• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 296
  • 17
  • 17
  • 14
  • 8
  • 7
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 448
  • 395
  • 224
  • 216
  • 83
  • 79
  • 78
  • 75
  • 73
  • 71
  • 62
  • 59
  • 58
  • 53
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

Caractérisation de nanostructures de Fe élaborées sur substrat isolant LaAlO3 : expériences et simulation / Characterization of Fe nanostructures elaborate on insulator LaAlO3 : expérience and simulation

Zanouni, Mohamed 11 September 2015 (has links)
Les mémoires flash non volatiles - utilisées dans les ordinateurs, les téléphones portables ou les clés USB - peuvent être constituées de nanostructures semiconductrices (SC) ou métalliques insérées dans une matrice isolante. Elles nécessitent l’élaboration d’hétérostructures de type "oxyde/métal/oxyde/SC" et la maîtrise de chaque interface. Dans ce cadre, nous avons étudié les premiers stades de la croissance de nanostructures de Fer élaborées par épitaxie par jet moléculaire (EJM) sur les substrats d’oxyde (high-k) cristallins LaAlO3(001) et LaAlO3(111). Les propriétés chimiques et structurales ont été déterminées, in-situ, par spectroscopie de photoélectrons X (XPS), diffraction de photoélectrons X (XPD) et diffraction d’électrons (RHEED et LEED) puis ex-situ par microscopie électronique en transmission (TEM). Une étude par simulation des profils XPD, basée sur la théorie de la diffusion multiple, a été menée à l’aide du programme de calcul Ms-Spec. L’étude de la croissance de Fe sur LaAlO3(001) à différentes températures de substrat a montré l’existence d’une fenêtre étroite de température, autour de 500 °C, où la croissance de Fe est épitaxique et de type Volmer-Weber (îlots 3D). Les analyses RHEED, XPD et TEM ont mis en évidence une unique relation d’épitaxie, où la maille élémentaire de Fe est tournée de 45° par rapport à celle du substrat. Les résultats XPS ont montré un environnement chimique unique des atomes de Fer (forme atomique), traduisant l’absence de toute inter-diffusion à l’interface Fe/LaAlO3(001). L’étude de la croissance de Fe sur LaAlO3(111) a également mis en évidence un mode de croissance Volmer-Weber et une interface abrupte. Par ailleurs, tout un travail de développement à l'intérieur du code Ms-Spec a été nécessaire afin de surmonter des problèmes de convergence des calculs de diffusion multiple rencontrés dans le cas d’atomes lourds ayant des énergies cinétiques élevées (atomes de La dans LaAlO3). À cette fin, quatre hypothèses ont été formulés:1- Une prise en compte insuffisante des processus inélastiques :2- L’approximation muffin-tin n'est plus suffisante pour décrire correctement le potentiel ;3- Trop de chemins de faible intensité sont négligés ;4- Divergence de la série de diffusion multiple utilisée pour calculer la section efficace.Les calculs ont montré que les trois premières hypothèses n’ont pas d’influence sur la convergence dans le cas présent. En revanche, la quatrième hypothèse a été validée. En effet, on a montré que du fait du fort pouvoir diffuseur des atomes de La, le développement en série de diffusion multiple pouvait diverger (rayon spectral, i.e. la plus grande des valeurs propres en module de la matrice de diffusion, > 1) pour des grandes tailles d'amas de LaAlO3, alors qu’il converge pour des amas de Si et de MgO de taille similaire (les deux systèmes utilisés en comparaison). Par ailleurs, au-delà de quelques centaines d’atomes, le rayon spectral de LaAlO3, même inférieur à 1, reste important ce qui rend la convergence très lente. / Non-volatile flash memories embedding nanocrystals (NC) are promissing devices for use in computers, mobiles phones or USB keys. The insertion of semiconducting (SC) or metal NC in an insulating matrix requires the elaboration of complex "oxide/metal/oxide/SC" heterostructures and the control of the associated successive growth steps. In this context, we have studied the first growth stades of Fe nanostructures elaborated by Molecular Beam Epitaxy (MBE) on the of crystalline oxides (high-k) substrates of LaAlO3(001) and LaAlO3(111). Chemical and structural properties were investigated in-situ, by X-ray photoelectron spectroscopy (XPS), X-ray photoelectron diffraction (XPD) and electron diffraction (RHEED and LEED), and ex-situ by transmission electron spectroscopy (TEM). A simulation study of XPD profiles, based on the theory of multiple scattering, was conducted using the Ms-Spec calculation program. The study of the growth of Fe on LaAlO3(001) at different substrate temperatures showed the existence of a narrow temperature window, around 500 °C, where Fe has epitaxial growth with Volmer-Weber type (3D islands). The RHEED, XPD and TEM analysis showed a single epitaxial relationship, where the Fe unit cell is rotated by 45° compared to the substrate one. The XPS results showed a unique chemical environment of Fe atoms (atomic form), reflecting the absence of inter-diffusion in the Fe/LaAlO3(001) interface. The study of the Fe grown on LaAlO3(111) also showed a Volmer-Weber growth mode and an abrupt interface.Moreover, further development work within the Ms-Spec code was needed to overcome the issue of multiple scattering calculations convergence usually encountered in the case of heavy atoms with high kinetic energies (La atoms in the LaAlO3). In this regard, four hypotheses were formulated : 1- Insufficient consideration of the inelastic processes ;2- The muffin-tin approximation is no longer sufficient to adequately describe the potential ;3- Unduly low intensity paths are neglected ;4- Divergence of multile scattering series used to calculate the cross section.The calculations allowed us to rule out the first three hypothesis, since no influence on convergence was found in this case. However, the fourth hypothesis was validated. Indeed, it was shown that due to the high power diffuser of the La atoms, the multiple scattering series expansion could diverge (spectral radius, i.e. the largest eigenvalue modulus of the scattering matrix,> 1) for large sizes of LaAlO3 clusters. Whereas, it converges to the clusters of Si and MgO of similar size (both systems used in comparison). Furthermore, even less than 1, spectral radius of LaAlO3 remains important beyond few hundred atoms, thus rendering the convergence very slow.
342

Thrombin inhibitors grafting on polyester membranes for the preparation of blood-compatible materials

Salvagnini, Claudio 28 November 2005 (has links)
The design of biomaterials, historically initiated and developed by physicians and engineers, in the last decades has slowly shifted toward a more biochemical based approach. For the replacement, repair and regeneration of tissues scientists are now focusing on materials that stimulate specific biological response at the molecular level. These biomaterials have already shown interesting applications in cell proliferation, differentiation, and extracellular matrix production and organization when the material modifications are designed to elicit specific interactions with cell integrins. In the present work we propose the application of this strategy for the development of blood-compatible materials. We first identified, in the coagulation cascade a key enzyme that constitute a valuable biological target for the development of anti-thrombogenic compounds. Piperazinyl-amide derivatives of N-alfa-(3-trifluoromethyl-benzenesulfonyl)-L-arginine were synthesized as graftable thrombin inhibitors. These inhibitors provided a spacer arm for surface grafting and a fluorine tag for XPS (X-ray photoelectron spectroscopy) detection. The possible disturbance of biological activity due to a variable spacer-arm fixed on the N-4 piperazinyl position was evaluated in vitro against human alfa-thrombin, in silico by molecular modelling and via X-ray diffraction study. Selected inhibitors, having inhibition potency in the mM range, were grafted on polyesters surface via wet chemistry and photochemical activation treatments. Wet chemistry surface grafting was performed by specific hydroxyl chain-ends activation and resulted in bioactive molecules fixation of 20-300pmol/cm2. The photochemical grafting was performed using a molecular clip providing an aromatic azide, for nitrene insertion into a polymer, and an activated ester for grafting of tag compounds. This grafting technique resulted in a dramatic increase in fixed bioactive signals (up to nmol/cm2). The material blood-compatibilization induced by the surface fixation of the inhibitors, was measured by a static blood clot weight measurement test. The wet chemistry grafting technique resulted in moderate blood-compatibilization while by the photochemical grafting method important decrease in surface blood clot formation was observed. In the latter case, the blood response to material contact was found to be strongly affected by the polyester surface photo-degradation induced by the activation treatment.
343

Thrombin inhibitors grafting on polyester membranes for the preparation of blood-compatible materials

Salvagnini, Claudio 28 November 2005 (has links)
The design of biomaterials, historically initiated and developed by physicians and engineers, in the last decades has slowly shifted toward a more biochemical based approach. For the replacement, repair and regeneration of tissues scientists are now focusing on materials that stimulate specific biological response at the molecular level. These biomaterials have already shown interesting applications in cell proliferation, differentiation, and extracellular matrix production and organization when the material modifications are designed to elicit specific interactions with cell integrins. In the present work we propose the application of this strategy for the development of blood-compatible materials. We first identified, in the coagulation cascade a key enzyme that constitute a valuable biological target for the development of anti-thrombogenic compounds. Piperazinyl-amide derivatives of N-alfa-(3-trifluoromethyl-benzenesulfonyl)-L-arginine were synthesized as graftable thrombin inhibitors. These inhibitors provided a spacer arm for surface grafting and a fluorine tag for XPS (X-ray photoelectron spectroscopy) detection. The possible disturbance of biological activity due to a variable spacer-arm fixed on the N-4 piperazinyl position was evaluated in vitro against human alfa-thrombin, in silico by molecular modelling and via X-ray diffraction study. Selected inhibitors, having inhibition potency in the mM range, were grafted on polyesters surface via wet chemistry and photochemical activation treatments. Wet chemistry surface grafting was performed by specific hydroxyl chain-ends activation and resulted in bioactive molecules fixation of 20-300pmol/cm2. The photochemical grafting was performed using a molecular clip providing an aromatic azide, for nitrene insertion into a polymer, and an activated ester for grafting of tag compounds. This grafting technique resulted in a dramatic increase in fixed bioactive signals (up to nmol/cm2). The material blood-compatibilization induced by the surface fixation of the inhibitors, was measured by a static blood clot weight measurement test. The wet chemistry grafting technique resulted in moderate blood-compatibilization while by the photochemical grafting method important decrease in surface blood clot formation was observed. In the latter case, the blood response to material contact was found to be strongly affected by the polyester surface photo-degradation induced by the activation treatment.
344

Electronic and Geometrical Structure of Phthalocyanines on Surfaces : An Electron Spectroscopy and Scanning Tunneling Microscopy Study

Åhlund, John January 2007 (has links)
Core- and Valence Photoelectron Spectroscopy (PES), X-ray- and Ultraviolet-Visible Absorption Spectroscopy (XAS and UV-Vis), Scanning Tunneling Microscopy (STM) and Density Functional Theory (DFT) calculations are used to study the electronic and geometrical structure of a class of macro-cyclic molecules, Phthalocyanines (Pc), on surfaces. These molecules are widely studied due to their application in many different fields. Multilayer and monolayer coverages of Iron Phthalocyanine (FePc) and metal-free Phthalocyanine (H2Pc) deposited on different surfaces are investigated in order to get insight in the electronic and geometrical structure of the obtained overlayers, of crucial importance for the understanding of the film functionality. Sublimation of molecular thick films on Si(100) and on conducting glass results in films with molecules mainly oriented with their molecular plane orthogonal to the surface. Ex-situ deposited H2Pc films on conductive glass show different molecular orientation and morphology with respect to the vacuum sublimated films. We study the monolayer adsorption structure of FePc and H2Pc and compare our results with other Pc’s adsorbed on graphite. We find that the molecular unit cell and the superstructure is characteristic for each Pc adsorbed on graphite, even if the geometrical size of the compared molecules is the same. The PE- and XA- spectra of FePc on graphite are essentially identical for the mono- and multilayer preparations, evidencing weak intermolecular and molecular-substrate interactions of van der Waals nature. Furthermore, we characterize Pc’s on InSb (001)-c(8x2). The substrate In rows are observed to be the adsorption site for Pc’s. We find that the growth of the two-dimensional islands of FePc is prolonged in the [-110] direction, in contrast to ZnPc adsorbed on the same substrate at room temperature. We interpret this result as an indication that the adsorption is controlled by the substrate corrugation observed at 70 K.
345

Core Level Spectroscopy of Water and Ice

Nordlund, Dennis January 2004 (has links)
A core level spectroscopy study of ice and water is presented in this thesis. Combining a number of experiments and spectrum calculations based on density functional theory, changes in the local valence electronic structure are shown to be sensitive to the local H-bonding configurations. Exploiting this sensitivity, we are able to approach important scientific problems for a number of aggregation states; liquid water, the water-metal interface, bulk and surface of hexagonal ice. For the H-bonded model system hexagonal ice, we have probed the occupied valence electronic structure by x-ray emission and x-ray photoelectron spectroscopy. Stepwise inclusion of different types of interactions within density functional theory, together with a local valence electron population analysis, show that it is essential to include intermolecular charge transfer together with internal s-p rehybridizations in order to describe the changes in electronic structure seen in the experiment. The attractive electrostatic interaction between water molecules is enhanced by a decrease in Pauli repulsion. A simple electrostatic model due to charge induction from the surrounding water is unable to explain the electronic structure changes. By varying the probing depth in x-ray absorption the structure of the bulk, subsurface and surface regions is probed in a thin ice film. A pronounced continuum for fully coordinated species in the bulk is in sharp contrast to the spectrum associated with a broken symmetry at the surface. In particular molecular arrangements of water with one uncoordinated OH group have unoccupied electronic states below the conduction band that are responsible for a strong anisotropic pre-edge intensity in the x-ray absorption spectrum. The topmost layer is dominated by an almost isotropic distribution of these species, which is inconsistent with an unrelaxed surface structure. For liquid water the x-ray absorption spectrum resembles that of the ice surface, indicating a domination of species with broken hydrogen bond configurations. The sensitivity to the local hydrogen bond configuration, in particular the sensitivity to broken bonds on the donor side, allows for a detailed analysis of the liquid water spectrum. Most molecules in liquid water are found in two-hydrogen-bonded configurations with one strong donor and one strong acceptor hydrogen bond. The results, consistent with diffraction data, imply that most molecules are arranged in strongly H-bonded chains or rings embedded in a disordered cluster network. Molecular dynamics simulations are unable to describe the experimental data. The water overlayer on the close-packed platinum surface is studied using a combination of core-level spectroscopy and density functional theory. A new structure for water adsorption on close-packed transition metal surfaces is found, where a weakly corrugated non-dissociated overlayer interacts via alternating oxygen-metal and hydrogen-metal bonds. The latter results from a balance between metal-hydrogen bond formation and OH bond weakening. The ultrashort core-hole lifetime of oxygen provides a powerful probe of excited state dynamics via studies of the non-radiative or radiative decay following x-ray absorption. Electrons excited into the pre-edge state for single donor species at the ice surface remain localized long enough for early time solvation dynamics to occur and these species are suggested as strong pre-existing traps to the hydrated electron. Fully coordinated molecules in the bulk contribute to a strong conduction band with electron transfer times below 0.5 femtoseconds. Upon core-ionization, both protons are found to migrate substantial distances on a femtosecond timescale. This unusually fast proton dynamics for non-resonant excitation is captured both by theory and experiment with a measurable isotope effect.
346

Free Molecular and Metal Clusters Studied by Synchrotron Radiation Based Electron Spectroscopy

Rosso, Aldana January 2008 (has links)
The main purpose of this Thesis is the experimental characterization of the electronic and geometric structures of objects called clusters. A cluster consists of a finite group of bound atoms or molecules. Due to its finite size, it may present completely different properties than those of the isolated atom and the bulk. The clusters studied in this work are constituted by rare-gas atoms, organic molecules, and metal atoms. Intense cluster beams were created using either an adiabatic expansion source or a gas-aggregation source, and investigated by means of synchrotron radiation based photoelectron spectroscopy. The reports presented in this Thesis may be divided into three parts. The first one deals with results concerning homogeneous molecular clusters (benzene- and methyl-related clusters) highlighting how molecular properties, such as dipole moment and polarizability, influence the cluster structure. The second part focuses on studies of solvation processes in clusters. In particular, the adsorption of polar molecules on rare-gas clusters is studied. It is shown that the doping method, i.e. the technique used to expose clusters to molecules, and the fraction of polar molecules are important factors in determining the location of the molecules in the clusters. Finally, a summary of investigations performed on metal clusters is presented. The applicability of solid state models to analyse the cluster spectra is considered, and the differences between the atomic, cluster and solid electronic structures are discussed.
347

Wettability of Methacrylate Copolymer Films Deposited on Anodically Oxidized and Roughened Aluminium Surfaces

Frenzel, Ralf, Blank, Christa, Grundke, Karina, Hein, Veneta, Schmidt, Bernd, Simon, Frank, Thieme, Michael, Worch, Hartmut 18 March 2013 (has links) (PDF)
The wetting behavior of water on methacrylate copolymer films was studied on anodically oxidized and micro-roughened aluminium surfaces and also on smooth model surfaces. The copolymerization of tert-butyl methacrylate with a methacrylate containing a fluoroorganic side chain led to a considerable decrease of the surface free energy, but not to a superhydrophobic behavior of polymer-coated, micro-roughened aluminium surfaces. However, copolymers containing both hydrophobic and hydrophilic sequences are able to form superhydrophobic films. X-ray photoelectron spectroscopy showed that an enrichment of the interface between the solid phase and the air by fluorine-containing polymer components was the reason for the strong decrease of the surface free energy. The hydrophilic segments of the copolymers improved the ability to wet the highly polar aluminium surface and to form films of higher density.
348

Development Of High Performance Uncooled Infrared Detector Materials

Kebapci, Basak 01 February 2011 (has links) (PDF)
This thesis reports both the optimizations of the vanadium oxide (VOx) thin film as an active infrared detector material by the magnetron sputtering deposition method and its use during fabrication of proper resistors for the microbolometers. Vanadium oxide is a preferred material for microbolometers, as it provides high TCR value, low noise, and reasonable resistance, and a number of high-tech companies have used this material to obtain state-of-the-art microbolometer arrays. This material is first used in microbolometers by Honeywell, who provides its recipe with license agreements, and there is not much information in the literature for its deposition recipe. This is the first study at METU for development of vanadium oxide thin film for microbolometers. The VOx material deposition studies started by identifying the deposition parameters of the magnetron sputtering system in order to obtain proper VOx resistors for the readout electronics. The obtained recipe includes high temperature deposition conditions of VOx, however, this causes a diffusion problem on the electrodes, preventing to obtain a good contact to VOx. Also, high oxygen level in the depositions makes a contamination on the electrodes. A number of studies were done to determine a proper electrode material which is proper with the deposition conditions of the VOx. Characterization of the vanadium oxide samples is done by XRD and XPS measurements to see the relation between the phases and resistivity of the vanadium oxide. It is known that V2O5 phase provides a high TCR and resistivity value, and the XRD results show that this phase is dominant in the highly-oxygen doped or annealed resistors. The TCR and noise measurements are done using resistors implemented with the developed VOx film, after the etching processes of the both VOx and the electrodes are optimized. The contamination on the electrodes is prevented by the help of a newly designed process. The TCR measurement results show that annealing of the resistors affect the TCR values, i.e., increasing the annealing duration increases the TCR values of the resistors. Two different resistors with different deposition conditions are annealed to see the effect of annealing, where TCR results of the resistors are -0.74%/K and -0.8 %/K before annealing. The TCR values of these resistors increase to -1.6 %/K and -4.35 %K, respectively, after annealing in same conditions, showing that both the deposition conditions and annealing change the TCR significantly. Although good TCR values are obtained, the noise values of the VOx resistors are much higher than the expected values, which suggest a further study to determine the cause of this noise.
349

Development Of High Performance Active Materials For Microbolometers

Eroglu, Numan 01 September 2011 (has links) (PDF)
This thesis reports the development of Vanadium Tungsten Oxide (VWO) film as an active detector material for uncooled infrared detectors by using the reactive DC magnetron co-sputtering method. VWO is a doped form of the Vanadium Oxide (VOx) which is known as a prominent material for uncooled infrared detectors with its high TCR, low resistivity, and low noise properties. VOx is a widely preferred material for commercialized uncooled infrared detectors along with its drawbacks. Fabrication is fairly difficult due to its unstable material properties and the need for low process temperatures for a monolithic, CMOS compatible surface micromachining process. Hence, a new material with high performance and easier fabrication is needed. This thesis is the first study at METU on the development of high-performance VWO as an active detector material for uncooled infrared detectors. Deposition studies of VWO primarily started by measuring the effects of deposition parameters upon the magnetron sputtering system. Because the high effectiveness of the tungsten doping has been obtained for the doping level below 10% according to literary information, maximum vanadium (V) deposition rate together with minimum tungsten (W) deposition rate has been initially aimed. TCR of the VWO films has been measured between -2.48 %/K and -3.31 %/K, and the variation of noise corner frequency from 0.6 kHz to 8 kHz has been observed. In addition to these results of VWO, a favorable VOx recipe which has the highest performance done at METU in terms of resistance, TCR, noise and uniformity has also attained during the studies. Structural characterization of VWO is achieved using XPS, XRD, and AFM characterization techniques. Other than the sputtering parameters, post-annealing process and oxygen plasma exposure was examined as well. A general observation of the post-annealing is that it decreases not merely the TCR but also the noise of the deposited film. A short-period oxygen plasma exposure has a constructive effect on the noise behavior. Fabricated vanadium tungsten oxide with sandwich type resistor structure shows very close but better bolometric properties when compared with the yttrium barium copper oxide (YBCO), which is another material being studied in scope of other theses at METU. XPS, XRD and AFM characterization methods have been used for the structural characterization of vanadium-tungsten-oxide.
350

Preparation And Characterization Of Carbon Supported Platinum Nanocatalysts With Different Surfactants For C1 To C3 Alcohol Oxidations

Ertan, Salih 01 September 2011 (has links) (PDF)
In this thesis, carbon supported platinum nanoparticles have been prepared by using PtCl4 as a starting material and 1-octanethiol, 1-decanethiol, 1-dodecanethiol and 1-hexadecanethiol as surfactants for methanol, ethanol and 2-propanol oxidation reactions. The structure, particle sizes and surface morphologies of the platinum were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM). XRD and TEM results indicate that all prepared catalysts have a face centered cubic structure and are homogeneously dispersed on the carbon support with a narrow size distribution (2.0 to 1.3 nm). X-ray photoelectron spectra of the catalysts were examined and it was found that platinum has two different oxidation state, Pt (0) and Pt (IV), oxygen and sulfur compounds are H2Oads and OHads, bounded and unbounded thiols. The electrochemical and electrocatalytic properties of those catalysts were investigated towards C1 to C3 alcohol oxidations by cyclic voltammetry (CV) and chronoamperometry (CA). The highest electrocatalytic activity was obtained from catalyst I which was prepared with 1-octanethiol. This may be attributed to decrease in the ratio of bounded to unbounded thiol species and increase in Pt (0)/Pt (IV), H2Oads/OHads ratios, electrochemical surface area, CO tolerance and percent platinum utility.

Page generated in 0.4777 seconds