• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 12
  • 11
  • 7
  • 7
  • 5
  • 4
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 113
  • 31
  • 27
  • 27
  • 20
  • 18
  • 18
  • 13
  • 12
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Categorization in IT and PFC: Model and Experiments

Knoblich, Ulf, Freedman, David J., Riesenhuber, Maximilian 18 April 2002 (has links)
In a recent experiment, Freedman et al. recorded from inferotemporal (IT) and prefrontal cortices (PFC) of monkeys performing a "cat/dog" categorization task (Freedman 2001 and Freedman, Riesenhuber, Poggio, Miller 2001). In this paper we analyze the tuning properties of view-tuned units in our HMAX model of object recognition in cortex (Riesenhuber 1999) using the same paradigm and stimuli as in the experiment. We then compare the simulation results to the monkey inferotemporal neuron population data. We find that view-tuned model IT units that were trained without any explicit category information can show category-related tuning as observed in the experiment. This suggests that the tuning properties of experimental IT neurons might primarily be shaped by bottom-up stimulus-space statistics, with little influence of top-down task-specific information. The population of experimental PFC neurons, on the other hand, shows tuning properties that cannot be explained just by stimulus tuning. These analyses are compatible with a model of object recognition in cortex (Riesenhuber 2000) in which a population of shape-tuned neurons provides a general basis for neurons tuned to different recognition tasks.
22

Pasivní PFC filtry pro spínané napájecí zdroje / Passive PFC filters for SMPS

Matejov, Michal January 2008 (has links)
This work deals with theory of switched power sources. There is description of the ways for connection and their practice purposes. In the next parts there are defined requirements on input supply circuit for these sources, especially for the form of output current. There are mentioned the basic connecting methods of PFC circuits and these methods modify the output current to meet the requirements of specification ČSN EN 61000- 3- 2. In the next parts there are shown simulations of PFC circuits made by Pspice application. Further is the basic description of sources construction for the sources which were used for testing and measuring. The final part deals with evaluation of the measuring on the chosen computer’s source. It compares between the manufacturer’s solutions and PFC circuit made by ourselves.
23

Dopamine dysregulation in the prefrontal cortex relates to cognitive deficits in the sub-chronic PCP-model for schizophrenia: a preliminary investigation

McLean, Samantha L., Harte, Michael K., Neill, Joanna C., Young, A.M.J. 26 April 2017 (has links)
yes / Rationale: Dopamine dysregulation in the prefrontal cortex (PFC) plays an important role in cognitive dysfunction in schizophrenia. Sub-chronic phencyclidine (scPCP) treatment produces cognitive impairments in rodents and is a thoroughly validated animal model for cognitive deficits in schizophrenia. The aim of our study was to investigate the role of PFC dopamine in scPCP-induced deficits in a cognitive task of relevance to the disorder, novel object recognition (NOR). Methods: Twelve adult female Lister Hooded rats received scPCP (2 mg/kg) or vehicle via the intraperitoneal route twice daily for seven days, followed by seven days washout. In vivo microdialysis was carried out prior to, during and following the NOR task. Results: Vehicle rats successfully discriminated between novel and familiar objects and this was accompanied by a significant increase in dopamine in the PFC during the retention trial (P<0.01). scPCP produced a significant deficit in NOR (P<0.05 vs. control) and no PFC dopamine increase was observed. Conclusions: These data demonstrate an increase in dopamine during the retention trial in vehicle rats that was not observed in scPCP-treated rats accompanied by cognitive disruption in the scPCP group. This novel finding suggests a mechanism by which cognitive deficits are produced in this animal model and support its use for investigating disorders in which PFC dopamine is central to the pathophysiology.
24

Draining your Brain: The Effects of Four Fatiguing Task Domains on Executive Function and Prefrontal Cortex

Mouloua, Salim A 01 January 2019 (has links)
The present study empirically examined the effects of four fatiguing task domains on executive function through participants' reaction time, accuracy, and brain activity in prefrontal cortex (PFC). Forty college-age participants were collected (16 males and 24 females), of which eleven were examined using a functional near-infrared spectroscopy (fNIRS) imaging system. The present study used a 4×2 mixed factorial design consisting of fatiguing task (arm contractions task, vigilance task, distance-manipulated Fitts' task, size-manipulated Fitts' task) as a between-participant variable and n-back testing period (pre-test versus post-test 3-back task) as a within-participant variable. Results indicated significant increases in 3-back performance after the fatiguing tasks, and significant increases in 3-back compensatory brain activity in dorsomedial and dorsolateral prefrontal cortex (dmPFC and dlPFC) after the fatiguing tasks. Furthermore, results showed an interaction between 3-back target type and fatiguing task on standardized changes in reaction time, and an interaction between fatiguing task and testing period on brain activity in dmPFC. Theoretical and practical implications are discussed. Findings from this study may be used to help draw the boundaries on different domains of fatigue and their effects on the brain and body.
25

Validating Drug Targets through Inhibition of Protein-Protein Interactions in Mycobacterium Tuberculosis

Driscoll, Erin C 01 January 2017 (has links)
Tuberculosis is the leading cause of death by single infectious disease worldwide; novel antibiotics are needed to continue to treat this disease. To goal of this project is to provide proof-of-principle support for the idea that targeting protein-protein interactions (PPI) is an appropriate course for the discovery of new drugs. This study optimized the M-PFC assay, which allows detection of PPI in Mycobacteria, through the use of stronger promoters and inducible expression of a peptide blocker by riboswitch. To accomplish this, promoter induction studies were used to find stronger promoters for the M-PFC, optimization of the riboswitch as a method for inducible protein expression within this system, and the addition of both elements to the existing version of the M-PFC. This M-PFC targets DosR homodimerization; this process is known to be essential for survival within the host. This study optimizes a system that may be used to screen for drugs that are capable of interrupting this interaction.
26

Astrocytes Regulate Cortical Ach Release Via Kynurenic Acid: Implications For Cognitive Impairments In Schizophrenia

Zmarowski, Amy L. 10 September 2008 (has links)
No description available.
27

CCM Totem Pole Bridgeless PFC with Ultra Fast IGBT

Zhou, Bo 09 December 2014 (has links)
The totem pole PFC suffers from the Mosfet body diode reverse recovery issue which limits this topology adopted in the CCM high power condition. As the ultra-fast IGBT which is capable of providing 100 kHz switching frequency is available in the market, it is possible to apply the totem pole PFC in CCM high power condition. The thesis provides a method by implementing the ultra-fast IGBT and SiC diode to replace the MOSFET in this topology. To verify the method, a universal CCM totem pole PFC is designed and tested. The design adopts the ADP1048 programmable digital PFC controller by adding external logic gate for totem-pole PFC. ADP1048 greatly simplifies the design process and satisfies the design requirements. The experiment results verify that the totem-pole PFC can be applied into CCM high power condition by using the method. The DC output voltage is well regulated. The power factor is higher than 0.98 when the load is above 400W. The measured efficiency can achieve up to 96.8% at low line and 98.2% at high line condition with switching frequency 80 kHz. / Master of Science
28

Analysis and Design of a DCM SEPIC PFC with Adjustable Output Voltage

Chen, Rui 31 March 2015 (has links)
Power Factor Correction rectifiers are widely adopted as the first stage in most grid-tied power conversion systems. Among all PFC converts for single phase system, Boost PFC is the most popular one due to simplicity of structure and high performance. Although the efficiency of Boost PFC keeps increasing with the evolution of semiconductor technology, the intrinsic feature of high output voltage may result cumbersome system structure with multiple power conversion stages and even diminished system efficiency. This disadvantage is aggravated especially in systems where resonant converters are selected as second stage. Especially for domestic induction cooker application, step-down PFC with wide range output regulation capability would be a reasonable solution, Conventional induction cooker is composed by input filter, diode-bridge rectifier, and full bridge or half bridge series resonant circuit (SRC). High frequency magnetic field is induced through the switching action to heat the pan. The power level is usually controlled through pulse frequency modulation (PFM). In such configuration, first, a bulky input differential filter is required to filter out the high frequency operating current in SRC. Second, as the output power decreases, the operating point of SRC is moved away from the optimum point, which would result large amount circulating energy. Third, when the pan is made of well conducting and non-ferromagnetic material such as aluminum, due to the heating resistance become much smaller and peak output voltage of the switching bridge equals to the peak voltage of the grid, operating the SRC at the series resonant frequency can result excessive current flowing through the switch and the heating coil. Thus for pan with smaller heating resistance, even at maximum power, the operating frequency is pushed further away from the series resonant point, which also results efficiency loss. To address these potential issues, a PFC circuit features continuous conducting input current, high power factor, step-down capability and wide range output regulation would be preferred. The Analysis and design work is present in this article for a non-isolated hard switching DCM SEPIC PFC. Due to DCM operation of SPEIC converter, wide adjustable step-down output voltage, continuous conduction of input current and elimination of reverse recovery loss can be achieved at same time. The thesis begins with circuit operation analysis for both DC-DC and PFC operation. Based on averaged switching model, small signal model and corresponding transfer functions are derived. Especially, the impact from small intermediate capacitor on steady state value are discussed. With the concept of ripple steering, theoretic analysis is applied to SEPIC converter with two coupled inductors. The results indicate if the coupling coefficient is well designed, the equivalent input inductance can be multiple times larger than the self-inductance. Because of this, while maintaining input current ripple same, the two inductors of SEPIC can be implemented with two smaller coupled inductors. Thus both the total volume of inductors and the total number of windings can be reduced, and the power density and efficiency can be improved. Based on magnetic reluctance model, a corresponding winding scheme to control the coupling coefficient between two coupled inductors is analyzed. Also the impact of coupled inductors on the small signal transfer function is discussed. For the voltage follower control scheme of DCM PFC, single loop controller and notch filter design are discussed. With properly designed notch filter or the PR controller in another word, the closed loop bandwidth can be increased; simple PI controller is sufficient to achieve high power factor; THD of the input current can be greatly reduced. Finally, to validate the analysis and design procedure, a 1 kW prototype is built. With 120 Vrms AC input, 60V to 100V output, experimental results demonstrate unity power factor, wide output voltage regulation can be achieved within a single stage, and the 1 kW efficiency is around 93%. / Master of Science
29

Modeling and Control of Single Switch Bridgeless SEPIC PFC Converter

Koh, Hyunsoo 29 August 2012 (has links)
Due to increasing concerns on the power quality, power factor correction (PFC) has become an important issue in light-emitting diode (LED) lighting applications. A boost converter is one of the most well-known PFC topologies, due to its simple circuitry, simple control scheme and small number of passive components. Even though a boost converter is recognized as a typical PFC converter, its output voltage must be higher than its input voltage. This feature is disadvantageous because the device requires an additional buck-stage for LED lighting systems. As an alternative to the boost converter, a single-ended primary-inductor converter (SEPIC) allows output voltage to be lower or higher than the input voltage. Thus, the SEPIC converter is gaining popularity as a LED driver because it does not require additional power conversion stage. However, designing a controller to meet stability requirements and international standards is quite challenging for SEPIC converters. Additionally, if the digital controller is adopted for its built-in communication features, creating a digitally controlled SEPIC converter would be even more challenging. This thesis focuses on the state-space averaging modeling of the SEPIC PFC converter and the design of controllers based on both analog and digital controls with precise modeling. The proposed SEPIC converter incorporates RC damping circuits to avoid the instability, and thus the entire SEPIC converter becomes a 5th order system. Such a high-order system model was derived mathematically and verified with circuit simulator modeling. After verification of the circuit model, the controller was designed with analog transfer functions and converted to and the discrete domain for digital controller implementation. A 150-W single-switch bridgeless SEPIC PFC converter prototype was built accordingly to verify the design. In addition to the current loop controller design for stability, a feed-forward compensator for is introduced and derived for better waveform quality. Simulation results and experiment results are also presented to verify the complete controller with feed-forward compensation. The Texas Instruments (TI) digital signal processor (DSP) TMS320F28335 was adopted for digital controller implementation. For comparison purpose, the TI UC3854 controller was implemented to verify the analog controller design results. / Master of Science
30

Efficient Solvers for the Phase-Field Crystal Equation

Praetorius, Simon 27 January 2016 (has links) (PDF)
A preconditioner to improve the convergence properties of Krylov subspace solvers is derived and analyzed in this work. This method is adapted to linear systems arising from a finite-element discretization of a phase-field crystal equation.

Page generated in 0.0327 seconds