• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 168
  • 60
  • 38
  • 32
  • 14
  • 7
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 406
  • 406
  • 136
  • 135
  • 125
  • 107
  • 106
  • 101
  • 87
  • 79
  • 69
  • 56
  • 39
  • 37
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Development of Ultrasound Pulse Sequences for Acoustic Droplet Vaporization / Utveckling av ultraljudspulssekvenser för akustisk vaporisering av vätskedroppar

Gouwy, Isabelle January 2019 (has links)
Ultrasound-mediated drug delivery has been proposed as a safe and non-invasive method to achieve localized drug release. Drug-loaded microbubbles are injected in the vascular system and ultrasound waves are then used to localize and burst the microbubbles at a specific targeted area. The relatively large size of microbubbles however limits both their lifetime and their reach in the human body. Phase-change liquid droplets can extend the use of ultrasound contrast agents for localized drug delivery. Their smaller size provides several advantages. The droplets can reach smaller capillaries, such as those in tumors vasculature. Their lifetime is also considerably prolonged. Through the phenomenon of Acoustic Droplet Vaporization (ADV), triggered by ultrasound stimulation, the liquid-filled droplets experience a phase change and are converted into gas-filled microbubbles. The newly created microbubbles can then be disrupted by further stimulation and release their drug load in the tumor tissue. In this project, a protocol to image and burst perfluoropentane-based micro-sized droplets using a single transducer is developed using the Verasonics Ultrasound System. The pulse sequences are developed to allow close monitoring of the drug delivery by capturing a series of images before and after the vaporization or destruction of the droplets. The droplets response was assessed for different pulse voltages and durations. Mean pixel value was calculated for the regions of interest, using the images captured before and after delivery of the ultrasound pulse. Vaporization of the droplets can be achieved with low voltage (10V), whereas high voltage (50V) triggers their destruction. Combined with high voltage, pulse duration affects the rate at which droplets can be destructed.
142

Numerical Modeling of the Effects of Micro-Encapsulated Phase Change Materials Intermixed with Grout in Vertical Borehole Heat Exchangers

Aljabr, Ahmad 09 August 2021 (has links)
No description available.
143

Modeling of Adsorption Separation Processes Using Flexible Metal-Organic Frameworks with Gate-Adsorption Characteristics / 構造柔軟性MOFのゲート吸着特性を活かした吸着分騅プロセスのモデル構築

Sakanaka, Yuta 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第24645号 / 工博第5151号 / 新制||工||1983(附属図書館) / 京都大学大学院工学研究科化学工学専攻 / (主査)准教授 渡邉 哲, 教授 佐野 紀彰, 教授 河瀬 元明 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
144

SYNTHESIS AND CHARACTERIZATION OF FATTY ACID AMIDE-BASED SURFACTANTS AND PHYSICOCHEMICAL PROPERTIES OF EMULSIONS STABILIZED WITH MIXED NONIONIC AND ANIONIC SURFACTANTS

Yue Zheng (11772509) 04 April 2023 (has links)
<p>Surfactant is a type of surface-active molecule with wide industrial applications, such as personal care products, antibacterial products, surface modification, etc. Due to environmental concerns, biobased surfactants derived from renewable sources are of great interest. In the first part of this work, biobased quaternary ammonium (QA) amphiphiles are synthesized from soybean oil via a two-step reaction. For example, fatty acid amides (FAAms) were first synthesized through direct amidation of soybean oil. The FAAms exhibited different liquid-solid phase transition behavior depending on their saturation and chain length. A general trend of increasing enthalpy of fusion, narrower phase transition temperature range, higher melting temperature, and better thermal stability was observed with increasing chain length and saturation. Overall, fifteen green, organic PCMs were synthesized with the comparable latent heat of fusion to petroleum based PCMs. </p> <p>Biobased QA surfactants were successfully synthesized with comparable surface activity to cetyltrimethylammonium bromide (C16TAB) by alkylating FAAms into quaternary ammonium (QA) compounds.  The water solubility of long-chain (C18) QA surfactants was improved by introducing two or more QA groups in the headgroup, or unsaturation in the tail group. All the surfactants exhibited positive charge with high stability against varying pH. Surfactants derived from fully hydrogenated soybean oil (FHS) and diethylenetriamine (DETA) showed lower critical micelle concentration (CMC) and surface tension in water (SFT) than C16TAB. All the other five surfactants had surface activity comparable to C16TAB and C12TAB. These biobased surfactants are potential alternatives to commercial petroleum-derived QA surfactants. </p> <p>The second part of this work is devoted to understanding the effect of mixed surfactant composition on emulsion stability, and formation is beneficial for optimizing the wastewater treatment process. Emulsion behavior in a saline environment was studied with mixed anionic and nonionic surfactants: sodium laureth sulfate (SLES) and Triton X-100. It was found 500 ppm total surfactant concentration was sufficient to stabilize 5 wt. % mineral oil against coalescence, regardless of the surfactant ratio. Compared to Triton X-100-rich emulsions, SLES-rich ones had higher stability against flocculation and creaming. SLES-rich emulsions had twice as much remnant oil in the subnatant as Triton X-100-rich samples, which is undesirable in wastewater treatments. The relation between spontaneous emulsion behavior and the HLD model was studied with SLES-Span-80 surfactant mixtures. The influence of salinity, oil type, and surfactant composition was investigated. Spontaneous emulsification could only be observed when the systems have HLD values close to 0 (-0.96 ~ 1.04). A combined effect of bicontinuous-phase formation and ultra-low interfacial tension led to spontaneous emulsification. This work proposes a practical approach to predict emulsion compositions that result in spontaneous emulsification.</p>
145

Litteraturstudie om latent värmelagrings roll i framtiden / Literature study on the role of latent heat storage in the future

Kristiansson, Marcus, Karem, Agri January 2018 (has links)
Idag står världen inför en rad olika miljörelaterade problem. Ett av dessa och det kanske mest omtalade är hur utsläpp av växthusgaser sakta men säkert höjer planetens medeltemperatur. Hållbar utveckling är ett begrepp som driver diskussionen framåt om vad vi behöver göra och hur vi behöver förändras för att lösa problemen. Växthusgaserna och deras hot mot klimatet är starkt relaterat till energi. Förnyelsebara energikällor skulle kunna vara en dellösning på problemet men de kräver energilagring av olika former för att kunna ersätta sina fossila konkurrenter. Termisk energilagring är ett sätt att lagra energi på och kan delas upp i tre olika grupper. Dessa är sensibel, latent och termokemisk värmelagring. Syftet med denna litteraturstudie var att kartlägga olika applikationer av latent värmelagring som kan bidra till ett mer hållbart samhälle i framtiden. Resultatet visar att det finns många olika typer av så kallade fasomvandlingsmaterial (PCMs). Beroende på vid vilka temperaturer värme ska lagras vid används olika PCMs. PCMs kan användas för latent värmelagring inom många olika områden. Byggnader är ett av dessa områden där PCMs kan användas för att kyla och värma utrymmen antingen genom integration i ventilationssystem eller i själva byggnadsmaterialen. Latent värmelagring kan också användas i termiska solkraftverk. Latent värmelagring har på senare tid fått stor uppmärksamhet tack vare PCMs förmåga att lagra värme i små volymer och under konstant temperatur. Dock möter tekniken problem vid värmeöverföringen vilket t.ex. är fallet i lagring av termisk solenergi. Forskning pågår därför för att generellt höja PCMs termiska egenskaper. Ett exempel på detta är Nano-PCM. Resultatet visar även att latent värmelagring idag används av företag som affärsidé för olika tillämpningar. Från resultatet går det att dra slutsatsen att latent värmelagring används idag men att det krävs ytterligare forskning för att tekniken ska kunna konkurrera med andra värmelagringsmetoder. / Today, the world faces a number of environmental-related problems. One of these and perhaps most discussed is how emissions of greenhouse gases slowly but surely raise the planet’s average temperature. Sustainable development is a concept that drives the discussion forward and tells us what we need to do and how we need to change to solve the problems. Greenhouse gases and their threats to the climate are strongly related to energy. Renewable sources of energy could be a partial solution to the problem, but they require energy storage of different forms to replace their fossil competitors. Thermal energy storage is a way of storing energy and can be divided into three different groups. These are sensible, latent and thermochemical heat storage. The purpose of this literature study was to map different applications of latent heat storage that can contribute to a more sustainable society in the future. The result shows that there are many different types of phase changing materials (PCMs). Depending on the temperature at which heat is to be stored, different PCMs are used. PCMs can be used for latent heat storage in many different areas. Buildings are one of these areas where PCMs can be used to cool and heat spaces either through integration into ventilation systems or in the building materials itself. Latent heat storage can also be used in thermal solar power plants. Latent heat storage has recently received great attention thanks to PCMs ability to store heat in small volumes and under constant temperature. However, the technology is experiencing problems in the heat transfer, such is the case in the storage of thermal solar energy. Research is therefore ongoing to generally increase PCMs thermal properties. An example of this is Nano-PCM. The result also shows that latent heat storage today is used by companies as a business concept for various applications. From the result, it can be concluded that latent heat storage is used today, but that further research is required for the technology to compete with other heat storage methods.
146

Design and Simulation of Passive Thermal Management System for Lithium-Ion Battery Packs on an Unmanned Ground Vehicle

Parsons, Kevin Kenneth 01 December 2012 (has links) (PDF)
The transient thermal response of a 15-cell, 48 volt, lithium-ion battery pack for an unmanned ground vehicle was simulated with ANSYS Fluent. Heat generation rates and specific heat capacity of a single cell were experimentally measured and used as input to the thermal model. A heat generation load was applied to each battery and natural convection film boundary conditions were applied to the exterior of the enclosure. The buoyancy-driven natural convection inside the enclosure was modeled along with the radiation heat transfer between internal components. The maximum temperature of the batteries reached 65.6 °C after 630 seconds of usage at a simulated peak power draw of 3,600 watts or roughly 85 amps. This exceeds the manufacturer's maximum recommended operating temperature of 60 °C. The pack was redesigned to incorporate a passive thermal management system consisting of a composite expanded graphite matrix infiltrated with a phase-changing paraffin wax. The redesigned battery pack was similarly modeled, showing a decrease in the maximum temperature to 50.3 °C after 630 seconds at the same power draw. The proposed passive thermal management system kept the batteries within their recommended operating temperature range.
147

Experimental Evaluation of Innovative Thermal Energy Storage Options for a Hypersonic Non-Airbreathing Vehicle's Internal Loads

Arbolino, John Christopher 28 August 2023 (has links)
Managing the thermal loads inside a non-airbreathing hypersonic vehicle is particularly difficult. The heat generated by the power electronics, avionics, etc. must be removed so that the components do not exceed their maximum temperatures. These vehicles cannot dump the waste heat into fuel or ram air because they carry no fuel and do not have provisions for ram air. This means that the thermal energy resulting from the heat generated must be dumped into an onboard heat sink. Existing solutions to this problem have been passive systems based on solid-liquid phase change materials (PCMs), which store thermal energy as they melt. Since space is at a premium, a heat sink must store a lot of energy per unit volume, while keeping components below their maximum temperature. In this project, three heat sink concepts are tested, i.e., one based on PCMs, a second on thermal to chemical (TTC) energy storage, and a third on a hybrid combination of the first two. For the first, three different PCMs are tested and for the second a single endothermic chemical reaction. The hybrid PCM/TTC concept consists of a single PCM which plays the dual role of PCM and reactant in the endothermic chemical reaction of the TTC energy storage. To enhance heat sink performance, the use of thermoelectric generators (TEGs) and a local coolant loop are investigated. The advantage of the former is that they transform waste heat into usable electricity, reducing the amount of thermal energy that needs to be stored by the heat sink. The advantage of the latter is that it results in a more uniform cooling of the heat source and more uniform heating of the heat sink. Prototypes of each of the heat sink concepts and the coolant loop are designed, built, and tested. Experimental results indicate that all the solutions tested in this project outperform widely used paraffin heat sink technologies on an energy per unit volume basis. Our experiments also show that a local coolant loop is indeed advantageous and that current off-the-shelf thermoelectric generators do not generate enough power to offset the power requirements of the coolant loop. Significant improvements in the ZT factor of the thermoelectric materials used by the TEG would be required. / Master of Science / All electronics produce waste heat and have a maximum operating temperature above which they fail due to overheating. Heat sinks absorb the waste heat and prevent overheating. Non-airbreathing hypersonic vehicles do not have natural heat sinks like intake air or liquid fuel which are commonly used as heat sinks in airbreathing vehicles. Heat cannot be transferred to the environment due to the high temperatures caused by the friction of hypersonic air travel. This means that all waste heat must absorbed by an onboard heat sink. Existing heat sinks in non-airbreathing hypersonic vehicles use paraffin based solid-liquid phase change materials (PCMs) which store thermal energy as they melt. Three novel heat sink options are evaluated in this project, hydrated salt PCMs which absorb energy as they melt, a chemical reaction which absorbs heat as it reacts, and a hybrid system which incorporates one of the hydrates salt PCM as a reactant in the chemical reaction. Because space is at a premium, these options are evaluated by the amount of energy they can absorb (kilojoules) per unit volume (in3) while keeping the electronics below their maximum temperature. To enhance heat sink performance, the use of thermoelectric generators (TEGs) and a local coolant loop are investigated. The advantage of the former is that they transform waste heat into usable electricity, reducing the amount of thermal energy that needs to be stored by the heat sink. The advantage of the latter is that it results in a more uniform cooling of the electronics and more uniform heating of the heat sink. Prototypes of each of the heat sink concepts and the coolant loop are designed, built, and tested. Experimental results indicate that all the solutions tested in this project outperform widely used paraffin heat sink technologies on an energy per unit volume basis. Our experiments also show that a local coolant loop is indeed advantageous and that current off-the-shelf thermoelectric generators do not generate enough power to offset the power requirements of the coolant loop. Significant improvements in the state of the art of thermoelectric materials would be required for TEGs to generate enough electricity from our waste heat load to power the local coolant loop.
148

Novel Phase-Chance Soft Actuators Controlled via Peltier

Johnson, Daniel Cody 07 1900 (has links)
Soft actuation methods are a developing field of robotics deemed suitable for physical human-robot interactions due to the adaptability of materials and compliant structures. Thermo-active soft actuators are a subset of these which convert thermal energy to mechanical work in the form of elongation, bending, or twisting to conform to the environment. This study is divided into three major studies that all use actuators with a working principle of phase-change fluid vaporizing for expansion with applied heat from a Peltier. The first study evaluates the bandwidth and efficiency between (i) traditional Joule heating, and (ii) Peltier heating, finding that Peltier heating can considerably improve the operational bandwidth of the actuator. The second study uses a thin membrane actuator placed in a braided mesh to form a McKibben muscle capable of lifting 5N, and formed into a gripper capable of manipulating objects within the environment. The third study uses actuators of a solid, hollow and flexible Peltier embedded silicone structure and are evaluated and optimized in order to increase actuation speed, finding that the embedded flexible Peltier design was able to elongate over 50% of its original height in 20 seconds. The overall aim of all of these studies was to improve bandwidth, efficiency, actuator lifetime, and create more symmetrical actuation and deactuation cycles.
149

Phase Change Material : Potential for increased fire resistance in concrete

Toivanen, William January 2023 (has links)
The European commission has in the Energy Performance of Buildings Directive from 2010 decided that its member states were required to ensure that all new buildings by the end of 2020 were nearly zero-energy buildings. These buildings require small amounts of energy compared to its performance in example by keeping a pleasant indoor climate. To achieve these goals there is an option for integrating phase changing material into building material.   The purpose of this project was to determine which kind of PCM is suitable for use in building materials to increase its fire resitance, taking inspiration from the report Fasomvandlingsmaterial: Risker och möjligheter written by Michael Försth, Alexandra Byström and Jonathan Wolf. In particular, the aim was to observe if the application of PCM, in pure powder form, into pure concrete could increase the time until it reaches it critical temperature of 500 °C. The choice of PCM to be used was decided by a literature review and initial thermal tests, and in this case, Magnesium Carbonate Hydroxide Pentahydrate, MCHP, was used as a substitute for the cement, in this project.    The project has been carried out through a literature review and laboratory experiments. The laboratory experiments were performed in different stages. First, the thermal properties of the PCM were decided by using a DSC (differential scanning calorimeter) and a TGA (Thermogravimetric analysis). Three kinds of PCMs (Magnesium hydroxide, Aluminium hydroxide and MCHP) were tested from the results of the literature review. The DSC gave a variation in results between the three tested PCMs. MCHP showed two melting phases which produced different kind of fire-retardant products and theoretically would give two instances of stopping the heating of the concrete. With that MCHP was then chosen as the most appropriate one to be incorporated into concrete. From there, pure concrete samples and with PCM mixed in, with different weight percentage varying between 2-10 weight percent (wt.%) of the cements weight, with a thermocouple embedded in the bottom were manufactured. Thereafter, a cone calorimeter was used with the constant heat flux of 50 kW·m-2 as a source of heat radiation.   The results shows that the application of the PCM in the concrete by replacing the cement does not give any noticeable increase in its fire resistance by increasing the time until it reaches 500 °C. Neither did it show any signs of the heating curve to flatten out, which in theory would have occurred during melting of the PCM. This could depend on the way the heat transfers down through the concrete and melts the PCM along the way towards the bottom and the thermocouple measuring the temperature. Making the thermocouple only register the heating of the concrete in close proximity to it. Therefore only a small amount of PCM melts and the required energy is not enough to halt the heating. Theoretical calculations performed showed that the melting of the PCM in the case with 5 and 10 wt.% gave an improvement by increasing the time until critical temperature is reached with 4 % and 7.3 %, compared to a pure concrete sample. The melting of the PCM is responsible for 1 % respectively 2 % of that time increased compared to the pure concrete sample. The rest of the increase in time comes from the PCMs thermal properties which is higher than the cement. The literature study shows that there exist many suitable PCM for increasing a building material’s fire resistance, some of which are already used as fire retardants. It also shows that PCM can affect a material’s fire resistance in more ways than just the heat storage (latent heat) in the melting phase.    The conclusion of this report is that substituting concrete with MCHP in powder form is not suitable and does not affect the concretes fire resistance. But the usage of PCM in concrete should not be dismissed. There exist different ways to implement the PCM into the concrete which could give a desirable result.
150

Characterization and Controllable Nucleation of Supercooled Metallic Phase Change Materials

Elston, Levi Jerome 15 May 2023 (has links)
No description available.

Page generated in 0.0492 seconds