des circuits numériques pour les besoins des applications faibles coût. Pour cela, une étude théorique sur la mise en forme des impulsions requises est faite. Puis, il est question de la conception des différentes fonctions nécessaires à la mise en œuvre d’un émetteur impulsionnel reconfigurable, telles qu’un oscillateur contrôlé en tension pour la bande 3,1GHz-10,6GHz à démarrage rapide et que le circuit de mise en forme des oscillations associé. / Since 2002, various frequency bands of several GHz called "Ultra-WideBand" (UWB), generally between 3,1GHz and 10,6GHz, were liberalized in the world for wireless data transmission. The width of these bands is that it becomes possible to use pulses instead of a modulated carrier to transmit data. Indeed, as the spectrum of a pulse is inversely proportional to its duration, a wide range of frequencies is required for the transmission of information via pulses. However, it becomes possible to increase the rates by moving closer the emitted pulses when this is necessary, while providing the ability to switch off the circuits and thus reduce power consumption when two pulses are sufficiently far in time.To standardize the use of UWB frequency bands, standards such as IEEE 802.15.4 and 802.15.6 standards have emerged and have chosen to cut these frequency bands in channels of 500MHz and more. The aim of this thesis is also to propose a reconfigurable pulse transmitter structure with a fine enough control to address the different channels of IEEE 802.15.4 and 802.15.6 standard and, using only digital circuits to target low cost applications. For this, a theoretical study on the shaping of pulses required is made. Then it comes to the design of the various functions necessary for the implementation of a reconfigurable pulse transmitter, such as the implementation of a voltage controlled oscillator for 3,1GHz band-10,6GHz with quick start ability and the required oscillations shaping circuit.
|
238 |
Amplificação de pequenos sinais em osciladores parametricamente forçados.SANTOS, Desiane Maiara Gomes dos. 29 August 2018 (has links)
Submitted by Maria Medeiros (maria.dilva1@ufcg.edu.br) on 2018-08-29T14:12:32Z
No. of bitstreams: 1
DESIANE MAIARA GOMES DOS SANTOS - DISSERTAÇÃO (PPGF) 2015.pdf: 6011160 bytes, checksum: a5021549766593cfe2eb8fe5314ea39b (MD5) / Made available in DSpace on 2018-08-29T14:12:32Z (GMT). No. of bitstreams: 1
DESIANE MAIARA GOMES DOS SANTOS - DISSERTAÇÃO (PPGF) 2015.pdf: 6011160 bytes, checksum: a5021549766593cfe2eb8fe5314ea39b (MD5)
Previous issue date: 2015-04-10 / Capes / Nesta dissertação, analisamos a dinâmica de osciladores parametricamente forçados,
com enfoque na amplificação de pequenos sinais. Iniciamos por uma revisão da ressonância paramétrica e da amplificação paramétrica em um oscilador linear parametricamente excitado. Em seguida, estudamos dois tipos de osciladores não-lineares parametricamente forçados e concluímos a dissertação com a análise de um dímero parametricamente excitado. Basicamente, analisamos os fenômenos de ressonância paramétrica e de amplificação paramétrica, comparando os resultados obtidos analiticamente (via métodos da média ou do balanço harmônico) com os obtidos via integração numérica das equações do movimento. Em todos os casos, obtivemos a linha de transição para a instabilidade paramétrica do oscilador paramétrico. Nós excitamos os amplificador paramétrico com e sem dessintonia entre entre o bombeamento e o sinal externo ac. Verificamos que o ganho da amplificação paramétrica depende da sensitivamente na fase do sinal externo ac e na amplitude do bombeamento. Mostramos que tais sistemas podem ser facilmente utilizados para recepção e decodificação de sinais com modulação de fase. Além disso, obtivemos séries temporais, envelopes e transformadas de Fourier para a resposta da amplificação paramétrica de pequenos sinais ac. Especificamente nos casos dos osciladores de Duffing parametricamente forçados, obtivemos e analisamos linhas de bifurcação e a amplitude
dos ciclos limites como função da frequência e da amplitude de bombeamento. Adicionalmente, conseguimos obter uma relação analítica para os ganhos do sinal e do idler dos osciladores não-lineares parametricamente forçados pelo método do balanço harmônico. Os resultados obtidos implicam que os amplificadores paramétricos não-lineares podem ser excelentes detectores, especialmente em pontos próximos a bifurcações para instabilidade, em que apresentam altos ganhos e largura de banda bem estreitas. Por último, investigamos também o comportamento de dois osciladores lineares acoplados e parametricamente estimulados, com e sem força externa ac. Tais sistemas são muito sensíveis à fase do sinal a ser amplificado e podem ser utilizados para criar amplificadores sintonizáveis em função do parâmetro de acoplamento. / In this dissertation, we studied the dynamics of parametrically-driven oscillators, with a focus on the amplification of small signals. We begin with a revision of parametric resonance and parametric amplification in a linear oscillator parametrically excited. Next,
we studied two types of nonlinear parametrically-driven oscillators and finished the dissertation with an analysis of a parametric dimer. Basically, we analyzed the phenomena
of parametric resonance and parametric amplification by comparing the results obtained
analytically (via the averaging or harmonic balance methods) with those of numerical
integration of the equations of motion. In all cases, we obtained the transition line to
parametric instability of the parametric oscillator. We excited the parametric amplifier
with and without detuning between the pump and the external signal. We found that the
parametric amplification depends sensitively on the phase of the external ac signal and on
the internal pump amplitude. We showed that such amplifiers can be easily used for the
reception and decoding of signals with phase modulation. Furthermore, we obtained time
series, envelopes, and Fourier transforms of the response of the parametric amplifier to
small external ac signals. Specifically in the cases of the parametrically-driven Duffing oscillators, we obtained and analysed the bifurcation lines and the amplitude of limit cycles as function of the pump amplitude and frequency. In addition, we derived an expression for the signal and idler gains of the nonlinear parametrically-driven oscillators with the harmonic balance method. The results imply that the nonlinear parametric amplifiers can be excellent detectors, specially near bifurcations to instability, due to their high gains and narrow bandwidths. Finally, we studied the dynamics of two linear oscillators coupled and parametrically excited, with and without external ac driving. We found that such systems have a wealth of dynamical responses. They present parametric amplification that is dependent on the coupling parameter and on the phases of the external ac signals. Such systems may be used as tunable amplifiers.
|
239 |
Phase noise reduction of a 0.35 μm BiCMOS SiGe 5 GHz Voltage Controlled OscillatorLambrechts, Johannes Wynand 11 November 2009 (has links)
The research conducted in this dissertation studies the issues regarding the improvement of phase noise performance in a BiCMOS Silicon Germanium (SiGe) cross-coupled differential-pair voltage controlled oscillator (VCO) in a narrowband application as a result of a tail-current shaping technique. With this technique, low-frequency noise components are reduced by increasing the signal amplitude without consuming additional power, and its effect on overall phase noise performance is evaluated. The research investigates effects of the tail-current as a main contributor to phase noise, and also other effects that may influence the phase noise performance like inductor geometry and placement, transistor sizing, and the gain of the oscillator. The hypothesis is verified through design in a standard 0.35 μm BiCMOS process supplied by Austriamicrosystems (AMS). Several VCOs are fabricated on-chip to serve for a comparison and verify that the employment of tail-current shaping does improve phase noise performance. The results are then compared with mathematical models and simulated results, to confirm the hypothesis. Simulation results provided a 3.3 dBc/Hz improvement from -105.3 dBc/Hz to -108.6 dBc/Hz at a 1 MHz offset frequency from the 5 GHz carrier when employing tail-current shaping. The relatively small increase in VCO phase noise performance translates in higher modulation accuracy when used in a transceiver, therefore this increase can be regarded as significant. Parametric analysis provided an additional 1.8 dBc/Hz performance enhancement in phase noise that can be investigated in future works. The power consumption of the simulated VCO is around 6 mW and 4.1 mW for the measured prototype. The circuitry occupies 2.1 mm2 of die area. Copyright / Dissertation (MEng)--University of Pretoria, 2010. / Electrical, Electronic and Computer Engineering / unrestricted
|
240 |
Applications of the coupled cluster method to pairing problemsSnape, Christopher January 2010 (has links)
The phenomenon of pairing in atomic and nuclear many-body systems gives rise to a great number of different physical properties of matter, from areas as seemingly diverse as the shape of stable nuclei to superconductivity in metals and superfluidity in neutron stars. With the experimental realisation of the long sought BCS-BEC crossover observed in trapped atomic gases - where it is possible to fine tune the s-wave scattering length a of a many-fermion system between a dilute, correlated BCS-like superfluid of Cooper pairs and a densely packed BEC of composite bosons - pairing problems in atomic physics have found renewed interest in recent years. Given the high precision techniques involved in producing these trapped gas condensates, we would like to employ a suitably accurate many-body method to study such systems, preferably one which goes beyond the simple mean-field picture.The Coupled Cluster Method (CCM) is a widely applied and highly successful ab initio method in the realm of quantum many-body physics and quantum chemistry, known to be capable of producing extremely accurate results for a wide variety of different many-body systems. It has not found many applications in pairing problems however, at least not in a general sense. Our aim, therefore, is to study various models of pairing using a variety of CCM techniques - we are interested in studying the generic features of pairing problems and in particular, we are especially interested in probing the collective modes of a system which exhibits the BCS-BEC crossover, in either the BCS or BEC limit. The CCM seems a rather good candidate for the job, given the high precision results it can produce.
|
Page generated in 0.0613 seconds