Spelling suggestions: "subject:"autophagosome"" "subject:"autophagosomes""
11 |
Macrophage et infection par le VIH‐1 : perturbation des fonctions de clairance et d’activation / Macrophage and HIV-1 infection : perturbations of their clearance and activation functionsDumas, Audrey 24 October 2014 (has links)
La phagocytose, fonction fondamentale des macrophages, est un processus qui se décompose en deux étapes bien distinctes : les étapes précoces d’internalisation menant à la formation du phagosome et les étapes tardives de maturation du phagosome. Le virus de l’immunodéficience humaine de type I (VIH-1) infecte les macrophages, ce qui perturbe leurs fonctions. L’effet de l’infection virale dans ces cellules est peu caractérisé en comparaison des lymphocytes T. Des travaux antérieurs ont montré d’une part que l’étape précoce d’internalisation de larges particules et bactéries était bloquée de moitié dans les macrophages primaires humains infectés par le VIH-1 via Nef, la protéine de virulence majeure du virus et d’autres part, que la réponse cytokinique était atténuée chez les patients infectés. Ainsi, nous avons étudié l’effet du VIH-1 sur les étapes tardives de la phagocytose : la maturation du phagosome et l’activation des macrophages qui en résulte. Nous avons montré que le VIH-1 altère les étapes tardives de la phagocytose en inhibant la maturation du phagosome, définie par le recrutement de marqueurs tardifs de la voie d’endocytose, d’hydrolases et la production d’espèces réactives oxygénées. Malgré une pré-activation basale, les macrophages infectés par le VIH-1 sont incapables de répondre efficacement à une stimulation induite par phagocytose, ce qui conduit à une modulation de la réponse transcriptionnelle et cytokinique. La dynamique des microtubules et la migration centripète des phagosomes sont profondément affectées par le virus. De façon inattendue, la protéine virale Vpr est impliquée dans ces perturbations, alors que Nef ne joue pas de rôle notable. Nos résultats indiquent que les composants intracellulaires de la machinerie de tri endosomal sont détournés par le compartiment viral dans les macrophages infectés. Par cette étude, nous avons donc identifié la protéine Vpr comme nouveau modulateur de la dynamique des microtubules et du trafic intracellulaire, entraînant ainsi une altération profonde de la maturation du phagosome et de la clairance bactérienne dans les macrophages infectés. Ce travail contribue à mieux comprendre l’établissement d’infections opportunistes chez les patients infectés. / Phagocytosis, a crucial function of macrophages, is composed of two well defined steps : the early step of internalization leading to phagosome formation and the late step of phagosome maturation. The immunodeficiency virus type I (HIV-1) infects macrophages, which disturbs theirs functions. The effects of HIV-1 infection are poorly characterized in this cell type compared to T lymphocytes. Previous results have already shown that the early step of internalization of large particles and bacteria are half blocked by Nef in HIV-1 infected primary macrophages and that the cytokine response is attenuated in infected patients. Thus, we have studied the effect of HIV-1 infection on the late step of phagocytosis : phagosome maturation and the resulting macrophage activation. We shown that HIV-1 impairs late phagocytic events affecting the phagosome maturation, as defined by late endocytic markers and hydrolases recruitment, and reactives oxygens species production. HIV-1 infected macrophages exhibited a basal preactivation but appeared unable to respond efficiently to phagocytic triggers leading to cytokine and transcriptional modifications. Centripetal migration of phagosomes and microtubule dynamics were deeply altered upon viral infection. Surprisingly, the Vpr viral protein was implicated in these pertubations, while Nef was not. Our results revealed that elements of the endosomal sorting machinery were hijacked to the virus-containing compartments in HIV-infected macrophages. With this study, we identify Vpr as a modulator of the microtubule dynamics and intracellular trafficking, leading to alterations in phagosome maturation and bacterial clearance in HIV-1 infected macrophages. This work contribute to better understanding of the establishment of opportunistic infections in HIV-infected patients.
|
12 |
Exploring mammalian immunity against intracellular bacteria through planarian flatworms / Explorer l'immunité des mammifères contre les bactéries intracellulaires à partir des planairesAbnave, Prasad 25 November 2014 (has links)
Les interactions hôte-pathogène sont un jeu vaste et complexe entre agent pathogène et hôtepour la victoire de la bataille de la pathogenèse. Plusieurs organismes modèles sont étudiéspour illustrer les mécanismes impliqués dans ces interactions. Dans ma thèse, j'ai utilisé lesplanaires comme un organisme modèle pour explorer les interactions hôte-pathogène. Comme les différents organismes modèles peuvent mettre enévidence les différentes caractéristiques de l'immunité, j'ai décidé de tirer avantage del'absence de connaissances sur l'immunité des planaires en explorant l'inexplorée. Dans monprojet, j'ai infecté les planaires avec 16 bactéries pathogènes : les planaires y sont très résistantes. Pour en explorer lemécanisme j'ai effectué un profilage du transcriptome à partir deplanaires infectées, suivie par un criblage par ARN interférence des gènes up-régulés. J'aidécouvert les gènes qui régissent la résistance antibactérienne dans les planaires, et de façonintéressante, le criblage a permis de mettre en évidence un gène, MORN2, dont la fonctionimmunologique était complètement inconnue. L'induction et l'extinction de l'expression de MORN2dans les macrophages ont révélé que MORN2 contrôle l'internalisation, la réplication et letrafic des bactéries à l'intérieur de la cellule. Dans mon étude, j'ai démontré que MORN2 estun composant de la phagocytose associée à LC3 et qu'il peut surmonter le blocage de lafusion phagolysosomale imposée par les bactéries pathogènes. Ainsi ma thèse met en avantl'importance d'utiliser des organismes modèles inhabituels afin de dévoiler des mécanismesinexplorées et des molécules impliquées dans les interactions hôte-pathogène. / Host-pathogen interaction is a vast and complex interplay between pathogen and hostto conquer the battle of pathogenesis. Several model organisms are being studied to illustratethe mechanisms involved in these interactions. In my thesis I have used planarians as a modelorganism to explore host-pathogen interactions. As different model organismscan highlight different features of immunity I decided to take advantage of lack of knowledgeabout planarian immunity and get benefits from exploring unexplored. In my project I haveinfected planarians with 16 pathogenic bacteria and I found that in contrary to othercommonly used model organisms such as Drosophila, C. elegans and zebrafish the planariansare highly resistant to bacterial infections. To explore the mechanism behind this resistance Iperformed infection induced transcriptome profiling followed by RNA interference screeningof up-regulated gens. I discovered genes governing antibacterial resistance in planarians andinterestingly the screening highlighted a gene MORN2 of which the immunological functionwas completely unknown. The human ortholog of MORN2 is then further assessed for itsantimicrobial function. Induced expression and down regulation of MORN2 in macrophagesrevealed that MORN2 controls uptake, replication and trafficking of bacteria inside the cell.In my study I demonstrated that MORN2 is a component of LC3-associated phagocytosis andit can overcome phagosome maturation blockage imposed by pathogenic bacteria. Thus mythesis propounds the importance of using unusual model organisms to unveil unexploredmechanisms and molecules involved in host-pathogen interactions.
|
13 |
Étude protéomique et fonctionnelle des mécanismes de présentation croisée des antigènes exogènes dans les macrophagesHoude, Mathieu January 2004 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
14 |
Mechanisms of the intracellular survival of Francisella tularensisTancred, Linda January 2011 (has links)
Francisella tularensis is a gram-negative, highly virulent, intracellular bacterium which causes the zoonotic disease tularemia. The subspecies tularensis and holarctica are clinically important, and the former is the more virulent. The intracellular lifestyle of F. tularensis is not completely understood, but after uptake in monocytes, the bacterium escapes from the phagosome within hours and replicates massively in the cytosol. The escape is dependent on factors encoded by the Intracellular Growth Locus (igl) operon, located in the Francisella Pathogenicity Island, FPI. The thesis was aimed to clarify and understand the interaction of F. tularensis strains with the endosomal pathway of monocytic cells in general and the roles of the Igl proteins and the global regulator MglA for this interaction in particular. A focus has also been to elucidate the roles of reactive oxygen and nitrogen species for the intracellular host-parasite interaction. We show that mutants in the IglB, IglC, or IglD proteins or their regulator MglA of the live vaccine strain, LVS (subspecies holarctica), all demonstrated reduced replication rates and lowered cytopathogenicity compared to the wild type in a J774 mouse macrophage cell model. Colocalization with LAMP-1 was significantly increased for the IglC, IglD and MglA mutants compared to LVS. This indicated an impaired ability to escape into the cytoplasm, while at the same time they, like LVS, partly prevented fusion with lysosomes. IFN-γ activation of the J774 host cells prior to infection had a bactericidal effect on LVS and all of the mutants, though the cidal effect was significantly more pronounced for the mutants. Following IFN-γ activation, a majority of the mutant-containing phagosomesfused with lysosomeswhile LVS remained localized in the cytosol without significantly increased interactions with the endosomal pathway. Previous studies have revealed that IFN-γ activation of F. tularensis-infected macrophages leads to control of infection but conclusions about the importance of reactive nitrogen and oxygen species on bacterial killing are inconsistent. We found that the growth inhibition resulting from IFN-γ activation could not be attributed to an increased oxidative burst since PMA-induced superoxide production was still inhibited by LVS to the same extent as in non-activated macrophages. On the other hand, reactive nitrogen species may in part have contributed to the cidal effect. To further assess the role of reactive nitrogen species to the killing of F. tularensis, nitric oxide was administrated exogenously to J774 cells infected with LVS. This led to significant killing of intracellular LVS with a concomitant increased phagosomal localization and downregulation of the virulence gene regulator mglA. These effects were reversed by addition of a peroxynitrite decomposition catalyst. A spontaneous avirulent mutant of subspecies tularensis, strain FSC043, was previously demonstrated to provide protective immunity in mice. Here, microscopic analyses of the strain revealed an unusual intracellular localization with a delayed phagosomal escape. This may account for the low virulence, while at the same time FSC043 remains immunogenic and thereby confers protection. The igl operon is intact in strain FCS043 and we hypothesize that a defect in the FPI gene pdpC contributed to the observed phenotype. Altogether, this thesis work demonstrates the importance of the mglA and igl genes for the virulence of F. tularensis and specifically their important roles for a functional phagosomal escape and inhibition of the host cell oxidative burst. Also, addition of exogenous nitric oxide likely leads to formation of peroxynitrite intracellularly, a reactive molecule which confines the bacterium to the phagosome and confers a significant bactericidal effect on intracellular F. tularensis.
|
15 |
Legionella pneumophila and caspases: modulation of the actin cytoskeletonCaution, Kyle J. January 2015 (has links)
No description available.
|
16 |
Characterization of the PdpA protein and its role in the intracellular lifestyle of Francisella novicidaSchmerk, Crystal Lynn 29 April 2010 (has links)
Francisella tularensis is a highly virulent, intracellular pathogen that causes the disease tularaemia. Francisella species contain a cluster of genes referred to as the Francisella pathogenicity island (FPI). Several genes contained in the FPI encode proteins needed for the intracellular growth and virulence of Francisella tularensis. Pathogenicity determinant protein A (PdpA), encoded by the pdpA gene, is located within the FPI and has been associated with the virulence of Francisella species.
The experiments outlined in this dissertation examine the properties of PdpA protein expression and localization as well as the phenotypes of non-polar F. novicida pdpA mutants. Monoclonal antibody detection of PdpA showed that it is a soluble protein that is upregulated in iron-limiting conditions and undetectable in an mglA or mglB mutant background. Deletion of pdpA resulted in a strain that was highly attenuated for virulence in chicken embryos and mice.
The ΔpdpA strain was capable of a small amount of intracellular replication but, unlike wild-type F. novicida, remained associated with the lysosomal marker LAMP-1, suggesting that PdpA is necessary for progression from the early phagosome phase of infection. Infection of macrophages with the ΔpdpA mutant generated a host-cell mRNA profile distinct from that generated by infection with wild type F. novicida. The transcriptional response of the host macrophage indicates that PdpA functions directly or indirectly to suppress macrophage ability to signal via growth factors, cytokines and adhesion ligands.
Experiments were designed to mutagenize a putative F-box domain within the amino terminus of PdpA. Deletion of amino acids 112-227 created a strain which was impaired in intracellular replication and exhibited severely reduced virulence. However, alanine mutagenesis of key conserved leucine residues required for the interaction of F-box domains with host proteins had no observed effect on bacterial growth in macrophages and did not affect virulence in chicken embryos or mice.
Mono and polyubiquitinated proteins associated with both the wild type F. novicida and ΔpdpA bacterial strains early during the infection of J774A.1 macrophages. After 1 hour of infection the wild type strain developed a more intimate association with mono and polyubiquitinated proteins whereas the ΔpdpA strain did not. Inhibition of the host cell proteasome during infection did not affect the intracellular growth of wild type F. novicida.
PdpA research concludes by examining the secretion patterns of F. novicida. PdpA was not detected as a surface exposed protein using biotinylation whereas IglA, IglB and IglC were found to be surface exposed in both wild type and ΔpdpA backgrounds. These observations suggest that PdpA is not involved in the assembly or function of the Francisella secretion system. FLAG tagged PdpA protein could not be detected in the TCA precipitated supernatant of broth grown cultures or in the immunoprecipitated cytosol of infected macrophages suggesting that PdpA is not a secreted protein.
|
17 |
The Interactions of Clostridium Perfringens With Phagocytic CellsO'Brien, David Kenneth 24 April 2003 (has links)
Clostridium perfringens is the most common cause of gas gangrene (clostridial myonecrosis), a disease that begins when ischemic tissues become contaminated with C. perfringens. C. perfringens quickly multiplies in ischemic tissues and spreads to healthy areas, leading to high levels of morbidity and mortality. As a species, the bacterium can synthesize thirteen different toxins. The alpha toxin (PLC) and perfringolysin O (PFO) are thought to be important virulence factors in gangrene. We wished to understand how C. perfringens is capable of avoiding killing by the host immune system, and determine if PLC and PFO play a role in this avoidance. We found C. perfringens was not killed by J774-33 cells or mouse peritoneal macrophages under aerobic or anaerobic conditions. Using electron microscopy, we showed that C. perfringens could escape the phagosome of J774-33 and mouse peritoneal macrophages. We believe the ability of C. perfringens to survive in the presence of macrophages is due to its ability to escape the phagosome. Using a variety of inhibitors of specific receptors, we identified those used by J774-33 cells to phagocytose C. perfringens. The scavenger receptor, mannose receptor(s), and complement receptor (CR3) were involved in the phagocytosis of C. perfringens. To determine if PFO or PLC were involved in the ability of C. perfringens to survive in the presence of macrophages, we constructed C. perfringens strains lacking these toxins. The ability of C. perfringens to survive in the presence of J774-33 cells is dependent on PFO, while survival in mouse peritoneal macrophages is dependent on PFO and PLC. The ability of C. perfringens to escape the phagosome of J774-33 cells and mouse peritoneal macrophages is mediated by either PFO or PLC. Using a mouse model, we found that PFO and PLC were necessary for C. perfringens to survive in vivo using infectious doses 1000 times lower than those required to initiate a gangrene infection. We propose that PFO and PLC play a critical role in the survival of C. perfringens during the early stages of gangrene infections, when phagocytic cells are present and bacterial numbers are low. / Ph. D.
|
18 |
Étude des voies d’apprêtement des antigènes viraux menant à la présentation antigénique par les CMH de classe IEnglish, Luc 06 1900 (has links)
Le contrôle immunitaire des infections virales est effectué, en grande partie, par les lymphocytes T CD8+ cytotoxiques. Pour y parvenir, les lymphocytes T CD8+ doivent être en mesure de reconnaître les cellules infectées et de les éliminer. Cette reconnaissance des cellules infectées s’effectue par l’interaction du récepteur T (TCR) des lymphocytes T CD8+ et des peptides viraux associés au complexe majeur d’histocompatibilité (CMH) de classe I à la surface des cellules hôtes. Cette interaction constitue l’élément déclencheur permettant l’élimination de la cellule infectée. On comprend donc toute l’importance des mécanismes cellulaires menant à la génération des peptides antigéniques à partir des protéines virales produites au cours d’une infection.
La vision traditionnelle de cet apprêtement protéique menant à la présentation d’antigènes par les molécules du CMH propose deux voies cataboliques distinctes. En effet, il est largement admis que les antigènes endogènes sont apprêtés par la voie dite ‘‘classique’’ de présentation antigénique par les CMH de classe I. Cette voie implique la dégradation des antigènes intracellulaires par le protéasome dans le cytoplasme, le transport des peptides résultant de cette dégradation à l’intérieur du réticulum endoplasmique, leur chargement sur les molécules du CMH de classe I et finalement le transport des complexes peptide-CMH à la surface de la cellule où ils pourront activer les lymphocytes T CD8+. Dans la seconde voie impliquant des antigènes exogènes, le dogme veut que ceux-ci soient apprêtés par les protéases du compartiment endovacuolaire. Les peptides ainsi générés sont directement chargés sur les molécules de CMH de classe II à l’intérieur de ce compartiment. Par la suite, des mécanismes de recyclage vésiculaire assurent le transport des complexes peptide-CMH de classe II à la surface de la cellule afin de stimuler les lymphocytes T CD4+. Cependant, cette stricte ségrégation des voies d’apprêtement antigénique a été durement éprouvée par la capacité des cellules présentatrices d’antigènes à effectuer l’apprêtement d’antigènes exogènes et permettre leur présentation sur des molécules de CMH de classe I. De plus, l’identification récente de peptides d’origine intracellulaire associés à des molécules de CMH de classe II a clairement indiqué la présence d’interactions entre les deux voies d’apprêtement antigénique permettant de transgresser le dogme préalablement établi.
L’objectif du travail présenté ici était de caractériser les voies d’apprêtement antigénique menant à la présentation d’antigènes viraux par les molécules du CMH de classe I lors d’une infection par le virus de l’Herpès simplex de type I (HSV-1). Dans les résultats rapportés ici, nous décrivons une nouvelle voie d’apprêtement antigénique résultant de la formation d’autophagosomes dans les cellules infectées. Cette nouvelle voie permet le transfert d’antigènes viraux vers un compartiment vacuolaire dégradatif dans la phase tardive de l’infection par le virus HSV-1. Cette mise en branle d’une seconde voie d’apprêtement antigénique permet d’augmenter le niveau de présentation de la glycoprotéine B (gB) virale utilisée comme modèle dans cette étude. De plus, nos résultats décrivent la formation d’une nouvelle forme d’autophagosomes dérivés de l’enveloppe nucléaire en réponse à l’infection par le virus HSV-1. Ces nouveaux autophagosomes permettent le transfert d’antigènes viraux vers un compartiment vacuolaire lytique, action également assurée par les autophagosomes dits classiques. Dans la deuxième partie du travail présenté ici, nous utilisons l’infection par le virus HSV-1 et la production de la gB qui en résulte pour étudier le trafic membranaire permettant le transfert de la gB vers un compartiment vacuolaire dégradatif. Nos résultats mettent en valeur l’importance du réticulum endoplasmique, et des compartiments autophagiques qui en dérivent, dans ces mécanismes de transfert antigénique permettant d’amplifier la présentation antigénique de la protéine virale gB sur des CMH de classe I via une voie vacuolaire. L’ensemble de nos résultats démontrent également une étroite collaboration entre la voie classique de présentation antigénique par les CMH de classe I et la voie vacuolaire soulignant, encore une fois, la présence d’interaction entre les deux voies. / Immune control of viral infections is mainly carried out by cytotoxic CD8+ T lymphocytes. To achieve this, CD8+ T lymphocytes must be able to recognize infected cells and eliminate them. This recognition of infected cells occurs by the interaction of the T cell receptor (TCR) of CD8+ T lymphocytes and viral peptides associated with major histocompatibility complex (MHC) class I on the surface of host cells. This interaction is the key element triggering the elimination of infected cells. This emphasizes the major role of cellular mechanisms leading to the generation of antigenic peptides from viral proteins.
The traditional view of antigen presentation by MHC molecules proposes two segregated pathways. Indeed, it is widely accepted that endogenous antigens are processed by the ''classical'' MHC class I presentation pathway. This pathway involves the degradation of intracellular antigens by the proteasome complex in the cytoplasm of the cell, the resulting peptides are then translocated in the endoplasmic reticulum where they are loaded on MHC class I molecules, and finally peptide-MHC complex are exported at the cell surface to activate CD8+ T lymphocytes. In contrast, exogenous antigens internalized by endocytosis or phagocytosis are processed by hydrolases in the lytic endovacuolar compartment and the resulting peptides are loaded on MHC class II molecules. Thereafter, vesicle recycling mechanisms transport the peptide-MHC class II complex on the cell surface where they can stimulate CD4+ T lymphocytes.
However, the strict segregation of these two pathways has been revisited to account for the ability of antigen presenting cells to present exogenous antigens on MHC class I molecules by a process called cross-presentation. Moreover, the recent finding that intracellular peptides might also be presented by MHC class II molecules clearly emphasized the presence of interactions between these two antigen processing pathways that transgress the previously established dogma.
The objective of the work presented here was to characterize the antigen processing pathways leading to antigen MHC class I presentation during herpes simplex type I (HSV-1) infection. In the results reported here, we describe a new antigen processing pathway resulting from the formation of autophagosomes in HSV-1 infected cells. This new pathway allows the transfer of viral antigens in a lytic vacuolar compartment during the late phase of infection. The development and activation of this second pathway of antigen processing leads to an increased MHC class I presentation of the viral glycoprotein B (gB) used as a model in this study. Moreover, our results describe the establishment of a new form of autophagosomes derived from the nuclear envelope in response to HSV-1 infection. This new form of autophagosomes also contributes to viral antigen transfer to lytic vacuolar compartment in parallel to the action of classical autophagy. Our results also show a close collaboration between the classical MHC class I presentation pathway and vacuolar pathway induced by the formation of autophagosomes, still reinforcing the idea that these two pathways interact together to ensure optimal antigens processing during viral infection. In the second part of the work presented here, we use HSV-1 infection and the resulting viral glycoprotein B to study membrane trafficking allowing the transfer of gB to degradative vacuolar compartments. Our results highlight the role of the endoplasmic reticulum in antigen transfer mechanisms that induce an amplified MHC class I presentation of the viral glycoprotein B.
|
19 |
Étude des voies d’apprêtement des antigènes viraux menant à la présentation antigénique par les CMH de classe IEnglish, Luc 06 1900 (has links)
Le contrôle immunitaire des infections virales est effectué, en grande partie, par les lymphocytes T CD8+ cytotoxiques. Pour y parvenir, les lymphocytes T CD8+ doivent être en mesure de reconnaître les cellules infectées et de les éliminer. Cette reconnaissance des cellules infectées s’effectue par l’interaction du récepteur T (TCR) des lymphocytes T CD8+ et des peptides viraux associés au complexe majeur d’histocompatibilité (CMH) de classe I à la surface des cellules hôtes. Cette interaction constitue l’élément déclencheur permettant l’élimination de la cellule infectée. On comprend donc toute l’importance des mécanismes cellulaires menant à la génération des peptides antigéniques à partir des protéines virales produites au cours d’une infection.
La vision traditionnelle de cet apprêtement protéique menant à la présentation d’antigènes par les molécules du CMH propose deux voies cataboliques distinctes. En effet, il est largement admis que les antigènes endogènes sont apprêtés par la voie dite ‘‘classique’’ de présentation antigénique par les CMH de classe I. Cette voie implique la dégradation des antigènes intracellulaires par le protéasome dans le cytoplasme, le transport des peptides résultant de cette dégradation à l’intérieur du réticulum endoplasmique, leur chargement sur les molécules du CMH de classe I et finalement le transport des complexes peptide-CMH à la surface de la cellule où ils pourront activer les lymphocytes T CD8+. Dans la seconde voie impliquant des antigènes exogènes, le dogme veut que ceux-ci soient apprêtés par les protéases du compartiment endovacuolaire. Les peptides ainsi générés sont directement chargés sur les molécules de CMH de classe II à l’intérieur de ce compartiment. Par la suite, des mécanismes de recyclage vésiculaire assurent le transport des complexes peptide-CMH de classe II à la surface de la cellule afin de stimuler les lymphocytes T CD4+. Cependant, cette stricte ségrégation des voies d’apprêtement antigénique a été durement éprouvée par la capacité des cellules présentatrices d’antigènes à effectuer l’apprêtement d’antigènes exogènes et permettre leur présentation sur des molécules de CMH de classe I. De plus, l’identification récente de peptides d’origine intracellulaire associés à des molécules de CMH de classe II a clairement indiqué la présence d’interactions entre les deux voies d’apprêtement antigénique permettant de transgresser le dogme préalablement établi.
L’objectif du travail présenté ici était de caractériser les voies d’apprêtement antigénique menant à la présentation d’antigènes viraux par les molécules du CMH de classe I lors d’une infection par le virus de l’Herpès simplex de type I (HSV-1). Dans les résultats rapportés ici, nous décrivons une nouvelle voie d’apprêtement antigénique résultant de la formation d’autophagosomes dans les cellules infectées. Cette nouvelle voie permet le transfert d’antigènes viraux vers un compartiment vacuolaire dégradatif dans la phase tardive de l’infection par le virus HSV-1. Cette mise en branle d’une seconde voie d’apprêtement antigénique permet d’augmenter le niveau de présentation de la glycoprotéine B (gB) virale utilisée comme modèle dans cette étude. De plus, nos résultats décrivent la formation d’une nouvelle forme d’autophagosomes dérivés de l’enveloppe nucléaire en réponse à l’infection par le virus HSV-1. Ces nouveaux autophagosomes permettent le transfert d’antigènes viraux vers un compartiment vacuolaire lytique, action également assurée par les autophagosomes dits classiques. Dans la deuxième partie du travail présenté ici, nous utilisons l’infection par le virus HSV-1 et la production de la gB qui en résulte pour étudier le trafic membranaire permettant le transfert de la gB vers un compartiment vacuolaire dégradatif. Nos résultats mettent en valeur l’importance du réticulum endoplasmique, et des compartiments autophagiques qui en dérivent, dans ces mécanismes de transfert antigénique permettant d’amplifier la présentation antigénique de la protéine virale gB sur des CMH de classe I via une voie vacuolaire. L’ensemble de nos résultats démontrent également une étroite collaboration entre la voie classique de présentation antigénique par les CMH de classe I et la voie vacuolaire soulignant, encore une fois, la présence d’interaction entre les deux voies. / Immune control of viral infections is mainly carried out by cytotoxic CD8+ T lymphocytes. To achieve this, CD8+ T lymphocytes must be able to recognize infected cells and eliminate them. This recognition of infected cells occurs by the interaction of the T cell receptor (TCR) of CD8+ T lymphocytes and viral peptides associated with major histocompatibility complex (MHC) class I on the surface of host cells. This interaction is the key element triggering the elimination of infected cells. This emphasizes the major role of cellular mechanisms leading to the generation of antigenic peptides from viral proteins.
The traditional view of antigen presentation by MHC molecules proposes two segregated pathways. Indeed, it is widely accepted that endogenous antigens are processed by the ''classical'' MHC class I presentation pathway. This pathway involves the degradation of intracellular antigens by the proteasome complex in the cytoplasm of the cell, the resulting peptides are then translocated in the endoplasmic reticulum where they are loaded on MHC class I molecules, and finally peptide-MHC complex are exported at the cell surface to activate CD8+ T lymphocytes. In contrast, exogenous antigens internalized by endocytosis or phagocytosis are processed by hydrolases in the lytic endovacuolar compartment and the resulting peptides are loaded on MHC class II molecules. Thereafter, vesicle recycling mechanisms transport the peptide-MHC class II complex on the cell surface where they can stimulate CD4+ T lymphocytes.
However, the strict segregation of these two pathways has been revisited to account for the ability of antigen presenting cells to present exogenous antigens on MHC class I molecules by a process called cross-presentation. Moreover, the recent finding that intracellular peptides might also be presented by MHC class II molecules clearly emphasized the presence of interactions between these two antigen processing pathways that transgress the previously established dogma.
The objective of the work presented here was to characterize the antigen processing pathways leading to antigen MHC class I presentation during herpes simplex type I (HSV-1) infection. In the results reported here, we describe a new antigen processing pathway resulting from the formation of autophagosomes in HSV-1 infected cells. This new pathway allows the transfer of viral antigens in a lytic vacuolar compartment during the late phase of infection. The development and activation of this second pathway of antigen processing leads to an increased MHC class I presentation of the viral glycoprotein B (gB) used as a model in this study. Moreover, our results describe the establishment of a new form of autophagosomes derived from the nuclear envelope in response to HSV-1 infection. This new form of autophagosomes also contributes to viral antigen transfer to lytic vacuolar compartment in parallel to the action of classical autophagy. Our results also show a close collaboration between the classical MHC class I presentation pathway and vacuolar pathway induced by the formation of autophagosomes, still reinforcing the idea that these two pathways interact together to ensure optimal antigens processing during viral infection. In the second part of the work presented here, we use HSV-1 infection and the resulting viral glycoprotein B to study membrane trafficking allowing the transfer of gB to degradative vacuolar compartments. Our results highlight the role of the endoplasmic reticulum in antigen transfer mechanisms that induce an amplified MHC class I presentation of the viral glycoprotein B.
|
Page generated in 0.0426 seconds