• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 47
  • 23
  • 5
  • 4
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 167
  • 61
  • 59
  • 40
  • 35
  • 30
  • 26
  • 25
  • 22
  • 21
  • 16
  • 15
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Dynamique évolutive des symbioses protectrices chez les insectes / Evolutionary dynamics of protective symbioses in insects

Leclair, Mélanie 15 December 2016 (has links)
Les associations symbiotiques entre microorganismes et eucaryotes sont omniprésentes dans le monde vivant. Ces microorganismes peuvent jouer un rôle crucial dans l’évolution et l’écologie de leurs porteurs en modifiant leur phénotype. Ces symbiotes étant le plus souvent héritables, les phénotypes étendus résultant de ces associations symbiotiques peuvent se transmettre aux générations suivantes. Certains microorganismes vont permettre l’accès à une ressource alimentaire, d’autres conférer une protection contre un ennemi. Une telle protection symbiotique est rencontrée chez le puceron du pois (Acyrthosiphon pisum) en interaction avec la bactérie Hamiltonella defensa. Cette symbiose confère au puceron une résistance face à l’attaque de son principal ennemi : le parasitoïde Aphidius ervi. Les populations de ce ravageur des Légumineuses sont structurées en biotypes (populations spécialisées sur des plantes hôtes). La distribution du symbiote protecteur au sein des populations de pucerons est singulière. De nombreux individus vivant sur la luzerne, la bugrane ou les genêts abritent ce symbiote alors qu’il est peu fréquent dans les populations d’autres biotypes d’A. pisum comme le pois ou le trèfle. Nous avons cherché à comprendre pourquoi H. defensa n’était pas retrouvé chez tous les biotypes du puceron du pois. Afin de prédire la dynamique de la symbiose protectrice et le potentiel de résistance dans les populations aphidiennes naturelles, nous nous sommes intéressés à plusieurs processus écologiques et évolutifs. L’incidence de la pression des parasitoïdes sur la composition des populations symbiotiques a été mesurée chez trois biotypes (luzerne, pois et trèfle) à travers une approche terrain. La distribution du symbiote H. defensa dans les populations est directement dépendante de la variabilité du phénotype associé exprimé dans les différentes populations, j’ai identifié les phénotypes associés au symbiote pour des pucerons issus de différents biotypes ainsi que l’influence du contexte local sur ces phénotypes. L’absence d’H. defensa chez certains individus peut s’expliquer par la redondance d’une fonction protectrice en place chez ces biotypes comme un alternative symbiotique autre que H. defensa ou encore une immunité forte. Enfin, nous avons testé si le cumule des protections symbiotiques conférées par deux bactéries du cortège du puceron du pois pouvaient se cumuler créant ainsi des super-organismes. Mon travail met en évidence l’implication de nombreux facteurs dans la prédiction des fréquences symbiotiques d’une bactérie facultative dans les populations d’hôte. / Symbiotic associations between microorganisms and eukaryotes are ubiquitous in the living world. These microorganisms can play a crucial role in the evolution and ecology of their hosts by altering their phenotypes. Since these symbionts are usually heritable, extended phenotypes resulting from these symbiotic associations may be transmitted to subsequent generations. Some microorganisms will allow access to a food source; others will provide protection against natural enemies. Such symbiotic protection is found in the pea aphid (Acyrthosiphon pisum) in its interaction with the bacteria Hamiltonella defensa. This symbiosis provides the aphid with a resistance against the attack of its main parasitoid enemy: Aphidius ervi. The populations of the pea aphid, a legume pest insect, are structured in different biotypes (specialized populations on host plants). The distribution of this protective symbiont within pea aphid populations is singular: many individuals living on Medicago sativa (alfalfa), Ononis spinosa or Genista sagittalis and G. tinctoria host plant with H. defensa while it is rarely found in other populations of A. pisum biotypes such as Pisum sativum (pea) or Trifolium sp. (clover). We sought to understand why H. defensa was not found in every pea aphid biotype. In order to predict the dynamics of the protective symbiosis and the resistance potential in natural aphid populations, we focused on several ecological and evolutionary processes. We measured the consequence of parasitoid stress in the composition of symbiotic populations in three different biotypes (alfalfa, clover and pea) using a field approach. The distribution of H. defensa symbiont in populations dependent directly on the variability of the associated phenotype expressed in different populations. We identified the phenotypes associated with this symbiont in aphids from different biotypes, and the influence of the local context on these phenotypes. The lack of H. defensa in some individuals can be explained by the redundancy of a protective function already in place in these biotypes, such as an alternative symbiotic species or a strong immunity. Finally, we tested whether the symbiotic protections provided by two different bacteria in the pea aphid could be cumulated, thus creating super-organisms. My work highlights the many factors involved in predicting the frequencies of facultative symbiotic bacteria in host populations.
152

Déterminants du parasitisme larvaire du carpocapse du pommier au Sud Est de la France / Factors affecting larval codling moth parasitism in apple orchards of south-eastern France

Maalouly Matar, Mariline 19 November 2013 (has links)
Dans un contexte de réduction de la pression phytosanitaire sur les cultures il est importantde recourir à des méthodes permettant de réduire l’usage des pesticides pour lutter contreles ravageurs. Un des moyens consiste à réguler les ravageurs par leurs ennemis naturels(Lutte biologique par conservation). Le carpocapse du pommier, Cydia pomonella, est unravageur majeur des vergers de pommiers au Sud Est de la France. L’objectif de cette thèseétait de définir les déterminants du parasitisme larvaire de ce ravageur. Nous avonscaractérisé la composition de la communauté des parasitoïdes sur les larves diapausantes etde saison du carpocapse. Cette communauté est majoritairement représentée par troisespèces d’hyménoptères : Ascogaster quadridentata, Pristomerus vulnerator (parasitoïdesprimaires) et Perilampus trisits (parasitoïde secondaire d’A. quadridentata et de P.vulnerator) dans les zones étudiées. Nous avons déterminé les caractéristiques des pratiquesagricoles et des éléments semi-naturels au niveau du verger et du paysage qui affectent letaux de parasitisme et la composition de la communauté de parasitoïdes pour des larvesdiapausantes du carpocapse. Les haies brise-vent et les haies composites autour du vergersemblent jouer sur la composition de la communauté en favorisant par leur présence lesparasitoïdes primaires A. quadridentata et P. vulnerator par rapport au parasitoïdesecondaire P. tristis. La protection phytosanitaire au niveau du verger et du paysageenvironnant a un effet sur le taux de parasitisme. Le taux de parasitisme est plus élevé dansles vergers en agriculture biologique que dans les vergers conventionnels ainsi que dans lesvergers entourés d’une faible proportion de vergers conventionnels dans un voisinage de250 m. Nous avons étudié les dynamiques temporelles de la communauté des parasitoïdesdu carpocapse. Le taux de parasitisme a globalement augmenté au cours de la saison dedéveloppement du carpocapse et il est plus élevé lorsque l’on piège de jeunes larves dans lesfruits que des larves âgées dans les bandes cartonnées enroulées autour des troncs. Lacomposition de la communauté varie au cours du temps. La proportion relative duparasitoïde secondaire P. tristis augmente au cours de la saison en parallèle d’unediminution de la proportion relative d’A. quadridentata. Les émergences des adultes A.quadridentata sont de plus synchronisées avec celles des adultes carpocapses. Enfin, nousavons développé et testé une méthode de PCR-RFLP et des marqueurs ADN spécifiques pourdétecter et identifier les parasitoïdes du carpocapse. La PCR-RFLP permet d’identifier lesparasitoïdes adultes et leurs hôtes. Les marqueurs spécifiques permettent, en outre, ladétection de parasitoïdes dans les oeufs et les jeunes larves de carpocapse. Ces approchesmoléculaires ont également permis d’évaluer le parasitisme dans des populations naturellesde carpocapse et d’estimer les interactions trophiques au sein de la communauté desparasitoïdes / In the context of a more environment-friendly agriculture, it is important to design methodsthat enable us to reduce the use of pesticides to fight pests. One possible way consists inincreasing pest regulation by their natural enemies (Conservation biological control). Thecodling moth, Cydia pomonella, is a major insect pest of apple orchards in SoutheasternFrance. The aim of this thesis was to identify determinants of the larval parasitism of thispest. We characterized the composition of the parasitoid community on diapausing and nondiapausing codling moth larvae. This community is mainly represented by threeHymenoptera species: Ascogaster quadridentata, Pristomerus vulnerator (two primaryparasitoids) and Perilampus trisits (a secondary parasitoid of A. quadridentata and P.vulnerator) in the study sites. We determined the characteristics of agricultural practices andsemi- natural habitats at the orchard and landscape level that affect the parasitism rate andthe composition of the parasitoid community of diapausing codling moth larvae. Thewindbreak and spontaneous hedgerows around the orchard seemed to impact theparasitoid community composition by promoting, when present, the primary parasitoids A.quadridentata and P. vulnerator versus the secondary parasitoid P. tristis. Crop protectionpractices at the orchard and surrounding landscape levels affected the parasitism rate.Parasitism rate was higher in organic orchards than in conventional orchards as well as inorchards surrounded by a low proportion of conventional orchards in a 250 m vicinity. Wefurther studied the within-season temporal dynamics of the codling moth parasitoidcommunity. The parasitism rates globally increased along the season among cohorts ofmature codling moth larvae and were higher in young larvae trapped in fruits than in maturelarvae trapped in band traps around the tree trunks. The community composition variedalong the season. The relative proportion of the secondary parasitoid P. tristis increasedamong the codling moth cohorts whereas the proportion of A. quadridentata decreased.Furthermore, the emergences of adult A. quadridentata were synchronized with theemergences of the adult codling moths. Finally, we developed and tested a PCR -RFLPmethod and specific DNA markers to detect and identify parasitoids of the codling moth. ThePCR -RFLP method was powerful to identify adult parasitoids and their hosts. Specificprimers allowed detection of parasitoids in the eggs and young larvae of codling moth. TheseDNA-based techniques allowed molecular evaluation of parasitism in C. pomonella naturalpopulation and reconstructing quantitative food web of the parasitoid community.
153

Des mécanismes aux conséquences adaptatives du choix du partenaire sexuel pour la compatibilité génétique : exemple d'un hyménoptère parasitoïde soumis à la dépression de consanguinité / From mechanisms to adaptive consequences of mate choice for genetic compatibility : example of a hymenopteran parasitoid subject to inbreeding depression

Chuine, Anna 21 May 2014 (has links)
L’haplodiploïdie chez les hyménoptères leur confère une meilleure résistance aux effets délétères de la dépression de consanguinité. Cependant, certains hyménoptères ont un déterminisme du sexe particulier qui les rend sensibles à cette dépression. Chez ces espèces, le genre des individus dépend de la complémentarité des allèles à un locus donné, le single-locus Complementary Sex Determination (sl-CSD). Les oeufs non fécondés se développent en mâles haploïdes alors hémizygotes au locus de CSD. En revanche les oeufs fécondés donnent des femelles diploïdes s’ils sont hétérozygotes au locus du CSD mais deviennent des mâles diploïdes s’ils sont homozygotes pour ce même locus. Ces derniers sont d’autant plus fréquents dans les populations consanguines où le taux d’homozygotes est élevé. Or, les mâles diploïdes sont dans la majorité des cas non viables ou stériles. La production de tels mâles est de ce fait coûteuse pour les femelles. La faible viabilité des mâles diploïdes s’apparente alors à de la dépression de consanguinité. Par des approches liées à l’écologie comportementale et à l’écologie chimique le projet de thèse se concentre sur l’étude des coûts individuels générés par la production de mâles diploïdes et à l’évolution des comportements sélectionnés en réponse à ces coûts. Dans un premier temps, je me suis intéressée à la fitness des mâles diploïdes et aux répercussions de leur production sur les femelles de la population. Dans un second temps, j’ai étudié les comportements permettant de réduire les coûts de la production des mâles diploïdes. Les individus apparentés représentent les partenaires sexuels où le risque de produire des fils diploïdes est le plus élevé. De ce fait, les comportements d’évitement de la consanguinité devraient être sélectionnés dans ces populations / Haplodiploidy in hymenopterans offers a great resistance to the deleterious effect of inbreeding depression. However, some hymenopterans have a specific sex determination which drives them to this depression. Among those species, the sex of individuals depends on allele complementary at a particular locus; the single-locus Complementary Sex Determinatation (sl-CSD). Unfertilized eggs give birth to haploid males which are hemizygotes at the CSD locus. Conversely, fertilized eggs develop into females when heterozygote at the CSD locus but become diploid males when homozygote at the same locus. Diploid males are especially frequent in inbred populations with a high inbreeding rate. Yet diploid males are generally unviable or sterile. Production of such males is therefore costly for females. Reduced viability of diploid males is then similar to inbreeding depression. Linked with behavioural ecology and chemical ecology approaches, the PhD project starts by focusing on individual costs due to production of diploid males, and then on behaviours that have evolved in response to these costs. As a first step, the fitness of diploid males and its impact on females of the population have been measured. If they are unviable, their production is akin to female mortality. As a second step, we studied behaviours that reduce the cost of diploid male production. Related individuals are sexual partners that are most likely to father diploid sons. Therefore, behavioural inbreeding avoidance may be selected in such populations
154

Éléments de différenciation de la niche écologique chez deux coléoptères parasitoïdes en compétition : comportement et communautés bactériennes / Differenciation elements of ecological niches for two competiting coleopteran parasitoids : behavior and bacterial communities

Bili, Mikaël 18 December 2014 (has links)
Lorsque deux espèces exploitent la même niche écologique, elles entrent en compétition pour l'accès aux ressources. Or, un accès limité aux ressources réduit la fitness des individus. La compétition interspécifique va donc agir comme une pression de sélection qui peut mener à des modifications physiologiques ou comportementales pour partager les ressources, car si elles ne sont pas partagées la compétition entraînera le déplacement ou la disparition d'une des deux espèces. Aleochara bilineata et A. bipustulata sont deux coléoptères staphylins parasitoïdes qui s'attaquent à la mouche du chou Delia radicum. Elles ont des paramètres biologiques différents, notamment au niveau des traits d'histoire de vie (qui semblent avantager A. bipustulata) et du spectre d'hôtes (plus généraliste chez A. bipustulata). Ces deux espèces partagent cependant la même stratégie d'exploitation des hôtes et présentent l'originalité que la femelle pond ses œufs à proximité des hôtes et non à l'intérieur, ce qui les distingue des hyménoptères parasitoïdes qui font l'objet de nombreuses études. La larve Aleochara de premier stade est donc mobile et doit trouver et sélectionner elle même un hôte pour s'y développer. Il y a ainsi des possibilités d'adaptations comportementales à la compétition à la fois pour les adultes et les larves de premier stade. Dans ce projet de thèse, nous avons donc choisi d'explorer la niche écologique de ces deux espèces de façon originale en étudiant les modifications comportementales induites par la présence de compétiteurs à la fois chez les femelles adultes et les larves de premier stade. Nous avons également identifié les communautés bactériennes associées aux deux espèces en compétition mais aussi à leur hôte D. radicum et à un autre compétiteur parasitoïde, l'hyménoptère Trybliographa rapae, dans le but d'étudier ultérieurement les impacts des différents partenaires bactériens sur la niche écologique des deux espèces de coléoptères en compétition. Nos résultats montrent que les femelles de l'espèce spécialiste A. bilineata adaptent leurs comportements aux compétiteurs qu'elles rencontrent et sélectionnent les sites de ponte présentant les meilleures chances de succès parasitaire pour leurs larves. Par ailleurs, les larves de premier stade de l'espèce spécialiste dominent largement la compétition larvaire lorsqu'elles sont en compétition avec les larves de l'espèce généraliste. Enfin, les communautés bactériennes des deux espèces de coléoptères sont plus proches entre elles qu'avec les autres membres du réseau trophique étudiés mais comportent des différences à explorer. Ces résultats sont discutés dans le cadre de l'adaptation des choix comportementaux des individus d'une espèce spécialiste à la présence de compétiteurs généralistes et de la coexistence de ces deux espèces dans le milieu naturel. / When two species live in the same ecological niche, they compete for resources. Since a limited access to resources reduces fitness, interspecific competition represents a selection pressure that can lead to physiological or behavioral changes to share resources, because not sharing them will cause the displacement or disappearance of the weaker competitor. Aleochara bilineata and Aleochara bipustulata are two coleopteran parasitoids and attack the same host, the cabbage root fly Delia radicum. These two species have different biological parameters, particularly in their life history traits (which seem to favor A. bipustulata) and host spectrum (A. bipustulata is more generalist). These two species share the same strategy to exploit their host (idiobiont ectoparasitoid). Unlike parasitoid wasps (the object of most studies on parasitoids) coleopteran parasitoid females do not lay their eggs directly inside the host but in locations likely to harbour hosts. Aleochara first instars are mobile and need to find and select a host where they will develop. There is thus the possibility of behavioral adaptations to competition for both for adults and first instars. In this project, we have chosen to explore the ecological niche of these two species in an original way by studying behavioral changes induced by the presence of competitors both in adult females and first instars. We also studied bacterial communities associated to the two competing species but also those of their host D. radicum and of another competitor, the parasitoid wasp Trybliographa rapae, in order to later study the impacts of different bacterial partners in the ecological niche of the two beetle species in competition. Our results show that females of the specialist A. bilineata adapt their behavior to the competitors they face and select oviposition sites with the best probability of parasitism success. Moreover, first instars of A. bilineata dominate the larval competition when competing with larvae of the generalist A. bipustulata. Finally, bacterial communities of the two rove beetles are closer to each other than other members of the food web studied and their differences should be investigated. These results are discussed in the context of behavioral adaptation of specialists to the presence of generalist competitors and the coexistence of these two species in the field.
155

Biological control of California red scale, Aonidiella aurantii (Hemiptera: Diaspididae): spatial and temporal distribution of natural enemies, parasitism levels and climate effects

Sorribas Mellado, Juan José 24 February 2012 (has links)
En muchas áreas citrícolas del mundo el piojo rojo de California (PRC), Aonidiella aurantii (Hemiptera: Diaspididae), está considerado una plaga clave. En el Este de España se ha extendido durante las últimas décadas hasta cubrir una amplia extensión de cítricos. El control químico es difícil y frecuentemente es seguido de infestaciones recurrentes en poco tiempo, de la aparición de resistencias a diferentes productos usados para su control y de la eliminación de enemigos naturales en el campo. La mejora del manejo integrado y las técnicas de control biológico del PRC requieren conocer la composición de los enemigos naturales en cada zona climática, la fluctuación en su abundancia estacional, los niveles de parasitismo y depredación, como se distribuyen en la planta y como son afectados por el clima y el cambio climático. Aunque mucho se ha estudiado en laboratorio sobre los parasitoides Aphytis (Hymenoptera: Aphelinidae), los principales agentes de control del PRC, todavía no se conoce qué combinación de enemigos naturales consigue el mejor nivel de control en el campo, cómo varían los niveles de parasitismo a lo largo del año o cómo los parasitoides se distribuyen y compiten en el campo en relación con el clima. La acción de los Aphytis, ectoparasitoides, es complementada en muchas zonas citrícolas por los endoparasitoides Comperiella bifasciata y Encarsia perniciosi (Hymenoptera: Aphelinidae), los cuales pueden parasitar estadíos diferentes a Aphytis. Muy poco se sabe sobre el comportamiento y las respuestas biológicas bajo diferentes condiciones climáticas de estos endoparasitoides. Del mismo modo, el efecto de los depredadores sobre la población del piojo ha sido raramente estudiado. Actualmente, A. melinus, una especie introducida en el Este de España y el competidor superior, ha desplazado al parasitoide nativo A. chrysomphali de las zonas cálidas y secas ya que puede tolerar mejor las temperaturas cálidas del verano. / Sorribas Mellado, JJ. (2011). Biological control of California red scale, Aonidiella aurantii (Hemiptera: Diaspididae): spatial and temporal distribution of natural enemies, parasitism levels and climate effects [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/14794 / Palancia
156

Understorey management for the enhancement of populations of a leafroller (Lepidoptera: Tortricidae) parasitoid (Dolichogenidea tasmanica (Cameron)) in Canterbury, New Zealand apple orchards

Irvin, N. A. January 1999 (has links)
This study investigated understorey management in Canterbury, New Zealand, apple orchards for the enhancement of populations of Dolichogenidea tasmanica (Cameron) (Braconidae) for leafroller (Lepidoptera: Tortricidae) biological control. The first objective was to determine the influence of understorey plants on the abundance of D. tasmanica and leafroller parasitism, and to investigate the mechanisms behind this influence. The second was to determine the most suitable understorey plants in terms of their ability to enhance parasitoid abundance, leafroller parasitism, parasitoid longevity, parasitoid fecundity and its ability to not benefit leafroller. Results from three consecutive field trials showed that buckwheat (Fagopyrum esculentum Moench), coriander (Coriandrum sativum L.), alyssum (Lobularia maritima (L.) Desv), and, to a lesser extent, broad bean (Vicia faba L.), enhanced parasitoid abundance and leafroller parasitism. The mechanisms behind the effects of understorey plants had previously been unexplored. However, results here showed that it was the flowers or the buckwheat that 'attracted' the parasitoid to the plant and not the shelter, aphids or microclimate that the plant may also provide. Providing flowering plants in the orchard understorey also increased immigration of parasitoids and enhanced parasitoids and enhanced parasitoid longevity and fecundity in the laboratory. In contrast, the understorey plants had no influence on the female:male ratio of D. tasmanica. Although coriander enhanced leafroller parasitism three-fold in field experiments compared with controls, it failed to enhance the longevity of both sexes of D. tasmanica in the laboratory compared with water-only. Broad bean significantly enhanced parasitoid abundance three-fold and significantly increased parasitism from 0% to 75% compared with the controls on one leafroller release date. However, laboratory trials showed that of male D. tasmancia but it did not enhance female longevity. Also, female D. tasmanica foraging on broad bean produced a total of only three parasitoid cocoons, but this result was based on an overall 6.5% survival of larvae to pupae or to parasitoid cocoon. Furthermore, results suggested that extrafloral nectar secretion decreased as the plants matured. Phacelia (Phacelia tanacetifolia Benth.) did not significantly enhance parasitism rate in the field compared with controls, and numbers of D. tasmanica captured by suction sampling were significantly lower in phacelia treatments compared with alyssum, buckwheat and control plots. Also, laboratory experiments showed that survival of D. tasmanica on phacelia flowers was equivalent to that on water-only and significantly lower than on buckwheat. These results suggest that phacelia does not provide nectar to D. tasmanica, only pollen, and therefore is not a suitable understorey plant for D. tasmanica enhancement in orchards. Buckwheat and alyssum showed the most potential as understorey plants for the enhancement of natural enemies. Buckwheat not only increased numbers of D. tasmanica seven-fold, but also increased numbers of beneficial lacewings (Micromus tasmaniae (Walker)) and hover flies (Syrphidae) captured on yellow sticky traps compared with the controls. It significantly increased leafroller parasitism by D. tasmanica from 0% to 86% compared with the controls (on one date only), and in the laboratory enhanced D. tasmanica longevity and increased fecundity compared with water-only. Similarly, alyssum significantly increased parasitism rate compared with controls, and two-fold more D. tasmanica were suction sampled in these plots compared with controls. It also enhanced longevity of both sexes of D. tasmanica compared with water, and showed the most favourable characteristics in terms of being of no benefit to leafrollers. This is because it was not preferred over apple by leafroller larvae and when they were forced to feed on it, it caused high mortality (94.3%) and low pupal weight (15 mg). Furthermore, alyssum did not enhance the number of fertile eggs produced by adult leafrollers compared with water only. However, further research is required to address the overall effect of buckwheat and alyssum on crop production and orchard management, including effects on fruit yield and quality, frost risk, disease incidence, soil quality, weeds and other pests. Also, research into the ability of these plants to survive in the orchard with little maintenance, and into the optimal sowing rates, would be useful. Sampling natural populations of leafroller within each treatment showed that damage from leafrollers and the number of leafroller larvae were respectively 20.3% and 29.3% lower in the flowering treatments compared with the controls. Furthermore, field trials showed up to a six-fold increase in leafroller pupae in controls compared with buckwheat and alyssum. This suggests that increasing leafroller parasitism rate from understorey management in orchards will translate into lower pest populations, although neither larval numbers/damage nor pupal numbers differed significantly between treatments. Trapping D. tasmanica at a gradient of distances showed that this parasitoid travels into rows adjacent to buckwheat plots, indicating that growers may be able to sow flowering plants in every second or third row of the orchard, and still enhance leafroller biocontrol while minimising the adverse effects of a cover crop. Sowing buckwheat and alyssum in orchard understoreys may enhance biological control of apple pests in organic apple production and reduce the number of insect growth regulators applied in IFP programmes. However, the challenge still remains to investigate whether conservation biological control can reduce leafroller populations below economic thresholds.
157

Understorey management for the enhancement of populations of a leafroller (Lepidoptera: Tortricidae) parasitoid (Dolichogenidea tasmanica (Cameron)) in Canterbury, New Zealand apple orchards

Irvin, N. A. January 1999 (has links)
This study investigated understorey management in Canterbury, New Zealand, apple orchards for the enhancement of populations of Dolichogenidea tasmanica (Cameron) (Braconidae) for leafroller (Lepidoptera: Tortricidae) biological control. The first objective was to determine the influence of understorey plants on the abundance of D. tasmanica and leafroller parasitism, and to investigate the mechanisms behind this influence. The second was to determine the most suitable understorey plants in terms of their ability to enhance parasitoid abundance, leafroller parasitism, parasitoid longevity, parasitoid fecundity and its ability to not benefit leafroller. Results from three consecutive field trials showed that buckwheat (Fagopyrum esculentum Moench), coriander (Coriandrum sativum L.), alyssum (Lobularia maritima (L.) Desv), and, to a lesser extent, broad bean (Vicia faba L.), enhanced parasitoid abundance and leafroller parasitism. The mechanisms behind the effects of understorey plants had previously been unexplored. However, results here showed that it was the flowers or the buckwheat that 'attracted' the parasitoid to the plant and not the shelter, aphids or microclimate that the plant may also provide. Providing flowering plants in the orchard understorey also increased immigration of parasitoids and enhanced parasitoids and enhanced parasitoid longevity and fecundity in the laboratory. In contrast, the understorey plants had no influence on the female:male ratio of D. tasmanica. Although coriander enhanced leafroller parasitism three-fold in field experiments compared with controls, it failed to enhance the longevity of both sexes of D. tasmanica in the laboratory compared with water-only. Broad bean significantly enhanced parasitoid abundance three-fold and significantly increased parasitism from 0% to 75% compared with the controls on one leafroller release date. However, laboratory trials showed that of male D. tasmancia but it did not enhance female longevity. Also, female D. tasmanica foraging on broad bean produced a total of only three parasitoid cocoons, but this result was based on an overall 6.5% survival of larvae to pupae or to parasitoid cocoon. Furthermore, results suggested that extrafloral nectar secretion decreased as the plants matured. Phacelia (Phacelia tanacetifolia Benth.) did not significantly enhance parasitism rate in the field compared with controls, and numbers of D. tasmanica captured by suction sampling were significantly lower in phacelia treatments compared with alyssum, buckwheat and control plots. Also, laboratory experiments showed that survival of D. tasmanica on phacelia flowers was equivalent to that on water-only and significantly lower than on buckwheat. These results suggest that phacelia does not provide nectar to D. tasmanica, only pollen, and therefore is not a suitable understorey plant for D. tasmanica enhancement in orchards. Buckwheat and alyssum showed the most potential as understorey plants for the enhancement of natural enemies. Buckwheat not only increased numbers of D. tasmanica seven-fold, but also increased numbers of beneficial lacewings (Micromus tasmaniae (Walker)) and hover flies (Syrphidae) captured on yellow sticky traps compared with the controls. It significantly increased leafroller parasitism by D. tasmanica from 0% to 86% compared with the controls (on one date only), and in the laboratory enhanced D. tasmanica longevity and increased fecundity compared with water-only. Similarly, alyssum significantly increased parasitism rate compared with controls, and two-fold more D. tasmanica were suction sampled in these plots compared with controls. It also enhanced longevity of both sexes of D. tasmanica compared with water, and showed the most favourable characteristics in terms of being of no benefit to leafrollers. This is because it was not preferred over apple by leafroller larvae and when they were forced to feed on it, it caused high mortality (94.3%) and low pupal weight (15 mg). Furthermore, alyssum did not enhance the number of fertile eggs produced by adult leafrollers compared with water only. However, further research is required to address the overall effect of buckwheat and alyssum on crop production and orchard management, including effects on fruit yield and quality, frost risk, disease incidence, soil quality, weeds and other pests. Also, research into the ability of these plants to survive in the orchard with little maintenance, and into the optimal sowing rates, would be useful. Sampling natural populations of leafroller within each treatment showed that damage from leafrollers and the number of leafroller larvae were respectively 20.3% and 29.3% lower in the flowering treatments compared with the controls. Furthermore, field trials showed up to a six-fold increase in leafroller pupae in controls compared with buckwheat and alyssum. This suggests that increasing leafroller parasitism rate from understorey management in orchards will translate into lower pest populations, although neither larval numbers/damage nor pupal numbers differed significantly between treatments. Trapping D. tasmanica at a gradient of distances showed that this parasitoid travels into rows adjacent to buckwheat plots, indicating that growers may be able to sow flowering plants in every second or third row of the orchard, and still enhance leafroller biocontrol while minimising the adverse effects of a cover crop. Sowing buckwheat and alyssum in orchard understoreys may enhance biological control of apple pests in organic apple production and reduce the number of insect growth regulators applied in IFP programmes. However, the challenge still remains to investigate whether conservation biological control can reduce leafroller populations below economic thresholds.
158

Metapopulation theory in practice

Kean, J. M. January 1999 (has links)
A metapopulation is defined as a set of potential local populations among which dispersal may occur. Metapopulation theory has grown rapidly in recent years, but much has focused on the mathematical properties of metapopulations rather than their relevance to real systems. Indeed, barring some notable exceptions, metapopulation theory remains largely untested in the field. This thesis investigates the importance of metapopulation structure in the ‘real world’, firstly by building additional realism into metapopulation models, and secondly through a 3-year field study of a real metapopulation system. The modelling analyses include discrete-and continuous-time models, and cover single species, host-parasitoid, and disease-host systems, with and without stochasticity. In all cases, metapopulation structure enhanced species persistence in time, and often allowed long-term continuance of otherwise non-persistent interactions. Spatial heterogeneity and patterning was evident whenever local populations were stochastic or deterministically unstable in isolation. In metapopulations, the latter case often gave rise to self-organising spatial patterns. These were composed of spiral wave fronts (or ‘arcs of infection’ in disease models) of different sizes, and were related to the stability characteristics of local populations as well as the dispersal rates. There was no evidence for self-organising spatial patterns in the host-parasitoid system studied in the field (the weevil Sitona discoideus and its braconid parasitoid Microctonus aethiopoides), and a new model for the interaction suggested that this is probably due to the strong host density-dependence and stabilising parasitism acting on local populations. Dispersal may be important because of very high mortality in dispersing weevils, which may be related to the scarcity of their host plant in the landscape. If this is the case, the model suggested that local weevil density may be sensitive to the area of crop grown. Stochastic models showed that species in suitably large metapopulations may persist for very long times at relatively low overall density and with very low incidence of density-dependence. This suggests that metapopulation processes may explain a general inability to detect density-dependence in many real populations, and may also play an important part in the persistence of rare species. For host-parasitoid metapopulation models, persistence often depended on the way in which they were initialised. Initial conditions corresponding to a biological control release were the least likely to persist, and the maximum host suppression observed in this case was 84%, as compared with 60% for the corresponding non-spatial models and >90% often observed in the field. Metapopulation structure also allowed persistence of ‘boom-bust’ disease models, although the dynamics of these were particularly dependent on assumptions about what happens to disease classes at very low densities. Models assuming infinitely divisible units of density, models incorporating a non-zero extinction threshold, and individual-based models all gave differing results in terms of disease persistence and rate of spatial spread. Fitting models to overall metapopulation dynamics often gave misleading results in terms of underlying local dynamics, emphasising the need to sample real populations at an appropriate scale when seeking to understand their behaviour.
159

Effet de l'écologie d'un hôte sur l'évolution de son principal parasitoïde

Dion, Emilie 31 May 2011 (has links) (PDF)
Chaque être vivant interagit avec une ou plusieurs espèces et est membre d'un réseau complexe d'interactions qui influencent les traits des individus, exerçant de fait des pressions sélectives sur leurs populations. Chaque espèce étant dépendante de la nature et de la diversité des interactions dans lesquelles elle est impliquée, son évolution est donc en partie liée aux autres espèces avec lesquelles elle interagit. Un hôte et son parasitoïde vivent dans une dynamique coévolutive, prenant part à une véritable 'course aux armements', où les différentes stratégies d'attaque peuvent être sélectionnés chez le parasitoïde en réponse aux différentes formes de défenses chez l'hôte. Ce dernier interagit également avec d'autres organismes qui modifient ses traits, impactant les aptitudes du parasitoïde, perturbant leur dynamique coévolutive. L'objectif de ce travail est ainsi d'identifier l'influence du réseau d'interactions du puceron du pois Acyrthosiphon pisum sur l'évolution et l'écologie des populations de son principal parasitoïde Aphidius ervi. Le puceron du pois est lui-même parasite de sa plante hôte, leur coévolution aboutissant à une spécialisation de cet aphide cette espèce hôte végétale. Les populations de pucerons sont donc structurées en races d'hôtes sympatriques, divergeant génétiquement et phénotypiquement. Notre étude montre une absence de structuration génétique des populations de parasitoïdes selon les races d'hôte. A. ervi exploite indifféremment les A. pisum issus de différentes plantes hôtes, excluant la présence d'un effet cascade associé à la spécialisation alimentaire chez ce puceron. La dispersion et le caractère généraliste du parasitoïde semblent favoriser les flux de gènes entre les différents éléments d'un paysage agricole. A. pisum peut également abriter le symbiote Hamiltonella defensa qui lui confère une résistance à A. ervi. Ces microorganismes symbiotiques induisent une réduction des défenses comportementales chez les pucerons porteurs. Cette diminution de l'expression des comportements défensifs favorise à la fois le puceron et son symbiote car elle réduit les coûts associés à ces comportements. Enfin, une évolution expérimentale sur des populations de parasitoïdes soumises à des populations d'hôtes portant H. defensa (résistantes) ou non (sensibles) montre une adaptation des parasitoïdes soumis aux hôtes résistants. Cette adaptation s'accompagne d'une réduction de la variabilité génétique dans les populations exposées à la résistance. On observe également une divergence génétique entre les populations exposées ou non à la résistance conférée par le symbiote, H. defensa. Cette expérimentation met en évidence le potentiel évolutif des populations d'A. ervi et donc leurs capacités d'adaptation face à des pucerons résistants. Les intérêts fondamentaux et appliqués de ces travaux sont discutés et replacés dans un contexte général.
160

Räumlich-zeitliche Auswirkungen der Landnuzung auf die Diversität von Bienen und Wespen. / Spatiotemporally-mediated effects of land use on the biodiversity of cavity-nesting Hymenoptera in coastal Ecuador

Tylianakis, Jason 19 January 2006 (has links)
No description available.

Page generated in 0.0691 seconds