• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 13
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 52
  • 12
  • 12
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Characterization of High-PGE Low-Sulphur Mineralization at the Marathon PGE-Cu Deposit, Ontario

Ruthart, Ryan January 2013 (has links)
The Marathon PGM-Cu deposit is hosted by the Coldwell alkaline complex, which consists predominantly of gabbro and syenite and was emplaced at 1108 Ma as part of the Mid-Continent Rift System. Mineralization at the Marathon PGM-Cu deposit is hosted by the Two Duck Lake Gabbro (TDLG), a fresh olivine-bearing gabbro. The Marathon deposit contains several zones of mineralization including the Basal Zone, the Main Zone and the W-Horizon. The W-Horizon is a high-grade PGE zone characterized by low S, low Cu/Pd and high Cu/Ni. The sulphide mineral assemblage is predominantly chalcopyrite and bornite. This contrasts with the Main Zone where the dominant sulphide mineral assemblage is chalcopyrite and pyrrhotite. The Main Zone contains higher S, higher Cu/Pd and shows a decrease in Cu/Pd and pyrrhotite/chalcopyrite from base to top. Four drill holes were selected for detailed analysis to characterize the W-Horizon style of mineralization. Detailed petrographic study of the pristine and largely unaltered TDLG shows that wide spread hydrothermal alteration is not responsible for the mineralization. Detailed outcrop mapping shows that the TDLG intruded as a series of multiple intrusions in a dynamic magmatic system. Geochemical studies through the W-Horizon show that the mineralization is not the result of crystallization in a layered intrusion. The results of geochemical assays and electron microprobe analysis of olivine grains show that the chemistry through the TDLG hosting the W-Horizon is erratic. This data supports the TDLG intruding as a series of sills in a dynamic conduit environment. The calculated sulphide metal tenors for the W-Horizon are higher than can be explained by closed system R Factor models. Multistage dissolution upgrading in an open system is examined as the process forming the W-Horizon. This model is able to produce the sulphide metal tenors observed in the W-Horizon. Sulphur loss also affects grades and tenors and was examined through geochemical and petrological data. The change in sulphide mineral assemblage from a pyrrhotite and chalcopyrite (S-rich) to chalcopyrite and bornite (S-poor) supports S-loss. Whole rock S and Se contents are also analyzed to investigate S loss, a lower S/Se indicates that sulphur has been removed from the system. Average S/Se values are ~800 for the W-Horizon, ~1980 for the Main Zone and ~1700 in unmineralized samples. The very low S/Se observed within the W-Horizon supports S-loss. Sulphur loss in a dynamic magmatic conduit system is proposed for the formation of the W-Horizon mineralization. In this model sulphur undersaturated basaltic magma interacted with an immiscible sulphide liquid in a magma conduit, resulting in the dissolution of sulphide into the basaltic melt and PGE enrichment.
42

Géologie de la partie Nord de l'Ophiolite d'Oman : pétrologie et géochimie de la séquennce plutonique du massif de Fizh (Oman)

Madi, Atman 25 May 1995 (has links) (PDF)
L'ophiolite d'Oman montre une séquence complète qui permet de bien comprendre les modalités de l'accrétion, la dynamique des magmas et l'évolution tectonique et magmatique au niveau de la palèodorsale téthysienne. L'étude faite à partir d'une étude détaillée des lithofaciès a consisté a compléter les travaux antérieurs du massif de Fizh (partie septentrionale de l'ophiolite d'Oman)
43

The Effect of Volatiles (H2O, Cl and CO2) on the Solubility and Partitioning of Platinum and Iridium in Fluid-Melt Systems

Blaine, Fredrick Allan January 2010 (has links)
Volatiles are a fundamental component of the Magmatic-Hydrothermal model of platinum group element (PGE) ore deposition for PGE deposits in layered mafic intrusions such as Bushveld and Stillwater. Volatiles have the potential to complex with PGEs in silicate melts and hydrothermal fluids, increasing PGE solubility; in order to assess the models of PGE ore deposition reliable estimates on the solubilities in the various magmatic phases must be known. However, experimental studies on the solubility and partitioning behaviour of PGEs in mafic magmatic-hydrothermal systems under relevant conditions are sparse, and the data that do exist produce conflicting results and new or adapted experimental methods must be applied to investigate these systems. Experimental results are presented here, investigating the effect of volatiles (i.e. H2O, Cl and CO2) on Pt and Ir solubility in a haplobasaltic melt and fluid-melt partitioning of Pt between an aqueous fluid and a haplobasaltic melt under magmatic conditions using a sealed-capsule technique. Also included are the details of the development of a novel experimental technique to observe fluid-melt partitioning in mafic systems and application of the method to the fluid-melt partition of Pt. Solubility experiments were conducted to assess the effect of volatiles on Pt and Ir solubility in a haplobasaltic melt of dry diopside-anorthite eutectic composition at 1523K and 0.2GPa. Synthetic glass powder of an anhydrous, 1-atm eutectic, diopside-anorthite (An42-Di58) haplobasalt composition was sealed in a platinum or platinum-iridium alloy capsule and was allowed to equilibrate with the noble metal capsule and a source of volatiles (i.e. H2O, H2O-Cl or H2O-CO2) at experimental conditions. All experiments were run in an internally-heated pressure vessel equipped with a rapid quench device, with oxygen fugacity controlled by the water activity and intrinsic hydrogen fugacity of the autoclave (MnO-Mn3O4). The resultant crystal- and bubble-free run product glasses were analyzed using a combination of laser ablation ICP-MS and bulk solution isotope-dilution ICP-MS to determine equilibrium solubilities of Pt and Ir and investigate the formation and contribution of micronuggets to overall bulk determined concentrations. In water-bearing experiments, it was determined that water content did not have an intrinsic effect on Pt or Ir solubility for water contents between 0.9 wt. % and 4.4 wt. % (saturation). Water content controlled the oxygen fugacity of the experiment and the resulting variations in oxygen fugacity, and the corresponding solubilities of Pt and Ir, indicate that over geologically relevant conditions both Pt and Ir are dissolved primarily in the 2+ valence state. Pt data suggest minor influence of Pt4+ at higher oxygen fugacities; however, there is no evidence of higher valence states for Ir. The ability of the sealed capsule technique to produce micronugget-free run product glasses in water-only experiments, allowed the solubility of Pt to be determined in hydrous haplobasalt at lower oxygen fugacities (and concentrations) then was previously observed. Pt and Ir solubility can be represented as a function of oxygen fugacity (bars) by the following equations: [Pt](ppb)= 1389(fO-sub-2)+7531(fO-sub-2)^(1/2) [Ir](ppb)=17140(fO-sub-2)^(1/2) In Cl-bearing experiments, experimental products from short run duration (<96hrs) experiments contained numerous micronuggets, preventing accurate determination of platinum and iridium solubility. Longer run duration experiments showed decreasing amounts of micronuggets, allowing accurate determination of solubility; results indicate that under the conditions studied chlorine has no discernable effect on Pt solubility in the silicate melt from 0.6 to 2.75 wt. % Cl (saturation). Over the same conditions, a systematic increase in Ir solubility is found with increasing Cl content; however, the observed increase is within the analytical variation/error and is therefore not conclusive. If there is an effect of Cl on PGE solubility the effect is minor resulting in increased Ir solubilities of 60% at chlorine saturation. However, the abundance of micronuggets in short run duration experiments, which decreases in abundance with time and increases with Cl-content, offers compelling evidence that Cl-bearing fluids have the capacity to transport significant amounts of Pt and Ir under magmatic conditions. It is suggested that platinum and iridium dissolved within the Cl-bearing fluid are left behind as the fluid dissolves into the melt during the heating stages of the experiment, leaving small amounts of Pt and Ir along the former particle boundaries. With increasing run duration, the metal migrates back to the capsule walls decreasing the amount of micronuggets contained within the glass. Estimates based on this model, using mass-balance calculations on the excess amount of Pt and Ir in the run product glasses (i.e. above equilibrium solubility) in short duration experiments, indicate estimated Pt and Ir concentrations in the Cl-bearing fluid ranging from tens to a few hundred ppm, versus ppb levels in the melt. Respective apparent (equilibrium has not been established) partition coefficients (D,fluid-melt) of 1x10^3 to 4x10^3 and 300-1100 were determined for Pt and Ir in Cl-bearing fluids; suggesting that Cl-bearing fluids can be highly efficient at enriching and transporting PGE in mafic magmatic-hydrothermal ore-forming systems. Platinum solubility was also determined as a function of CO2 content in a hydrous haplobasalt at controlled oxygen fugacity. Using the same sealed capsule techniques and melt composition as for H2O and Cl, a hydrous haplobasaltic melt was allowed to equilibrate with the platinum capsule and a CO2-source (CaCO3 or silver oxalate) at 1523 K and 0.2 GPa. Experiments were conducted with a water content of approximately 1 wt. %, fixing the log oxygen fugacity (bars) between -5.3 and -6.1 (log NNO = -6.95 @ 1573 K and 0.2 GPa). Carbon dioxide contents in the run product glasses ranged from 800-2500 ppm; and over these conditions, CO2 was found to have a negligible effect on Pt solubility in the silicate melt. Analogous to the Cl-bearing experiments, bulk concentrations of Pt in CO2-bearing experiments increased with increasing CO2 content due to micronugget formation. Apparent Pt concentrations in the H2O-CO2 fluid phase, prior to fluid dissolution, were calculated to be 1.6 to 42 ppm, resulting in apparent partition coefficients(D,fluid-melt) of 1.5 x 10^2 to 4.2 x 10^3, increasing with increasing mol CO2:H2O up to approximately 0.15, after which increasing CO2 content does not further increase partitioning. As well, a novel technique was developed and applied to assess the partitioning of Pt between an aqueous fluid and a hydrous diopside-anorthite melt under magmatic conditions. Building upon the sealed-capsule technique utilized for solubility studies, a method was developed by adding a seed crystal to the capsule along with a silicate melt and fluid. By generating conditions favourable to crystal growth, and growing the crystal from the fluid, it is possible to entrap fluid inclusions in the growing crystal, allowing direct sampling of the fluid phase at the conditions of the experiment. Using a diopside seed crystal with the diopside-anorthite eutectic melt, it was possible to control diopside crystallization by controlling the temperature, thus allowing control of the crystallization and fluid inclusion entrapment conditions. Subsequent laser ablation ICP-MS analysis of the fluid inclusions allowed fluid–melt partition coefficients of Pt to be determined. Synthetic glass powder of an anhydrous, 1-atm eutectic, diopside-anorthite (An42¬Di58) haplobasalt composition (with ppm levels of Ba, Cs, Sr and Rb added as internal standards), water and a diopside seed crystal were sealed in a platinum capsule and were allowed to equilibrate at experimental conditions. Water was added in amounts to maintain a free fluid phase throughout the experiment, and the diopside crystal was separated from the melt. All experiments were run in an internally heated pressure vessel equipped with a rapid-quench device, with oxygen fugacity controlled by the water activity and intrinsic hydrogen fugacity of the autoclave (MnO-Mn3O4). Experiments were allowed to equilibrate (6-48 hrs) at experimental conditions (i.e. 1498K, 0.2 GPa, fluid+melt+diopside stable) before temperature was dropped (i.e. to 1483K) to induce crystallization. Crystals were allowed to grow for a period of 18-61 hours, prior to rapid isobaric quenching to 293K at the conclusion of the experiment. Experimental run products were a crystal- and bubble-free glass and the diopside seed crystal with a fluid-inclusion-bearing overgrowth. Analysis of fluid inclusions provides initial solubility estimates of Pt in a H2O fluid phase at 1488 K and 0.2 GPa at or near ppm levels and fluid melt partition coefficients ranging from 2 – 48. This indicates substantial metal enrichment in the fluid phase in the absence of major ligands such as carbonate or chlorine. The results of this study indicate that the volatiles studied (i.e. H2O, CO2, and Cl) do not have a significant effect on Pt and Ir solubility in a haplobasaltic melt at magmatic conditions. These results suggest that complexing of Pt and Ir by OH, Cl, and carbonate species in a haplobasaltic melt is insignificant and the presence of these volatiles will not result in significantly increased PGE contents over their dry counterparts, as has been suggested. Preliminary evidence of minor Cl-complexing of Ir is presented; however, resulting in only a slight increase (<100%) in Ir solubility at Cl-saturation. Significant partitioning of Pt and Ir into a fluid phase at magmatic conditions has been demonstrated; with estimates of fluid-haplobasaltic melt partition coefficients increasing from 1x10^1 for pure water to up to an apparent 4x10^3 with the addition of Cl or CO2 to the system. This result indicates complexing of Pt and Ir with OH< HxCOy≤ Cl. Using these estimates, Cl- or CO2-bearing magmatic fluids can be highly efficient at enriching and transporting platinum group elements (PGEs) in mafic magmatic-hydrothermal ore-forming systems.
44

The Effect of Volatiles (H2O, Cl and CO2) on the Solubility and Partitioning of Platinum and Iridium in Fluid-Melt Systems

Blaine, Fredrick Allan January 2010 (has links)
Volatiles are a fundamental component of the Magmatic-Hydrothermal model of platinum group element (PGE) ore deposition for PGE deposits in layered mafic intrusions such as Bushveld and Stillwater. Volatiles have the potential to complex with PGEs in silicate melts and hydrothermal fluids, increasing PGE solubility; in order to assess the models of PGE ore deposition reliable estimates on the solubilities in the various magmatic phases must be known. However, experimental studies on the solubility and partitioning behaviour of PGEs in mafic magmatic-hydrothermal systems under relevant conditions are sparse, and the data that do exist produce conflicting results and new or adapted experimental methods must be applied to investigate these systems. Experimental results are presented here, investigating the effect of volatiles (i.e. H2O, Cl and CO2) on Pt and Ir solubility in a haplobasaltic melt and fluid-melt partitioning of Pt between an aqueous fluid and a haplobasaltic melt under magmatic conditions using a sealed-capsule technique. Also included are the details of the development of a novel experimental technique to observe fluid-melt partitioning in mafic systems and application of the method to the fluid-melt partition of Pt. Solubility experiments were conducted to assess the effect of volatiles on Pt and Ir solubility in a haplobasaltic melt of dry diopside-anorthite eutectic composition at 1523K and 0.2GPa. Synthetic glass powder of an anhydrous, 1-atm eutectic, diopside-anorthite (An42-Di58) haplobasalt composition was sealed in a platinum or platinum-iridium alloy capsule and was allowed to equilibrate with the noble metal capsule and a source of volatiles (i.e. H2O, H2O-Cl or H2O-CO2) at experimental conditions. All experiments were run in an internally-heated pressure vessel equipped with a rapid quench device, with oxygen fugacity controlled by the water activity and intrinsic hydrogen fugacity of the autoclave (MnO-Mn3O4). The resultant crystal- and bubble-free run product glasses were analyzed using a combination of laser ablation ICP-MS and bulk solution isotope-dilution ICP-MS to determine equilibrium solubilities of Pt and Ir and investigate the formation and contribution of micronuggets to overall bulk determined concentrations. In water-bearing experiments, it was determined that water content did not have an intrinsic effect on Pt or Ir solubility for water contents between 0.9 wt. % and 4.4 wt. % (saturation). Water content controlled the oxygen fugacity of the experiment and the resulting variations in oxygen fugacity, and the corresponding solubilities of Pt and Ir, indicate that over geologically relevant conditions both Pt and Ir are dissolved primarily in the 2+ valence state. Pt data suggest minor influence of Pt4+ at higher oxygen fugacities; however, there is no evidence of higher valence states for Ir. The ability of the sealed capsule technique to produce micronugget-free run product glasses in water-only experiments, allowed the solubility of Pt to be determined in hydrous haplobasalt at lower oxygen fugacities (and concentrations) then was previously observed. Pt and Ir solubility can be represented as a function of oxygen fugacity (bars) by the following equations: [Pt](ppb)= 1389(fO-sub-2)+7531(fO-sub-2)^(1/2) [Ir](ppb)=17140(fO-sub-2)^(1/2) In Cl-bearing experiments, experimental products from short run duration (<96hrs) experiments contained numerous micronuggets, preventing accurate determination of platinum and iridium solubility. Longer run duration experiments showed decreasing amounts of micronuggets, allowing accurate determination of solubility; results indicate that under the conditions studied chlorine has no discernable effect on Pt solubility in the silicate melt from 0.6 to 2.75 wt. % Cl (saturation). Over the same conditions, a systematic increase in Ir solubility is found with increasing Cl content; however, the observed increase is within the analytical variation/error and is therefore not conclusive. If there is an effect of Cl on PGE solubility the effect is minor resulting in increased Ir solubilities of 60% at chlorine saturation. However, the abundance of micronuggets in short run duration experiments, which decreases in abundance with time and increases with Cl-content, offers compelling evidence that Cl-bearing fluids have the capacity to transport significant amounts of Pt and Ir under magmatic conditions. It is suggested that platinum and iridium dissolved within the Cl-bearing fluid are left behind as the fluid dissolves into the melt during the heating stages of the experiment, leaving small amounts of Pt and Ir along the former particle boundaries. With increasing run duration, the metal migrates back to the capsule walls decreasing the amount of micronuggets contained within the glass. Estimates based on this model, using mass-balance calculations on the excess amount of Pt and Ir in the run product glasses (i.e. above equilibrium solubility) in short duration experiments, indicate estimated Pt and Ir concentrations in the Cl-bearing fluid ranging from tens to a few hundred ppm, versus ppb levels in the melt. Respective apparent (equilibrium has not been established) partition coefficients (D,fluid-melt) of 1x10^3 to 4x10^3 and 300-1100 were determined for Pt and Ir in Cl-bearing fluids; suggesting that Cl-bearing fluids can be highly efficient at enriching and transporting PGE in mafic magmatic-hydrothermal ore-forming systems. Platinum solubility was also determined as a function of CO2 content in a hydrous haplobasalt at controlled oxygen fugacity. Using the same sealed capsule techniques and melt composition as for H2O and Cl, a hydrous haplobasaltic melt was allowed to equilibrate with the platinum capsule and a CO2-source (CaCO3 or silver oxalate) at 1523 K and 0.2 GPa. Experiments were conducted with a water content of approximately 1 wt. %, fixing the log oxygen fugacity (bars) between -5.3 and -6.1 (log NNO = -6.95 @ 1573 K and 0.2 GPa). Carbon dioxide contents in the run product glasses ranged from 800-2500 ppm; and over these conditions, CO2 was found to have a negligible effect on Pt solubility in the silicate melt. Analogous to the Cl-bearing experiments, bulk concentrations of Pt in CO2-bearing experiments increased with increasing CO2 content due to micronugget formation. Apparent Pt concentrations in the H2O-CO2 fluid phase, prior to fluid dissolution, were calculated to be 1.6 to 42 ppm, resulting in apparent partition coefficients(D,fluid-melt) of 1.5 x 10^2 to 4.2 x 10^3, increasing with increasing mol CO2:H2O up to approximately 0.15, after which increasing CO2 content does not further increase partitioning. As well, a novel technique was developed and applied to assess the partitioning of Pt between an aqueous fluid and a hydrous diopside-anorthite melt under magmatic conditions. Building upon the sealed-capsule technique utilized for solubility studies, a method was developed by adding a seed crystal to the capsule along with a silicate melt and fluid. By generating conditions favourable to crystal growth, and growing the crystal from the fluid, it is possible to entrap fluid inclusions in the growing crystal, allowing direct sampling of the fluid phase at the conditions of the experiment. Using a diopside seed crystal with the diopside-anorthite eutectic melt, it was possible to control diopside crystallization by controlling the temperature, thus allowing control of the crystallization and fluid inclusion entrapment conditions. Subsequent laser ablation ICP-MS analysis of the fluid inclusions allowed fluid–melt partition coefficients of Pt to be determined. Synthetic glass powder of an anhydrous, 1-atm eutectic, diopside-anorthite (An42¬Di58) haplobasalt composition (with ppm levels of Ba, Cs, Sr and Rb added as internal standards), water and a diopside seed crystal were sealed in a platinum capsule and were allowed to equilibrate at experimental conditions. Water was added in amounts to maintain a free fluid phase throughout the experiment, and the diopside crystal was separated from the melt. All experiments were run in an internally heated pressure vessel equipped with a rapid-quench device, with oxygen fugacity controlled by the water activity and intrinsic hydrogen fugacity of the autoclave (MnO-Mn3O4). Experiments were allowed to equilibrate (6-48 hrs) at experimental conditions (i.e. 1498K, 0.2 GPa, fluid+melt+diopside stable) before temperature was dropped (i.e. to 1483K) to induce crystallization. Crystals were allowed to grow for a period of 18-61 hours, prior to rapid isobaric quenching to 293K at the conclusion of the experiment. Experimental run products were a crystal- and bubble-free glass and the diopside seed crystal with a fluid-inclusion-bearing overgrowth. Analysis of fluid inclusions provides initial solubility estimates of Pt in a H2O fluid phase at 1488 K and 0.2 GPa at or near ppm levels and fluid melt partition coefficients ranging from 2 – 48. This indicates substantial metal enrichment in the fluid phase in the absence of major ligands such as carbonate or chlorine. The results of this study indicate that the volatiles studied (i.e. H2O, CO2, and Cl) do not have a significant effect on Pt and Ir solubility in a haplobasaltic melt at magmatic conditions. These results suggest that complexing of Pt and Ir by OH, Cl, and carbonate species in a haplobasaltic melt is insignificant and the presence of these volatiles will not result in significantly increased PGE contents over their dry counterparts, as has been suggested. Preliminary evidence of minor Cl-complexing of Ir is presented; however, resulting in only a slight increase (<100%) in Ir solubility at Cl-saturation. Significant partitioning of Pt and Ir into a fluid phase at magmatic conditions has been demonstrated; with estimates of fluid-haplobasaltic melt partition coefficients increasing from 1x10^1 for pure water to up to an apparent 4x10^3 with the addition of Cl or CO2 to the system. This result indicates complexing of Pt and Ir with OH< HxCOy≤ Cl. Using these estimates, Cl- or CO2-bearing magmatic fluids can be highly efficient at enriching and transporting platinum group elements (PGEs) in mafic magmatic-hydrothermal ore-forming systems.
45

L'étude du "cross-talk" des voies de synthèse des prostaglandines E₂ et des leucotriènes B₄ dans le fonctionnement altéré des ostéoblastes sous-chondraux humains arthrosiques

Maxis, Kelitha January 2004 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
46

Fundamental studies of the electrochemical and flotation behaviour of pyrrhotite

Mphela, Nthabiseng 14 August 2010 (has links)
Extensive research has shown that electrochemistry is one of the factors that govern the flotation of sulfide minerals. Flotation is often adversely affected by uncontrolled oxidation, which is also an electrochemical process. The interest in pyrrhotite recovery arose after observing that there is a substantial loss of PGM due to the depression of pyrrhotite and the subsequent loss of any PGMs associated with it. The first part of this study focuses on the influence of chemical composition and crystal structure on the electrochemical behaviour of pyrrhotite in a 0.05 M Na2B4O7 solution. Rest potential and polarisation resistance measurements, as well as anodic polarisation diagrams, showed that the magnetic 4C type pyrrhotite is anodically more reactive than the non-magnetic 6C type pyrrhotite. It was also shown in cathodic polarisation diagrams that the non-magnetic 6C type pyrrhotite is a better substrate for oxygen reduction and is less susceptible to oxidation. ToF-SIMS showed the formation of an oxide layer on the pyrrhotite surface after oxidation. In the second part of this work, the influence of galvanic interactions on the electrochemical behaviour of pyrrhotite in contact with pentlandite was investigated. It was observed that, under oxygen-saturated conditions, as the amount of pentlandite increases, the reactivity towards oxidation of the mixed mineral system is reduced. Impedance measurements showed a decrease in capacitance values, indicating the formation of a continuous oxide layer on the surface and an increase in oxide layer thickness with decreasing pentlandite content. Anodic polarisation diagrams showed that under oxygen-deficient conditions and in the low potential region, pentlandite behaves as an inert material and does not have an influence on the oxidation behaviour of pyrrhotite. Hence, the anodic activities of the different magnetic 4C type pyrrhotites from Sudbury Gertrude, Phoenix and Russia were compared. It was shown that the oxidation reactivity decreased in the following order: Sudbury Gertrude magnetic 4C pyrrhotite > Phoenix magnetic 4C pyrrhotite > Russian magnetic 4C pyrrhotite; it also varied according to location. In the transpassive region, higher anodic currents were observed on the mixed samples because both pentlandite and pyrrhotite reacts. The reactivity increased in the order: pure pyrrhotite (Russia) < medium-pentlandite (Sudbury Gertrude) < high-pentlandite (Phoenix). In the presence of potassium ethyl xanthate, there was no change in the initial anodic reactivities of the different pyrrhotites. The anodic polarisation diagrams of the pure and mixed samples showed a reduction in the maximum anodic peak current, suggesting the presence of xanthate on the surface, which hinders oxidation of the mineral surface. In addition, the influence of cleaning of oxidised pyrrhotite with gaseous carbon dioxide was studied, using electrochemical and microflotation measurements. Electrochemical measurements indicated that CO2 treatment resulted in depassivation of the oxidised surfaces; this was supported by ToF-SIMS measurements that demonstrated a reduction in the oxide layer thickness after CO2 treatment. Anodic polarisation diagrams showed a higher anodic peak current, indicating that the surface is more reactive. Gaseous carbon dioxide conditioning of oxidised pyrrhotite resulted in improved flotation response of pyrrhotite with the aid of copper activation and higher air flow rate. Copyright / Dissertation (MEng)--University of Pretoria, 2010. / Materials Science and Metallurgical Engineering / unrestricted
47

Využití iontoměničů pro prekoncentraci platinových kovů / The use of ion exchanges for preconcentration of platinum group metals

Sýkora, Jiří January 2017 (has links)
The aim of this thesis is the elaboration of a detailed literature review on the use of ion exchangers for the preconcentration of platinum group metals. This work contains an actual literature review on this issue. In this work you will find information about the current occurrence of platinum metals in the environment, their impact on health, properties, resources and the use. There are also described ways of decomposition, extraction and use of ion exchangers. In the experimental part this thesis deals with optimization of ion exchangers and following application of real samples from the city of Brno.
48

Colon Cancer Chemoprevention: Clinical Development of Aspirin as a Chemopreventive Agent

Krishnan, Koyamangalath, Ruffin, Mack T., Brenner, Dean E. 01 January 1997 (has links)
We have studied aspirin as a potential chemopreventive for colorectal cancer, completing Phase I studies on aspirin pharmacology and potential biomarker assays (prostaglandins, PGE2 and PGF(2α) and cyclooxygenase modulation) in normal human subjects. These studies have determined the optimal dose of aspirin for future Phase IIa and IIb chemopreventive trials in high-risk cohorts of patients for colon cancer. Aspirin's effects on rectal prostaglandins are prolonged, detectable even after aspirin and its metabolite are removed from the plasma. Aspirin-mediated inhibition of prostaglandin production in the human rectal epithelium may be related to direct suppression of cyclooxygenase transcription and not to enzyme inactivation by acetylation. A systematic method to monitor adherence (self- report, telephone contact, pill count, and microelectronic monitoring) has been established for future trials. Strategies to improve recruitment of high-risk cohorts have been developed. Phase IIa non-randomized studies with aspirin at 81 mg in high-risk cohorts (resected Duke's A colon cancer, Duke's C colon cancer treated with adjuvant therapy and disease-free at 5 years, history of colon adenomas > 1 cm, two or more first-degree relatives with colon cancer, and familial adenomatous polyposis and hereditary non-polyposis colorectal cancer syndromes) are currently being conducted for surrogate end- point biomarker (prostaglandins, cyclooxygenase, cellular mucins, and proliferation) modulation.
49

Method development in automated mineralogy

Sandmann, Dirk 11 November 2015 (has links) (PDF)
The underlying research that resulted in this doctoral dissertation was performed at the Division of Economic Geology and Petrology of the Department of Mineralogy, TU Bergakademie Freiberg between 2011 and 2014. It was the primary aim of this thesis to develop and test novel applications for the technology of ‘Automated Mineralogy’ in the field of economic geology and geometallurgy. A “Mineral Liberation Analyser” (MLA) instrument of FEI Company was used to conduct most analytical studies. This automated system is an image analysis system based on scanning electron microscopy (SEM) image acquisition and energy dispersive X-ray spectrometry which can be used to determine both quantitative mineralogical data and mineral processing-relevant parameters. The analyses can be conducted with unconsolidated and solid rocks but also with ores and products of the mineral processing and recycling industry. In consequence of a first-time broadly-based and comprehensive literature review of more than 1,700 publications related to all types of automated SEM-based image analysis systems several trends in the publication chronicle were observed. Publications related to mineral processing lead the field of automated mineralogy-related publications. However, this is with a somewhat smaller proportion than expected and with a significant decrease in share between around 2000 and 2014. The latter is caused by a gradual but continuous introduction of new areas of application for automated mineralogical analysis such as the petroleum industry, petrology or environmental sciences. Furthermore, the quantity of automated mineralogy systems over time was carefully assessed. It is shown that the market developed from many individual developments in the 1970s and 1980s, often conducted from research institutes, e.g., CSIRO and JKMRC, or universities, to a duopoly - Intellection Pty Ltd and JKTech MLA - in the 1990s and 2000s and finally to a monopoly by FEI Company since 2009. However, the number of FEI’s competitors, such as Zeiss, TESCAN, Oxford Instruments, and Robertson CGG, and their competing systems are increasing since 2011. Particular focus of this study, published in three research articles in peer-reviewed international journals, was the development of suitable methodological approaches to deploy MLA to new materials and in new contexts. Data generated are then compared with data obtained by established analytical techniques to enable critical assessment and validation of the methods developed. These include both quantitative mineralogical analysis as well as methods of particle characterisation. The first scientific paper “Use of Mineral Liberation Analysis (MLA) in the Characterization of Lithium-Bearing Micas” deals with the field of mineral processing and describes the characterisation of lithium-bearing zinnwaldite mica - as potential natural resource for lithium - by MLA as well as the achievement of mineralogical association data for zinnwaldite and associated minerals. Two different approaches were studied to comminute the samples for this work, conventional comminution by crusher as well as high-voltage pulse selective fragmentation. By this study it is shown that the MLA can provide mineral data of high quality from silicate mineral resources and results very comparable to established analytical methods. Furthermore, MLA yields additional relevant information - such as particle and grain sizes as well as liberation and grade-recovery data. This combination of quantitative data cannot be attained with any other single analytical method. The second article “Characterisation of graphite by automated mineral liberation analysis” is also located in the field of mineral processing. This research article is the first published contribution on the characterisation of graphite, an important industrial mineral, by MLA respectively an automated mineralogy-related analytical method. During this study graphite feeds and concentrates were analysed. By this study it is shown that it is possible to gather statistically relevant data of graphite samples by MLA. Furthermore, the MLA results are validated by quantitative X-ray powder diffraction as well as particle size determinations by laser diffraction and sieve analysis. The third research paper “Nature and distribution of PGE mineralisation in gabbroic rocks of the Lusatian Block, Saxony, Germany” deals with the scientific field of geoscience. In this study it is shown that it is possible to obtain a significant body of novel mineralogical information by applying MLA analysis in a region previously regarded as being well-studied. The complex nature and relatively large distribution of the occurring platinum group minerals (PGM) is well illustrated by this contribution. During previous light microscopic studies and infrequent electron microprobe measurements only a handful isolated PGM grains were identified and characterised. In this investigation, using the samples of previous studies, 7 groups of PGM and 6 groups of associated tellurides as well as in total more than 1,300 mineral grains of both mineral groups were identified. Based on the data obtained, important insight regarding mineral associations, mineral paragenesis and the potential genesis of the PGM is obtained. Within this context, the value of MLA studies for petrological research focused on trace minerals is documented. MLA yields results that are both comprehensive and unbiased, thus permitting novel insight into the distribution and characteristics of trace minerals. This, in turn, is immensely useful when developing new concepts on the genesis of trace minerals, but may also give rise to the development of a novel generation of exploration tools, i.e., mineralogical vectors towards exploration akin to currently used geochemical vectors. The present dissertation shows that automated mineralogy by using a Mineral Liberation Analyser is able to deliver a unique combination of quantitative data on mineralogy and several physical attributes that are relevant for ore geology and mineral processing alike. It is in particular the automation and unbiasedness of data, as well as the availability of textural data, size and shape information for particles and mineral grains, as well as mineral association and mineral liberation data that define major advantages of MLA analyses - compared to other analytical methods. Despite the fact that results are obtained only on 2-D polished surfaces, quantitative results obtained compare well/very well to results obtained by other analytical methods. This is attributed mainly due to the fact that a very large and statistically sound number of mineral grains/particles are analysed. Similar advantages are documented when using the MLA as an efficient tool to search for and characterise trace minerals of petrological or economic significance. / Die Forschung die der vorliegenden kumulativen Dissertation (‚Publikationsdissertation‘) zugrunde liegt wurde im Zeitraum 2011-2014 am Lehrstuhl für Lagerstättenlehre und Petrologie des Institutes für Mineralogie der TU Bergakademie Freiberg durchgeführt. Das primäre Ziel dieser Arbeit war es neue Einsatzmöglichkeiten für die Technik der Automatisierten Mineralogie im Gebiet der Lagerstättenkunde und Geometallurgie zu entwickeln und zu testen. Im Mittelpunkt der wissenschaftlichen Studien stand die analytische Nutzung des Großgerätes „Mineral Liberation Analyser“ (MLA) der Firma FEI Company. Dieses automatisierte System ist ein Bildanalysesystem und basiert auf der Erfassung von Rasterelektronenmikroskopiebildern und energiedispersiver Röntgen-spektroskopie. Mit Hilfe der MLA-Analysetechnik lassen sich sowohl statistisch gesichert quantitative mineralogisch relevante als auch Aufbereitungsprozess-relevante Parameter ermitteln. Die Analysen können sowohl an Locker- und Festgesteinen als auch an Erzen und Produkten der Aufbereitungs- und Recyclingindustrie durchgeführt werden. Infolge einer erstmaligen, breit angelegten und umfassenden Literaturrecherche von mehr als 1.700 Publikationen im Zusammenhang mit allen Arten von automatisierten REM-basierten Bildanalysesystemen konnten verschiedene Trends in der Publikations¬historie beobachtet werden. Publikationen mit Bezug auf die Aufbereitung mineralischer Rohstoffe führen das Gebiet der Automatisierte Mineralogie-bezogenen Publikationen an. Der Anteil der Aufbereitungs-bezogenen Publikationen an der Gesamtheit der relevanten Publikationen ist jedoch geringer als erwartet und zeigt eine signifikante Abnahme des prozentualen Anteils zwischen den Jahren 2000 und 2014. Letzteres wird durch eine kontinuierliche Einführung neuer Anwendungsbereiche für die automatisierte mineralogische Analyse, wie zum Beispiel in der Öl- und Gasindustrie, der Petrologie sowie den Umweltwissenschaften verursacht. Weiterhin wurde die Anzahl der Systeme der Automatisierten Mineralogie über die Zeit sorgfältig bewertet. Es wird gezeigt, dass sich der Markt von vielen einzelnen Entwicklungen in den 1970er und 1980er Jahren, die oft von Forschungsinstituten, wie z. B. CSIRO und JKMRC, oder Universitäten ausgeführt wurden, zu einem Duopol - Intellection Pty Ltd und JKTech MLA - in den 1990er und 2000er Jahren und schließlich seit 2009 zu einem Monopol der FEI Company entwickelte. Allerdings steigt die Anzahl der FEI-Konkurrenten, wie Zeiss, TESCAN, Oxford Instruments und Robertson CGG, und deren Konkurrenzsysteme seit 2011. Ein Schwerpunkt der drei von Experten begutachteten und in internationalen Fachzeitschriften publizierten Artikel dieser Studie war die Entwicklung eines geeigneten methodischen Ansatzes um die MLA-Technik für neue Materialien und in neuem Kontext zu verwenden. Die erzeugten Daten wurden mit Daten die von etablierten analytischen Techniken gewonnen wurden verglichen, um eine kritische Bewertung und Validierung der entwickelten Methoden zu ermöglichen. Dazu gehören sowohl quantitative mineralogische Analysen als auch Methoden der Partikelcharakterisierung. Der Schwerpunkt der Studie zum ersten Fachartikel „Use of Mineral Liberation Analysis (MLA) in the Characterization of Lithium-Bearing Micas“ liegt im Gebiet der Aufbereitung mineralischer Rohstoffe. Er beschreibt die Charakterisierung von Zinnwaldit-Glimmer - einem potentiellen Lithium-Rohstoff - durch die MLA-Technik sowie das Erringen von Mineralverwachsungsdaten für Zinnwaldit und assoziierter Minerale. Dabei wurden zwei unterschiedliche Wege der Probenzerkleinerung des Rohstoffes untersucht. Zum einen erfolgte eine konventionelle Zerkleinerung der Proben mittels Brecher und Mühle, zum anderen eine selektive Zerkleinerung durch Hoch¬spannungsimpulse. Es konnte aufgezeigt werden, dass die automatisierte Rasterelektronen¬mikroskopie-basierte Bildanalyse mittels MLA von silikatischen Rohstoffen Mineral¬informationen von hoher Güte zur Verfügung stellen kann und die Ergebnisse gut vergleichbar mit etablierten analytischen Methoden sind. Zusätzlich liefert die MLA weitere wertvolle Informationen wie zum Beispiel Partikel-/Mineralkorngrößen, Aussagen zum Mineralfreisetzungsgrad sowie Gehalt-Ausbring-Kurven des Wertstoffes. Diese Kombination von quantitativen Daten kann mit keiner anderen analytischen Einzelmethode erreicht werden. Der zweite Fachartikel „Characterisation of graphite by automated mineral liberation analysis“ ist ebenfalls im Fachgebiet der Aufbereitung mineralischer Rohstoffe angesiedelt. Während dieser Studie wurden Edukte und Produkte der Aufbereitung von Graphit-Erzen untersucht. Der vorliegende Artikel ist der erste in einer internationalen Fachzeitschrift publizierte Beitrag zur Charakterisierung des Industrieminerals Graphit mittels MLA-Technik bzw. einer Analysenmethode der Automatisierten Mineralogie. Mit der Studie konnte gezeigt werden, dass es möglich ist, auch mit der MLA statistisch relevante Daten von Graphitproben zu erfassen. Darüber hinaus wurden die Ergebnisse der MLA-Analysen durch quantitative Röntgenpulverdiffraktometrie sowie Partikelgrößen-bestimmungen durch Laserbeugung und Siebanalyse validiert. Der dritte Fachartikel „Nature and distribution of PGE mineralisation in gabbroic rocks of the Lusatian Block, Saxony, Germany“ ist im Gegensatz zu den ersten beiden Artikeln im Gebiet der Geowissenschaften angesiedelt. In dieser Studie wird gezeigt, dass es möglich ist mittels MLA-Analyse eine signifikante Anzahl neuer Daten von einem eigentlich schon gut untersuchten Arbeitsgebiet zu gewinnen. So konnte erst mit der MLA die komplexe Natur und relativ große Verbreitung der auftretenden Platingruppenelement-führenden Minerale (PGM) geklärt werden. Während früherer lichtmikroskopischer Analysen und einzelner Elektronenstrahlmikrosonden-Messungen konnten nur eine Handvoll weniger, isolierter PGM-Körner nachgewiesen und halbquantitativ charakterisiert werden. In der vorliegenden Studie konnten nun, an den von früheren Studien übernommenen Proben, 7 PGM-Gruppen und 6 assoziierte Telluridmineral-Gruppen mit insgesamt mehr als 1.300 Mineralkörnern beider Mineralgruppen nachgewiesen werden. Auf der Grundlage der gewonnenen Daten wurden wichtige Erkenntnisse in Bezug auf Mineralassoziationen, Mineralparagenese und zur möglichen Genese der PGM erreicht. In diesem Zusammenhang wurde der Wert der MLA-Studien für petrologische Forschung mit dem Fokus auf Spurenminerale dokumentiert. Die MLA liefert Ergebnisse, die sowohl umfassend und unvoreingenommen sind, wodurch neue Einblicke in die Verteilung und Charakteristika der Spurenminerale erlaubt werden. Dies wiederum ist ungemein nützlich für die Entwicklung neuer Konzepte zur Genese von Spurenmineralen, kann aber auch zur Entwicklung einer neuen Generation von Explorationswerkzeugen führen, wie zum Beispiel mineralogische Vektoren zur Rohstofferkundung ähnlich wie derzeit verwendete geochemische Vektoren. Mit der vorliegenden Dissertationsschrift wird aufgezeigt, dass Automatisierte Mineralogie mittels Mineral Liberation Analyser eine einzigartige Kombination an quantitativen Daten zur Mineralogie und verschiedene physikalische Attribute, relevant sowohl für die Lagerstättenforschung als auch für die Aufbereitung mineralischer Rohstoffe, liefern kann. Im Vergleich zu anderen etablierten analytischen Methoden sind es insbesondere die Automatisierung und Unvoreingenommenheit der Daten sowie die Verfügbarkeit von Gefügedaten, Größen- und Forminformationen für Partikel und Mineralkörner, Daten zu Mineralassoziationen und Mineralfreisetzungen welche die großen Vorteile der MLA-Analysen definieren. Trotz der Tatsache, dass die Ergebnisse nur von polierten 2-D Oberflächen erhalten werden, lassen sich die quantitativen Ergebnisse gut/sehr gut mit Ergebnissen anderer Analysemethoden vergleichen. Dies kann vor allem der Tatsache zugeschrieben werden, dass eine sehr große und statistisch solide Anzahl von Mineralkörnern/Partikeln analysiert wird. Ähnliche Vorteile sind bei der Verwendung der MLA als effizientes Werkzeug für die Suche und Charakterisierung von Spurenmineralen von petrologischer oder wirtschaftlicher Bedeutung dokumentiert.
50

Geology, petrology, mineral and whole-rock chemistry, stable and radiogenic isotope systematics and Ni-Cu-PGE mineralisation of the Nebo-Babel intrusion, West Musgrave, Western Australia

Seat, Zoran January 2008 (has links)
The Nebo-Babel Ni-Cu-platinum-group element (PGE) magmatic sulphide deposit, a world-class ore body, is hosted in low-MgO, tube-like (chonolithic) gabbronorite intrusion in the West Musgrave Block, Western Australia. The Nebo-Babel deposit is the first significant discovery of a nickel sulphide deposit associated with the ca. 1078 Ma Giles Complex, which is part of the Warakurna large igneous province (LIP), now making the Musgrave Block a prime target for nickel sulphide exploration. The Musgrave Block is a Mesoproterozoic, east-west trending, orogenic belt in central Australia consisting of amphibolite and granulite facies basement gneisses with predominantly igneous protoliths. The basement lithologies have been intruded by mafic-ultramafic and felsic rocks; multiply deformed and metamorphosed between 1600 Ma and 500 Ma. The Giles Complex, which is part of the Warakurna LIP, was emplaced at ca. 1078 Ma and consists of a suite of layered mafic-ultramafic intrusions, mafic and felsic dykes and temporally associated volcanic rocks and granites. The Giles Complex intrusions are interpreted to have crystallised at crustal depths between 15km and 30km and are generally undeformed and unmetamorphosed.

Page generated in 0.2554 seconds