• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 21
  • 4
  • 2
  • Tagged with
  • 82
  • 82
  • 38
  • 32
  • 18
  • 17
  • 17
  • 17
  • 16
  • 15
  • 14
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Regularity results for quasilinear elliptic systems of power-law growth in nonsmooth domains boundary, transmission and crack problems /

Knees, Dorothee, January 2005 (has links) (PDF)
Stuttgart, Univ., Diss., 2004.
32

Shape optimization and optimal boundary control for high intensity focused ultrasound (HIFU)

Veljović, Slobodan January 2010 (has links)
Erlangen, Nürnberg, Univ., Diss., 2010
33

Eine cache-optimale Implementierung der Finite-Elemente-Methode

Günther, Frank. January 2004 (has links) (PDF)
München, Techn. Universiẗat, Diss., 2004.
34

Multiskalen-basierte Finite-Differenzen-Verfahren auf adaptiven dünnen Gittern

Koster, Frank. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2002--Bonn.
35

Global Existence and Uniqueness Results for Nematic Liquid Crystal and Magnetoviscoelastic Flows / Globale Existenz- und Eindeutigkeitsresultate für nematische Flüssigkristall- und magnetoviskoelastische Flüsse

Kortum, Joshua January 2022 (has links) (PDF)
Liquid crystals and polymeric fluids are found in many technical applications with liquid crystal displays probably being the most prominent one. Ferromagnetic materials are well established in industrial and everyday use, e.g. as magnets in generators, transformers and hard drive disks. Among ferromagnetic materials, we find a subclass which undergoes deformations if an external magnetic field is applied. This effect is exploited in actuators, magnetoelastic sensors, and new fluid materials have been produced which retain their induced magnetization during the flow. A central issue consists of a proper modelling for those materials. Several models exist regarding liquid crystals and liquid crystal flows, but up to now, none of them has provided a full insight into all observed effects. On materials encompassing magnetic, elastic and perhaps even fluid dynamic effects, the mathematical literature seems sparse in terms of models. To some extent, one can unify the modeling of nematic liquid crystals and magnetoviscoelastic materials employing a so-called energetic variational approach. Using the least action principle from theoretical physics, the actual task reduces to finding appropriate energies describing the observed behavior. The procedure leads to systems of evolutionary partial differential equations, which are analyzed in this work. From the mathematical point of view, fundamental questions on existence, uniqueness and stability of solutions remain unsolved. Concerning the Ericksen-Leslie system modelling nematic liquid crystal flows, an approximation to this model is given by the so-called Ginzburg-Landau approximation. Solutions to the latter are intended to approximately represent solutions to the Ericksen-Leslie system. Indeed, we verify this presumption in two spatial dimensions. More precisely, it is shown that weak solutions of the Ginzburg-Landau approximation converge to solutions of the Ericksen-Leslie system in the energy space for all positive times of evolution. In order to do so, theory for the Euler equations invented by DiPerna and Majda on weak compactness and concentration measures is used. The second part of the work deals with a system of partial differential equations modelling magnetoviscoelastic fluids. We provide a well-posedness result in two spatial dimensions for large energies and large times. Along the verification of that conclusion, existing theory on the Ericksen-Leslie system and the harmonic map flow is deployed and suitably extended. / Flüssigkristalle und polymere Flüssigkeiten finden sich in vielen technischen Anwendungen, wobei die Liquid Crystal Displays (kurz LCDs) wahrscheinlich die bekanntesten sind. Ebenso haben viele ferromagnetische Materialien Gebrauch in der Technologie gefunden, zum Beispiel als Generatoren, Transformatoren und Hard Drive Disks. Bei einigen ferromagnetischen Materialien führt die äußere Anwendung eines Magnetfeldes zu Verformungen. Dieser Effekt wird z. B. in Aktoren ausgenutzt und es wurden neue Flüssigkeiten gefunden, welche ihre eingangs induzierte Magnetisierung beibehalten. Bis heute besteht ein Problem darin, derartige Materialien korrekt zu modellieren. Für Flüssigkristalle und Flüssigkristallströmungen existieren mehrere Modelle, aber bisher hat keines von ihnen einen vollständigen Einblick in alle beobachteten Effekte liefern können. Zu Materialien, welche magnetischen, elastischen und vielleicht sogar fluiddynamischen Effekten unterliegen, ist die Literatur bezüglich der Modellierung auf mathematischer Seite eher spärlich. Bis zu einem gewissen Grad kann man die Modellierung von Flüssigkristallen und magnetoviskoelastischen Materialien durch einen Variationsansatz für das Wirkungsfunktional vereinheitlichen. Verwendet man das Prinzip der kleinsten Wirkung aus der theoretischen Physik, reduziert sich die eigentliche Aufgabe darauf, geeignete Energien zu finden, um das beobachtete Verhalten zu beschreiben. Das Verfahren führt zu Systemen zeitabhängiger partieller Differentialgleichungen, welche in dieser Arbeit betrachtet werden. Aus mathematischer Sicht bleiben grundsätzliche Fragen zu Existenz, Eindeutigkeit und Stabilität von Lösungen offen. Bezüglich des Ericksen-Leslie-Modells für nematische Flüssigkristalle ist eine Approximation dieses Modells durch die sogenannte Ginzburg-Landau-Näherung gegeben. In dieser Arbeit wird bewiesen, dass Lösungen des letzteren Modells gegen Lösungen des erstgenannten in zwei Raumdimensionen konvergieren. Präzi- se ausgedrückt wird gezeigt, dass schwache Lösungen des Ginzburg-Landau-Systems auf beliebig großen Zeitintervallen gegen Lösungen des Ericksen-Leslie-Systems konvergieren unter der Annahme, dass die Energie des physikalischen Systems beschränkt ist. Dazu wird die von DiPerna und Majda entwickelte Theorie für die Euler-Gleichungen zu Konzentrationen unter schwacher Konvergenz verwendet. Der zweite Teil der Arbeit beschäftigt sich mit einem System partieller Differentialgleichungen zur Modellierung magnetoviskoelastischer Flüssigkeiten. Wir zeigen, dass in zwei Raumdimensionen in gewissem Sinne ein wohlgestelltes Problem für beliebig große Energien und Zeiten vorliegt. Für den Beweis dieses Resultats verwenden und erweitern wir die bestehende Theorie zum Ericksen-Leslie-System und zum Wärmefluss harmonischer Abbildungen.
36

Penalized Least Squares Methoden mit stückweise polynomialen Funktionen zur Lösung von partiellen Differentialgleichungen / Penalized least squares methods with piecewise polynomial functions for solving partial differential equations

Pechmann, Patrick R. January 2008 (has links) (PDF)
Das Hauptgebiet der Arbeit stellt die Approximation der Lösungen partieller Differentialgleichungen mit Dirichlet-Randbedingungen durch Splinefunktionen dar. Partielle Differentialgleichungen finden ihre Anwendung beispielsweise in Bereichen der Elektrostatik, der Elastizitätstheorie, der Strömungslehre sowie bei der Untersuchung der Ausbreitung von Wärme und Schall. Manche Approximationsaufgaben besitzen keine eindeutige Lösung. Durch Anwendung der Penalized Least Squares Methode wurde gezeigt, dass die Eindeutigkeit der gesuchten Lösung von gewissen Minimierungsaufgaben sichergestellt werden kann. Unter Umständen lässt sich sogar eine höhere Stabilität des numerischen Verfahrens gewinnen. Für die numerischen Betrachtungen wurde ein umfangreiches, effizientes C-Programm erstellt, welches die Grundlage zur Bestätigung der theoretischen Voraussagen mit den praktischen Anwendungen bildete. / This work focuses on approximating solutions of partial differential equations with Dirichlet boundary conditions by means of spline functions. The application of partial differential equations concerns the fields of electrostatics, elasticity, fluid flow as well as the analysis of the propagation of heat and sound. Some approximation problems do not have a unique solution. By applying the penalized least squares method it has been shown that uniqueness of the solution of a certain class of minimizing problems can be guaranteed. In some cases it is even possible to reach higher stability of the numerical method. For the numerical analysis we have developed an extensive and efficient C code. It serves as the basis to confirm theoretical predictions with practical applications.
37

Proximal methods in medical image reconstruction and in nonsmooth optimal control of partial differential equations / Proximale Methoden in der medizinischen Bildrekonstruktion und in der nicht-glatten optimalen Steuerung von partiellen Differenzialgleichungen

Schindele, Andreas January 2016 (has links) (PDF)
Proximal methods are iterative optimization techniques for functionals, J = J1 + J2, consisting of a differentiable part J2 and a possibly nondifferentiable part J1. In this thesis proximal methods for finite- and infinite-dimensional optimization problems are discussed. In finite dimensions, they solve l1- and TV-minimization problems that are effectively applied to image reconstruction in magnetic resonance imaging (MRI). Convergence of these methods in this setting is proved. The proposed proximal scheme is compared to a split proximal scheme and it achieves a better signal-to-noise ratio. In addition, an application that uses parallel imaging is presented. In infinite dimensions, these methods are discussed to solve nonsmooth linear and bilinear elliptic and parabolic optimal control problems. In particular, fast convergence of these methods is proved. Furthermore, for benchmarking purposes, truncated proximal schemes are compared to an inexact semismooth Newton method. Results of numerical experiments are presented to demonstrate the computational effectiveness of our proximal schemes that need less computation time than the semismooth Newton method in most cases. Results of numerical experiments are presented that successfully validate the theoretical estimates. / Proximale Methoden sind iterative Optimierungsverfahren für Funktionale J = J1 +J2, die aus einem differenzierbaren Teil J2 und einem möglicherweise nichtdifferenzierbaren Teil bestehen. In dieser Arbeit werden proximale Methoden für endlich- und unendlichdimensionale Optimierungsprobleme diskutiert. In endlichen Dimensionen lösen diese `1- und TV-Minimierungsprobleme welche erfolgreich in der Bildrekonstruktion der Magnetresonanztomographie (MRT) angewendet wurden. Die Konvergenz dieser Methoden wurde in diesem Zusammenhang bewiesen. Die vorgestellten proximalen Methoden wurden mit einer geteilten proximalen Methode verglichen und konnten ein besseres Signal-Rausch-Verhältnis erzielen. Zusätzlich wurde eine Anwendung präsentiert, die parallele Bildgebung verwendet. Diese Methoden werden auch für unendlichdimensionale Probleme zur Lösung von nichtglatten linearen und bilinearen elliptischen und parabolischen optimalen Steuerungsproblemen diskutiert. Insbesondere wird die schnelle Konvergenz dieser Methoden bewiesen. Außerdem werden abgeschnittene proximale Methoden mit einem inexakten halbglatten Newtonverfahren verglichen. Die numerischen Ergebnisse demonstrieren die Effektivität der proximalen Methoden, welche im Vergleich zu den halbglatten Newtonverfahren in den meisten Fällen weniger Rechenzeit benötigen. Zusätzlich werden die theoretischen Abschätzungen bestätigt.
38

Entwicklung stochastischer Charakteristika der FE-Lösung von Wärmeleitproblemen mit zufälligem Koeffizienten

Hähnel, Holger, vom Scheidt, Jürgen 16 May 2008 (has links) (PDF)
Untersucht werden instationäre Wärmeleitprobleme mit gemischen Randbedingungen 2. und 3. Art. Die Probleme weisen als stochastische Einflussgröße einen zufälligen Wärmeleitkoeffizienten auf. Aus einer Ortsdiskretisierung nach dem Vorbild der Methode der finiten Elemente (FEM) geht ein System gewöhnlicher Differentialgleichungen mit zufälliger Systemmatrix hervor. Unter der Annahme kleiner stochastischer Schwankungen lässt sich die Lösung der zugehörigen Anfangswertaufgabe als Entwicklung bezüglich eines Störungsparameters darstellen. Dies ermöglicht die genäherte Berechnung von Erwartungswert- und Korrelationsfunktion der approximativen Lösung des ursprünglichen Randanfangswertproblems. Konkrete Berechnungen werden für ein eindimesionales Wärmeleitproblem angegeben, wobei der Wärmeleitkoeffizient als zufällige Funktion sowie als Zufallsgröße modelliert wird.
39

Efficient Numerical Solution of Large Scale Algebraic Matrix Equations in PDE Control and Model Order Reduction

Saak, Jens 21 October 2009 (has links) (PDF)
Matrix Lyapunov and Riccati equations are an important tool in mathematical systems theory. They are the key ingredients in balancing based model order reduction techniques and linear quadratic regulator problems. For small and moderately sized problems these equations are solved by techniques with at least cubic complexity which prohibits their usage in large scale applications. Around the year 2000 solvers for large scale problems have been introduced. The basic idea there is to compute a low rank decomposition of the quadratic and dense solution matrix and in turn reduce the memory and computational complexity of the algorithms. In this thesis efficiency enhancing techniques for the low rank alternating directions implicit iteration based solution of large scale matrix equations are introduced and discussed. Also the applicability in the context of real world systems is demonstrated. The thesis is structured in seven central chapters. After the introduction chapter 2 introduces the basic concepts and notations needed as fundamental tools for the remainder of the thesis. The next chapter then introduces a collection of test examples spanning from easily scalable academic test systems to badly conditioned technical applications which are used to demonstrate the features of the solvers. Chapter four and five describe the basic solvers and the modifications taken to make them applicable to an even larger class of problems. The following two chapters treat the application of the solvers in the context of model order reduction and linear quadratic optimal control of PDEs. The final chapter then presents the extensive numerical testing undertaken with the solvers proposed in the prior chapters. Some conclusions and an appendix complete the thesis.
40

MPC/LQG-Based Optimal Control of Nonlinear Parabolic PDEs

Hein, Sabine 03 March 2010 (has links) (PDF)
The topic of this thesis is the theoretical and numerical research of optimal control problems for uncertain nonlinear systems, described by semilinear parabolic differential equations with additive noise, where the state is not completely available. Based on a paper by Kazufumi Ito and Karl Kunisch, which was published in 2006 with the title "Receding Horizon Control with Incomplete Observations", we analyze a Model Predictive Control (MPC) approach where the resulting linear problems on small intervals are solved with a Linear Quadratic Gaussian (LQG) design. Further we define a performance index for the MPC/LQG approach, find estimates for it and present bounds for the solutions of the underlying Riccati equations. Another large part of the thesis is devoted to extensive numerical studies for an 1+1- and 3+1-dimensional problem to show the robustness of the MPC/LQG strategy. The last part is a generalization of the MPC/LQG approach to infinite-dimensional problems.

Page generated in 0.0842 seconds