• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 5
  • 2
  • 2
  • Tagged with
  • 23
  • 8
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Effects of neonatal hypoxia on cortical circuits and cognitive functions

Lee, Karen 01 1900 (has links)
Les enfants qui ont subi une asphyxie périnatale modérée (MPA) risquent de développer des déficits cognitifs et comportementaux subtils et durables, notamment des troubles d'apprentissage et des problèmes émotionnels. Comprendre les mécanismes sous-jacents est une étape essentielle pour concevoir une thérapie ciblée. Déterminer comment le développement du cerveau est corrélé entre les humains et les rongeurs n'est pas simple, mais il existe également un alignement inter-espèces considérable en termes d'étapes clés du développement. Sur la base des changements biochimiques et neuroanatomiques au cours du développement précoce, le consensus général est qu'un cerveau de rongeur P8-10 correspond à peu près au cerveau d'un enfant à terme ; par conséquent, nous avons utilisé cette fenêtre temporelle comme référence pour développer un modèle préclinique de MPA chez la souris. Nous avons d'abord établi un protocole qui nous permet d'observer de manière fiable les crises induites par l'hypoxie chez les souris postnatales. Nous avons constaté que l'exposition de chiots P8-9 directement à 4 % d'O2 pendant 8 minutes induit de manière fiable des crises avec une latence d'environ 5 minutes chez 3 souches de souris (FVB, C57Bl/6, 129S6). Cet aspect est cliniquement pertinent car les convulsions sont la caractéristique néonatale la plus importante de l'encéphalopathie de stade 2 (modérée) telle que définie par l'échelle de Sarnat. Les souris MPA adultes présentent des séquelles à long terme sur des performances cognitives spécifiques, notamment des déficits de la mémoire de reconnaissance et de la flexibilité cognitive, mais aucune altération du comportement moteur et émotionnel. Le cortex préfrontal (PFC) régule la flexibilité cognitive et le comportement émotionnel. Les neurones qui libèrent la sérotonine (5-HT) projettent vers le PFC, et les composés modulant l'activité 5-HT influencent l'émotion et la cognition. On ne sait pas si les dérégulations de la 5-HT contribuent aux problèmes cognitifs induits par le MPA. Dans une première étude, nous avons trouvé que les niveaux d'expression de 5-HT, quantifiés par immunohistochimie, et de libération de 5-HT, quantifiés par microdialyse in vivo chez des souris éveillées, sont réduits dans le PFC de souris MPA adultes. Les souris MPA présentent également une régulation de la température corporelle altérée après l'injection de l'agoniste des récepteurs 5-HT1A, 8-OH-DPAT, suggérant la présence de déficits dans la fonction des auto-récepteurs 5-HT sur les neurones du raphé. Enfin, le traitement chronique de souris MPA adultes avec de la fluoxétine, un inhibiteur du transporteur de recapture de la 5-HT, ou l'agoniste des récepteurs 5-HT1A, la tandospirone, sauve la flexibilité cognitive et les troubles de la mémoire. Ensemble, ces données démontrent que le développement de la fonction du système 5-HT est vulnérable à une asphyxie périnatale modérée. L'hypofonctionnement de la 5-HT pourrait à son tour contribuer à une déficience cognitive à long terme à l'âge adulte, indiquant une cible potentielle pour les thérapies pharmacologiques. Les circuits GABAergiques comprennent une variété étonnante de différents types de cellules, qui sont probablement recrutées par différents événements comportementaux. Un sous-type important de cellules GABAergiques, les cellules positives à la parvalbumine (PV), génèrent des potentiels d'action à haute fréquence et synchronisent l'activité des neurones pyramidaux excitateurs. Les cellules PV sont particulièrement importantes pour la génération d'oscillations gamma, qui à leur tour régulent de nombreuses fonctions cognitives, notamment le traitement attentionnel axé sur les objectifs et la mémoire de travail. Des découvertes récentes indiquent que les cellules PV utilisent beaucoup plus d'énergie que les autres neurones corticaux, ce qui peut les rendre très vulnérables aux conditions de stress métabolique et oxydatif causées par le MPA. Nos données ont montré que l'expression de PV est altérée chez les souris MPA adultes. Nous avons en outre constaté que le niveau d'expression du récepteur de la neurotrophine p75NTR, qui limite la maturation des cellules PV au cours de la première semaine postnatale, est augmenté chez les souris MPA. La suppression génétique de p75NTR dans les neurones GABAergiques exprimant le facteur de transcription Nkx2.1, qui comprend les cellules PV, protège les souris de la perte de niveaux de PV et des effets cognitifs à long terme du MPA. Enfin, un traitement d'une semaine avec un inhibiteur de p75NTR commençant après le MPA sauve complètement les déficits d'activité cognitive et corticale chez les souris adultes. L'ensemble de ces données révèle une cible moléculaire potentielle pour le traitement des altérations cognitives causées par le MPA. / Children who experienced moderate perinatal asphyxia (MPA) are at risk of developing long lasting subtle cognitive and behavioral deficits, including learning disabilities and emotional problems. Understanding the underlying mechanisms is an essential step for designing targeted therapy. Determining how brain development correlates between humans and rodents is not straightforward, however there is also considerable cross-species alignment in terms of key developmental milestones. Based on biochemical and neuroanatomical changes during early development, the general consensus is that a P8-10 rodent brain corresponds roughly to the brain of a term infant; therefore, we used this time window as reference to develop a preclinical model of MPA in mouse. We first established a protocol that allows us to reliably observe hypoxia-induced seizures in postnatal mice. We found that exposing P8-9 pups directly to 4% O2 for 8 minutes reliably induces seizures with a latency of about 5’ in 3 mouse strains (FVB, C57Bl/6, 129S6). This aspect is clinically relevant as seizures are the most prominent neonatal hallmark of Stage 2 (Moderate) encephalopathy as defined by the Sarnat Scale. Adult MPA mice show long-term sequelae on specific cognitive performance, including deficits in recognition memory and cognitive flexibility, but no impairment in motor and emotional behavior. The prefrontal cortex (PFC) regulates cognitive flexibility and emotional behavior. Neurons that release serotonin (5-HT) project to the PFC, and compounds modulating 5-HT activity influence emotion and cognition. Whether 5-HT dysregulations contribute to MPA-induced cognitive problems is unknown. In a first study, we found that 5-HT expression levels, quantified by immunohistochemistry, and 5-HT release, quantified by in vivo microdialysis in awake mice, are reduced in PFC of adult MPA mice. MPA mice also show impaired body temperature regulation following injection of the 5-HT1A receptor agonist 8-OH-DPAT, suggesting the presence of deficits in 5-HT auto-receptor function on raphe neurons. Finally, chronic treatment of adult MPA mice with fluoxetine, an inhibitor of 5-HT reuptake transporter, or the 5-HT1A receptor agonist tandospirone rescues cognitive flexibility and memory impairments. All together, these data demonstrate that the development of 5-HT system function is vulnerable to moderate perinatal asphyxia. 5-HT hypofunction might in turn contribute to long-term cognitive impairment in adulthood, indicating a potential target for pharmacological therapies. GABAergic circuits comprise an astonishing variety of different cell types, which are likely recruited by different behavioral events. An important subtype of GABAergic cells, the fast-spiking, parvalbumin-positive (PV) cells, generate action potentials at high frequency and synchronize the activity of excitatory pyramidal neurons. PV cells are particularly important for the generation of gamma oscillations, which in turn regulate many cognitive functions including goal-directed attentional processing and working memory. Recent findings indicate that PV cells utilize much more energy than other cortical neurons, which may render them highly vulnerable to conditions of metabolic and oxidative stress caused by MPA. Our data showed that PV expression is impaired in adult MPA mice. We further found that the expression level of the neurotrophin receptor p75NTR, which limits PV cell maturation during the first postnatal week, is increased in MPA mice. Genetic deletion of p75NTR in GABAergic neurons expressing the transcription factor Nkx2.1, which include PV cells, protects mice from PV levels loss and the long-term cognitive effects of MPA. Finally, one week treatment with a p75NTR inhibitor starting after MPA completely rescues the cognitive and cortical activity deficits in adult mice. All together this data reveals a potential molecular target for the treatment of the cognitive alterations caused by MPA.
22

The role of somatostatin and parvalbumin-expressing interneurons in modulating cortical processing and cognitive function

Chehrazi, Pegah 05 1900 (has links)
Le fonctionnement du cortex cérébral nécessite l'action coordonnée de deux principaux types de neurones : les cellules principales excitatrices glutamatergiques (PC) (∼80%) et les interneurones inhibiteurs GABAergiques (IN) (∼20%). Le sous-type le plus courant d'interneurones (IN) GABAergiques, les IN exprimant la parvalbumine (Pv+), innervent le soma et les dendrites proximales d'environ 100 PC voisins. Ainsi, ils délivrent une forte impulsion inhibitrice périsomatique et, à ce titre, jouent un rôle essentiel dans l'intégration synaptique et la synchronisation des circuits corticaux. La maturation des Pv+ IN est un processus prolongé, qui n'atteint un plateau qu'après la fin de l'adolescence. Des altérations de la connectivité et de la fonction des Pv+ IN au cours du développement, en particulier dans le cortex préfrontal (PFC), ont été systématiquement signalées dans plusieurs troubles psychiatriques associés à la rigidité cognitive, ce qui suggère que des déficits des Pv+ IN pourraient être un phénotype cellulaire central de ces troubles. Une autre classe d’IN majeure est constituée par les IN exprimant la somatostatine (Sst+). Malgré des origines neurodéveloppementales similaires, les IN Sst+ présentent une morphologie et une physiologie distinctes des IN Pv+. Les IN Sst+ ciblent les dendrites apicales des PC, modulant ainsi directement les entrées excitatrices sous-jacentes aux différentes fonctions corticales. Comme pour les IN Pv+, le dysfonctionnement des IN Sst+ a été associé aux NDD. Ici, nous étudions les mécanismes moléculaires sous-jacents à la maturation de ces circuits d’IN et comment les altérations de ces mécanismes affectent la fonction corticale. Nous avons précédemment montré que la réductionde l'expression du récepteur de la neurotrophine p75 (p75NTR) par les Pv+ IN au cours du premier mois postnatal régule l'évolution temporelle de leur maturation morphologique cellulaire de façon autonome. Toutefois, il restait à déterminer si l'expression de p75NTR au cours du développement postnatal a un effet à long terme sur la connectivité des cellules Pv+ et la fonction cognitive dans le PFC. En utilisant des stratégies de knock-out conditionnel et virales, nous avons montré que l'expression de p75NTR dans les IN Pv+ du cerveau adolescent contribue à l'établissement de leurs connections afférentes et de leur plasticité dans le PFC. De plus, la délétion postnatale de p75NTR spécifiquement aux cellules Pv+ entraîne 1) une augmentation de la production efférente sur les PC, 2) une augmentation de l'agglomération des PNN autour de leurs corps cellulaires dans le PFC adulte, 3) une altération de l'engagement des cellules Pv+ dans le circuit préfrontal suite à des stimuli sensoriels et 4) une altération des oscillations γ et de la rigidité cognitive chez la souris adulte. Un autre facteur moléculaire qui joue un rôle important dans la connectivité et la fonction des IN est la cadhérine-13 (Cdh13). Cdh13 est un membre unique ancré au glycosylphosphatidylinositol de la famille des cadhérines qui est exprimé à la fois par les IN Pv+ et Sst+ et régule la transmission inhibitrice basale dans l'hippocampe. Cdh13 est un gène à risque pour les NDD ; cependant, le mécanisme par lequel Cdh13 affecte la fonction et la cognition au niveau du réseau cortical et la pathogenèse de ces troubles reste insaisissable. Nous avons utilisé la transcriptomique unicellulaire et montré que l'ARNm de Cdh13 est sélectivement enrichi en Sst+ IN corticaux chez les souris juvéniles. Nous avons ensuite analysé le patrond'expression de Cdh13 dans les IN Pv+ et Sst+ à l'aide de l’hybridation in situ de type RNAscope et avons constaté que les deux types cellulaires expriment Cdh13 à des niveaux différents. Enfin, nous avons généré des modèles de souris knock- out conditionnels SstcKO (Sst_Cre+/-; Cdh13loxP/loxP) et Pv-cKO (PV_Cre+/-; Cdh13loxP/ loxP) et effectué des enregistrements intracorticaux in vivo à partir de souris éveillées. Nous avons identifié des altérations significatives dans le traitement auditif, spécifiquement chez les souris SstcKO. Ainsi, Cdh13 joue un rôle critique et spécifique dans la fonction IN Sst+. En résumé, la compréhension des mécanismes cellulaires et moléculaires régissant le bon développement et la maturation des circuits inhibiteurs met en lumière les mécanismes par lesquels l'inhibition GABAergique contribue aux opérations du réseau cortical et à la fonction cognitive. Ces études indiquent en outre des substrats subcellulaires, potentiellement affectés dans les NDD et les troubles neuropsychiatriques et ouvrent la voie à des stratégies de diagnostic et de traitement plus efficaces. / The proper functioning of the cerebral cortex requires the coordinated action of two main types of neurons: the principal excitatory glutamatergic cells (PCs) (∼80%) and the GABAergic inhibitory interneurons (INs) (∼20%). The most common subtype of GABAergic INs, the parvalbumin-expressing (Pv+) INs, innervate the soma and proximal dendrites of around 100 neighboring PCs. Thus, they deliver a strong perisomatic inhibitory drive and, as such, play an essential role in synaptic integration and cortical circuit synchronization. Pv+ INs maturation is a prolonged process, which reaches a plateau only after the end of adolescence. Alterations in Pv+ INs connectivity and function during development, especially in the prefrontal cortex (PFC), have been consistently reported in several psychiatric disorders associated with cognitive rigidity, suggesting that Pv+ INs deficits may be a core cellular phenotype in these disorders. Another major IN class, not overlapping with Pv+ cells, is constituted by somatostatin-expressing (Sst+) INs. Despite sharing similar neurodevelopmental origins, Sst+ INs exhibit distinct morphology and physiology from Pv+ INs. Sst+ INs target apical dendrites of PCs, thus directly modulating excitatory inputs underlying different cortical functions. Like Pv+ INs, the dysfunction of Sst+ INs has been associated with NDDs. Here, we investigate the molecular mechanisms underlying the maturation of these INs circuits and how alterations of these mechanisms affect cortical function. We have previously shown that the downregulation of the p75 neurotrophin receptor (p75NTR) expression in Pv+INs during the first postnatal month regulates the time course of their morphological maturation in a cell-autonomous fashion. Whether p75NTR expression during postnatal development has a long-term effect on Pv+ cell connectivity and cognitive function in the PFC is unknown. Using conditional knock-out and viral strategies, we showed that p75NTR expression in adolescent Pv+ INs contributes to the establishment of their output and plasticity in the PFC. In addition, Pv cell-specific postnatal deletion of p75NTR leads to 1) increased efferent output onto PCs, 2) increased perineuronal net (PNN) agglomeration around their somata in adult PFC, 3) altered Pv+ cell engagement in the prefrontal circuit following sensory stimuli and 4) altered γ oscillations and cognitive rigidity in adult mice. Another molecular factor that plays a significant role in the connectivity and function of INs is Cadherin-13 (Cdh13). Cdh13 is a unique glycosylphosphatidylinositol-anchored member of the cadherin family that is expressed by both Pv+ and Sst+ INs and regulates basal inhibitory transmission in the hippocampus. Cdh13 is a risk gene for NDDs; however, the mechanism whereby Cdh13 affects cortical network function and cognition and how its dysfunction influences the pathogenesis of these disorders remains elusive. We used single-cell transcriptomics and showed that Cdh13 mRNA is selectively enriched in juvenile mice's cortical Sst+ INs. We then analyzed the expression pattern of Cdh13 in cPv+ and cSst+ INs using RNAscope and found that both cell types express Cdh13 at different levels. Finally, we generated conditional knock-out mice models (Sst_Cre+/-; Cdh13loxP/loxP; Sst-cKO and Pv_Cre+/-; Cdh13 loxP/loxP; Pv-cKO mice) and performed in vivo intracortical recording from awake mice. This approach identified significant alterations in auditory processing, specifically in Sst-cKO mice. Thus, Cdh13 plays a critical and specific role in the Sst+ INs function. In summary, understanding the cellular and molecular rules governing proper inhibitory circuitry development and maturation shed light on the mechanisms by which GABAergic inhibition contributes to cortical network operations and cognitive function. These studies further indicate subcellular substrates, potentially affected in NDDs and neuropsychiatric disorders and pave the road for more effective diagnosis and treatment strategies.
23

Micro RNA-Mediated regulation of the full-length and truncated isoforms of human neurotrophic tyrosine kinase receptor type 3 (NTRK 3)

Guidi, Mònica 13 January 2009 (has links)
Neurotrophins and their receptors are key molecules in the development of thenervous system. Neurotrophin-3 binds preferentially to its high-affinity receptorNTRK3, which exists in two major isoforms in humans, the full-length kinaseactiveform (150 kDa) and a truncated non-catalytic form (50 kDa). The twovariants show different 3'UTR regions, indicating that they might be differentiallyregulated at the post-transcriptional level. In this work we explore howmicroRNAs take part in the regulation of full-length and truncated NTRK3,demonstrating that the two isoforms are targeted by different sets of microRNAs.We analyze the physiological consequences of the overexpression of some of theregulating microRNAs in human neuroblastoma cells. Finally, we providepreliminary evidence for a possible involvement of miR-124 - a microRNA with noputative target site in either NTRK3 isoform - in the control of the alternativespicing of NTRK3 through the downregulation of the splicing repressor PTBP1. / Las neurotrofinas y sus receptores constituyen una familia de factores crucialespara el desarrollo del sistema nervioso. La neurotrofina 3 ejerce su funciónprincipalmente a través de una unión de gran afinidad al receptor NTRK3, del cualse conocen dos isoformas principales, una larga de 150KDa con actividad de tipotirosina kinasa y una truncada de 50KDa sin dicha actividad. Estas dos isoformasno comparten la misma región 3'UTR, lo que sugiere la existencia de unaregulación postranscripcional diferente. En el presente trabajo se ha exploradocomo los microRNAs intervienen en la regulación de NTRK3, demostrando que lasdos isoformas son reguladas por diferentes miRNAs. Se han analizado lasconsecuencias fisiológicas de la sobrexpresión de dichos microRNAs utilizandocélulas de neuroblastoma. Finalmente, se ha estudiado la posible implicación delmicroRNA miR-124 en el control del splicing alternativo de NTRK3 a través de laregulación de represor de splicing PTBP1.

Page generated in 0.018 seconds