21 |
Computação em grupos de permutação finitos com GAP / Computation in finite permutation groups with GAPRomero, Angie Tatiana Suárez 05 March 2018 (has links)
Submitted by JÚLIO HEBER SILVA (julioheber@yahoo.com.br) on 2018-03-14T17:24:36Z
No. of bitstreams: 2
Dissertação - Angie Tatiana Suárez Romero - 2018.pdf: 2209912 bytes, checksum: 0ad7489cc1457ed892d896b3aa2f4885 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-03-15T11:07:28Z (GMT) No. of bitstreams: 2
Dissertação - Angie Tatiana Suárez Romero - 2018.pdf: 2209912 bytes, checksum: 0ad7489cc1457ed892d896b3aa2f4885 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-03-15T11:07:28Z (GMT). No. of bitstreams: 2
Dissertação - Angie Tatiana Suárez Romero - 2018.pdf: 2209912 bytes, checksum: 0ad7489cc1457ed892d896b3aa2f4885 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2018-03-05 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / Cayley’s theorem allows us to represent a finite group as a permutations group of a
finite set of points. In general, an action of a finite group G in a finite set, is described
as an application of the group G in the symmetric group Sym(Ω). In this work we
will describe some algorithms for permutation groups and implement them in the
GAP system. We begin by describing a way of representing groups in computers,
we calculate orbits, stabilizers in the basic form and by means of Schreier’s vectors.
Later we make algorithms to work with primitive and transitive groups, thus arriving
at the concept of BSGS, base and strong generator set, for permutation groups with
the algorithm SCHREIERSIMS. In the end we work with group homomorphisms,
we find the elements of a group through backtrack searches. / O Teorema de Cayley nos permite representar um grupo finito como grupo de
permutações de um conjunto finito de pontos. De forma geral, uma ação de um grupo
finito G em um conjunto finito Ω, é descrita como uma aplicação do grupo G no grupo
simétrico Sym(Ω). Neste trabalho vamos descrever alguns algoritmos para grupos
de permutação e implementa-los no sistema GAP. Começamos descrevendo uma
maneira de representar grupos em computadores, calculamos órbitas, estabilizadores
na forma básica e por meio de vetores de Schreier. Posteriormente fazemos algoritmos
para trabalhar com grupos transitivos e primitivos, chegando assim ao conceito de,
base e conjunto gerador forte (BSGS) para grupos de permutação finitos com o
algoritmo SCHREIER-SIMS. No final trabalhamos com homomorfismos de grupos
e encontramos os elementos de um grupo mediante pesquisas backtrack.
|
22 |
Edge-transitive homogeneous factorisations of complete graphsLim, Tian Khoon January 2004 (has links)
[Formulae and special characters can only be approximated here. Please see the pdf version of the abstract for an accurate reproduction.] This thesis concerns the study of homogeneous factorisations of complete graphs with edge-transitive factors. A factorisation of a complete graph Kn is a partition of its edges into disjoint classes. Each class of edges in a factorisation of Kn corresponds to a spanning subgraph called a factor. If all the factors are isomorphic to one another, then a factorisation of Kn is called an isomorphic factorisation. A homogeneous factorisation of a complete graph is an isomorphic factorisation where there exists a group G which permutes the factors transitively, and a normal subgroup M of G such that each factor is M-vertex-transitive. If M also acts edge-transitively on each factor, then a homogeneous factorisation of Kn is called an edge-transitive homogeneous factorisation. The aim of this thesis is to study edge-transitive homogeneous factorisations of Kn. We achieve a nearly complete explicit classification except for the case where G is an affine 2-homogeneous group of the form ZR p x G0, where G0 is less than or equal to ΓL(1,p to the power of R). In this case, we obtain necessary and sufficient arithmetic conditions on certain parameters for such factorisations to exist, and give a generic construction that specifies the homogeneous factorisation completely, given that the conditions on the parameters hold. Moreover, we give two constructions of infinite families of examples where we specify the parameters explicitly. In the second infinite family, the arc-transitive factors are generalisations of certain arc-transitive, self-complementary graphs constructed by Peisert in 2001.
|
23 |
O teorema de enumeração de Polya, generalizações e aplicações / Polya's enmeration theorem, generalizations and applicationsBovo, Eduardo 29 April 2005 (has links)
Orientador: Jose Plinio de Oliveira Santos / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-05T07:47:09Z (GMT). No. of bitstreams: 1
Bovo_Eduardo_M.pdf: 3427598 bytes, checksum: 757ebc9282f3c010e155c26ec46fb42a (MD5)
Previous issue date: 2005 / Resumo: Neste trabalho são desenvolvidos conceitos algébricos, analíticos e combinatórios que culminam no Teorema de Enumeração de Pólya; bem como são fornecidas muitas de suas aplicações em enumeração de padrões (grafos, colorações geométricas, tipos e permutações, etc). Tal teorema clássico, que tem suas bases em Teoria dos Grupos, utiliza fundamentalmente o conceito de funções geradoras, o que permite grande generalidade e computabilidade de resultados. Finalmente são apresentadas algumas generalizações do resultado principal, aplicações destas e também uma importante interpretação probabilística / Abstract: In this dissertation we present algebraic, analytic and combinatorial results that are used to prove Polya's Enumeration Theorem. Applications to counting patterns (graphs, colourings, permutations, etc.) are given. This classical Theorem has its foundations on the theory of groups and uses, mainly, the concept of generating functions which allows great generality and computability of results. At the end some generalizations of the main theorem are given including applications and, aiso, an important probabilistic interpretation / Mestrado / Combinatoria Enumerativa / Mestre em Matemática Aplicada
|
24 |
Quadrados latinos e aplicações / Latin squares and applicationsAlegri, Mateus 08 April 2006 (has links)
Orientador: Jose Plinio de Oliveira Santos / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatisitca e Computação Cientifica / Made available in DSpace on 2018-08-06T23:31:58Z (GMT). No. of bitstreams: 1
Alegri_Mateus_M.pdf: 858876 bytes, checksum: ff48274e36a7a886794139ed3337dee8 (MD5)
Previous issue date: 2006 / Resumo: Neste trabalho estudaremos a estrutura dos quadrados latinos sob
ponto de vista da matemática discreta. Faremos uma série de equivalências
com outras estruturas tais como Teoria dos Grafos, Grupos, e sempre enfocando questões enumerativas. Certas propriedades de quadrados latinos, tais como ortogonalidade vão trabalhadas. E encerraremos com aplicações a teoria dos códigos algébricos. Palavras chave: quadrados latinos; Quadrados latinos mutualmente ortogonais; MOLS; hipercubos; códigos MDS / Abstract: In this work, we study the structure of latin squares on the discrete mathematics viewpoint. We do a lot of equivalences with some others
structures, such that Graph theory, Groups, e ever we loking enumeration
questions. Certains proprieties of latin squares, such ortogonality will be
worked. And we finish with aplications to the Algebric Code Theory / Mestrado / Matematica Discreta / Mestre em Matemática Aplicada
|
25 |
A parallel algorithm to solve the mathematical problem "double coset enumeration of S₂₄ over M₂₄"Harris, Elena Yavorska 01 January 2003 (has links)
This thesis presents and evaluates a new parallel algorithm that computes all single cosets in the double coset M₂₄ P M₂₄, where P is a permutation on n points of a certain cycle structure, and M₂₄ is the Mathieu group related to a Steiner system S(5, 8, 24) as its automorphism group. The purpose of this work is not to replace the existing algorithms, but rather to explore a possibility to extend calculations of single cosets beyond the limits encountered when using currently available methods.
|
26 |
On Steinhaus Sets, Orbit Trees and Universal Properties of Various Subgroups in the Permutation Group of Natural NumbersXuan, Mingzhi 08 1900 (has links)
In the first chapter, we define Steinhaus set as a set that meets every isometric copy of another set at exactly one point. We show that there is no Steinhaus set for any four-point subset in a plane.In the second chapter, we define the orbit tree of a permutation group of natural numbers, and further introduce compressed orbit trees. We show that any rooted finite tree can be realized as a compressed orbit tree of some permutation group. In the third chapter, we investigate certain classes of closed permutation groups of natural numbers with respect to their universal and surjectively universal groups. We characterize two-sided invariant groups, and prove that there is no universal group for countable groups, nor universal group for two-sided invariant groups in permutation groups of natural numbers.
|
27 |
Proposta de constelações de sinais para o codigo genetico / Proposal of signal constellations for the genetic codeAlbuquerque, Julio Cesar Holanda de 12 August 2018 (has links)
Orientador: Reginaldo Palazzo Junior / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-12T13:34:06Z (GMT). No. of bitstreams: 1
Albuquerque_JulioCesarHolandade_M.pdf: 1364323 bytes, checksum: 01181adde228aa4d914d7edabdde4aca (MD5)
Previous issue date: 2008 / Resumo: A proposta deste trabalho é apresentar uma abordagem aos processos genéticos e moleculares, utilizando a teoria de comunicações e codificação na modelagem do dogma central da biologia molecular. A partir desta modelagem associamos o código genético a um modulador de um sistema de comunicação. Mais especificamente, tal procedimento consiste em construir uma constelação de sinais a partir dos subgrupos de S3 e S4 baseado no código genético. Considerando este método algébrico de construção de sinais, propomos duas possíveis constelações de sinais para o código genético. A representação do código genético em constelações de sinais correlacionadas deu origem à idéia de "constelação de sinais concatenadas", idéia inovadora na teoria de comunicação e codificação. As constelações de sinais concatenadas possui a propriedade de correção de erros, consistindo de novos conceitos úteis para utilização na teoria da comunicação e codificação. Por outro lado, estas representações do código genético não são únicas pois, até o presente momento, desconhecemos uma álgebra que descreva o código genético juntamente com as suas partições geradas pelos aminoácidos. / Abstract: The purpose of this work is to present an approach to the genetic and molecular processes by use of the communication and coding theory in modelling the central dogma of the molecular biology. From this modelling we associate the genetic code to a modulator in the communication system. More specifically, such a procedure consists is in the construction of a signal constellation by use of the S3 and S4 permutation subgroups based on the code genetic. By considering this algebraic method of signal design, we propose two possible signal constellations to the genetic code. The representation of the genetic code as correlated signal constellations provides the idea idea of "concatenated signal constellation", an innovative idea in communication and coding theory. The concatenated signal constellations have the property of error-correction, a new concept being introduced. On the other hand, these representations of the genetic code are not unique for currently, we do not know an algebraic structure capable of describing the genetic code together with the partitioning generated by the amino acids. / Mestrado / Telecomunicações e Telemática / Mestre em Engenharia Elétrica
|
28 |
Automatically presentable structuresRas, Charl John 03 September 2012 (has links)
M.Sc. / In this thesis we study some of the propertie of a clas called automatic structures. Automatic structures are structures that can be encoded (in some defined way) into a set of regular languages. This encoding allows one to prove many interesting properties about automatic structures, including decidabilty results.
|
29 |
Symmetric representations of elements of finite groupsKasouha, Abeir Mikhail 01 January 2004 (has links)
This thesis demonstrates an alternative, concise but informative, method for representing group elements, which will prove particularly useful for the sporadic groups. It explains the theory behind symmetric presentations, and describes the algorithm for working with elements represented in this manner.
|
30 |
Random generation and chief length of finite groupsMenezes, Nina E. January 2013 (has links)
Part I of this thesis studies P[subscript(G)](d), the probability of generating a nonabelian simple group G with d randomly chosen elements, and extends this idea to consider the conditional probability P[subscript(G,Soc(G))](d), the probability of generating an almost simple group G by d randomly chosen elements, given that they project onto a generating set of G/Soc(G). In particular we show that for a 2-generated almost simple group, P[subscript(G,Soc(G))](2) 53≥90, with equality if and only if G = A₆ or S₆. Furthermore P[subscript(G,Soc(G))](2) 9≥10 except for 30 almost simple groups G, and we specify this list and provide exact values for P[subscript(G,Soc(G))](2) in these cases. We conclude Part I by showing that for all almost simple groups P[subscript(G,Soc(G))](3)≥139/150. In Part II we consider a related notion. Given a probability ε, we wish to determine d[superscript(ε)] (G), the number of random elements needed to generate a finite group G with failure probabilty at most ε. A generalisation of a result of Lubotzky bounds d[superscript(ε)](G) in terms of l(G), the chief length of G, and d(G), the minimal number of generators needed to generate G. We obtain bounds on the chief length of permutation groups in terms of the degree n, and bounds on the chief length of completely reducible matrix groups in terms of the dimension and field size. Combining these with existing bounds on d(G), we obtain bounds on d[superscript(ε)] (G) for permutation groups and completely reducible matrix groups.
|
Page generated in 0.2196 seconds