• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 13
  • 3
  • 2
  • Tagged with
  • 37
  • 37
  • 11
  • 8
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Resonance Fluorescence in a Photonic Crystal

Boedecker, Geesche January 2013 (has links)
The problem under consideration in the thesis is a two level atom in a photonic crystal and a pumping laser. The photonic crystal provides an environment for the atom, that modifies the decay of the exited state, especially if the atom frequency is close to the band gap. The population inversion is investigated als well as the emission spectrum. The dynamics is analysed in the context of open quantum systems. Due to the multiple reflections in the photonic crystal, the system has a finite memory that inhibits the Markovian approximation. In the Heisenberg picture the equations of motion for the system variables form a infinite hierarchy of integro-differential equations. To get a closed system, approximations like a weak coupling approximation are needed. The thesis starts with a simple photonic crystal that is amenable to analytic calculations: a one-dimensional photonic crystal, that consists of alternating layers. The Bloch modes inside and the vacuum modes outside a finite crystal are linked with a transformation matrix that is interpreted as a transfer matrix. Formulas for the band structure, the reflection from a semi-infinite crystal, and the local density of states in absorbing crystals are found; defect modes and negative refraction are discussed. The quantum optics section of the work starts with the discussion of three problems, that are related to the full resonance fluorescence problem: a pure dephasing model, the driven atom and resonance fluorescence in free space. In the lowest order of the system-environment coupling, the one-time expectation values for the full problem are calculated analytically and the stationary states are discussed for certain cases. For the calculation of the two time correlation functions and spectra, the additional problem of correlations between the two times appears. In the Markovian case, the quantum regression theorem is valid. In the general case, the fluctuation dissipation theorem can be used instead. The two-time correlation functions are calculated by the two different methods. Within the chosen approximations, both methods deliver the same result. Several plots show the dependence of the spectrum on the parameters. Some examples for squeezing spectra are shown with different approximations. A projection operator method is used to establish two kinds of Markovian expansion with and without time convolution. The lowest order is identical with the lowest order of system environment coupling, but higher orders give different results. / Die Arbeit befasst sich mit der Emission eines 2-Niveau-Atoms in einem photonischen Kristall mit einem treibenden Laser. Der photonische Kristall stellt für das Atom eine Umgebung dar, die seinen Zerfall verändert, insbesondere wenn die Übergangsfrequenz des Atoms nahe an der Bandkante ist. Es werden sowohl die Besetzungen als auch das Emissionsspektrum untersucht. Die Dynamik wird im Kontext offener Quantensysteme analysiert. Durch die vielfachen Reflexionen im photonischen Kristall hat das System ein endliches Gedächtnis, das die Markov-Näherung verhindert. Im Heisenberg-Bild stellen die Bewegungsgleichungen für die Systemvariablen eineunendliche Hierachie von Integro-Differentialgleichungen dar. Um ein geschlossenes System zu erhalten, sind Näherungen wie eine schwache Kopplung nötig. Zunächst wird ein einfacher photonischer Kristall betrachtet.: Der eindimensionale photonische Kristall, der aus wechselnden Lagen besteht. Die Blochmoden innerhalb und die Vakuummoden außerhalb des endlichen photonischen Kristalls sind durch eine Transformationsmatrix, die als Transfermatrix interpretiert werden kann, miteinander verbunden. Einfache Formeln für die Bandstruktur, Reflexion eines halb-unendlichen Kristalls, die lokale Zustandsdichte im absorbierenden Kristall werden gefunden; außerdem werden Defektmoden und negative Brechung diskutiert. Im quantenoptischen Teil der Arbeit werden zu Anfang drei Probleme diskutiert, die im Zusammenhang zum Problem der Resonanzfluoreszenz stehen und die analytisch berechnet werden können: Ein Dephasierungsmodell, das getriebenen Atom und Resonanzfluoreszenz im freien Raum. In der niedrigsten Ordnung der System-Bad-Kopplung werden die Erwartungswerte analytisch berechnet und die stationären Zustände werden für bestimmte Fälle diskutiert. Bei der Berechnung der Zweizeitkorrelationsfunktion und der Spektren taucht das zusätzliche Problem der Korrelationen zwischen den beiden Zeiten auf. Im Markov-Fall gilt das Quantenregressionstheorem. Im allgemeinen Fall kann stattdessen das Fluktuations-Dissipations-Theorem benutzt werden. Die Korrelationsfunktionen werden mit zwei verschiedenen Methoden berechnet. Innerhalb der gewählten Näherungen liefern beide Methoden dasselbe Resultat. Einige Plots zeigen die Abhängigkeit des Spektrums von den verschiedenen Parametern. Mehrere Beispiele für Squeezing-Spektren werden mit den verschiedenen Näherungen gezeigt. Eine Projektions-Operator-Methode wird benutzt, um zwei Arten einer Markov-Entwicklung zu implementieren, mit und ohne Faltungsintegral. Die niedrigste Ordnung ist identisch mit der niedrigsten Ordnung der System-Bad-Kopplung, wohingegen höhere Ordnungen andere Resultate ergeben.
32

Current Problems in Nano-Optics

Pack, Andreas 07 September 2001 (has links)
Ziel dieser Arbeit war die Berechnung elektromagnetischer Nahfelder, die wesentlich sind für die Charakterisierung von Strukturen im Submikrometerbereich. Diese Aufgabenstellung wurde im Rahmen der klassischen Elektrodynamik unter Vernachlässigung von quantenmechanischen und relativistischen Effekten durchgeführt. Die untersuchten Modellsysteme bestanden aus stückweise homogenen Medien. Eine Beschränkung auf eine harmonische Zeitabhängigkeit der Felder fand nicht statt. Zum Einsatz kamen analytische (Mie-Theorie und deren Erweiterungen), semi-analytische (MMP) und rein numerische Methoden (FDTD). Besonders umfassend wurden die Eigenschaften evaneszenter Wellen untersucht. Entgegen der oft üblichen Vorgehensweise wurden die Beschränkung auf 2-dimensionale Modelle vermieden und Metalle nicht idealisiert als perfekt leitend, sondern realistisch über einen komplexen Brechungsindex bzw. über ein äquivalentes Drude-Modell beschrieben. Nur so ist es möglich die Ausbreitung von surface plasmon polaritons zu modellieren und den Einfluß von Volmenplasmonen zu berücksichtigen. Untersucht wurden periodische und nicht periodische Strukturen aus dielektrischen und metallischen Materialien. Solche Systeme sind nützlich aufgrund der Bildung von photonischen Bandlücken (Dielektrika) und der Realisierung hoher Feldverstärkungen (Metalle). Die erste Eigenschaft kann für die Konstruktion von besonders effektiven Laser und die zweite im Rahmen der oberflächenverstärkten Raman-Streuung angewendet werden. Eine weiterer Schwerpunkt dieser Dissertation war die Analyse nahfeld-optischer Mikroskope (SNOM). Mit solchen Apparaturen kann eine Auflösung jenseits des Abbe-Limit erreicht werden. Untersucht wurden die Abbildungseigenschaften aperturloser Nahfeld-Mikroskope und die Ausbreitung von Femto-Sekunden Pulsen in einem konventionellen SNOM, welches mit einer metallbeschichteten Glasfaser ausgestattet ist. Die zweite Fragestellung ist relevant für die Kombination von hoher räumlicher mit hoher zeitlicher Auflösung.
33

Mikroskopie und Spektroskopie an Farbstoffmolekülen in photonischen Kristallen

Barth, Michael 29 October 2004 (has links)
The modification of the radiation pattern and radiative lifetime of dye molecules in three-dimensional colloidal photonic crystals is studied, using high-resolution optical microscopy and spectroscopy. The experimental observations are compared to corresponding calculations of the local optical density of states. It can be concluded, that the fluorescence of the molecules is redistributed spectrally and spatially within the photonic crystal. / Mit Hilfe hochauflösender optischer Mikroskopie und Spektroskopie werden Änderungen der Abstrahlcharakteristik und strahlenden Lebensdauer von Farbstoffmolekülen in dreidimensionalen kolloidalen photonischen Kristallen untersucht. Die experimentellen Beobachtungen werden mit entsprechenden Berechnungen der lokalen optischen Zustandsdichte verglichen. Hieraus kann auf eine spektrale und räumliche Umverteilung der Fluoreszenz der Moleküle im photonischen Kristall geschlossen werden.
34

Inkjet printing of photonic structures and thin-film transistors based on evaporation-driven material transportation and self-assembly / Inkjetdruck von photonischen Strukturen und Dünnschichttransistoren durch verdunstungsgetriebenen Materialtransport und Selbstassemblierung

Sowade, Enrico 21 August 2017 (has links) (PDF)
Inkjet printing has emerged from a digital graphic arts printing technology to become a versatile tool for the patterned deposition of functional materials. This thesis contributes to the research in the area of functional inkjet printing by focusing on two different topics: (i) inkjet printing of colloidal suspensions to study the principles of deposit formation and to develop deposits with photonic properties based on self-assembly, and (ii) the development of a reliable manufacturing process for all-inkjet-printed thin-film transistors, highlighting the importance of selection of materials and inks, print pattern generation, and the interplay between ink, substrate and printing conditions. (i) Colloidal suspensions containing nanospheres were applied as ink formulation in order to study the fundamental processes of layer formation and to develop structures with periodically arranged nanospheres allowing the modulation of electromagnetic waves. Evaporation-driven self-assembly was found to be the main driver for the formation of the final deposit morphology. Fine-tuning of inkjet process parameters allows the deposition of highly ordered structures of nanospheres to be arranged as monolayer, multilayer or even three-dimensional assemblies with a microscopic spherical shape. (ii) This thesis demonstrates the development of a manufacturing process for thin-film transistors based on inkjet printing. The knowledge obtained from the study with the colloidal nanospheres is used to generate homogeneous and continuous thin films that are stacked well-aligned to each other to form transistors. Industrial printheads were applied in the manufacturing process, allowing for the up-scaling of the manufacturing by printing of several thousands of devices, and thus the possibility to study the process yield as a function of printing parameters. The discrete droplet-by-droplet nature of the inkjet printing process imposes challenges on the control of printed patterns. Inkjet printing of electronic devices requires a detailed understanding about the process and all of the parameters that influence morphological or functional characteristics of the deposits, such as the selection of appropriate inks and materials, the orientation of the print pattern layout to the deposition process and the reliability of the inkjet process.
35

Inkjet printing of photonic structures and thin-film transistors based on evaporation-driven material transportation and self-assembly

Sowade, Enrico 09 June 2017 (has links)
Inkjet printing has emerged from a digital graphic arts printing technology to become a versatile tool for the patterned deposition of functional materials. This thesis contributes to the research in the area of functional inkjet printing by focusing on two different topics: (i) inkjet printing of colloidal suspensions to study the principles of deposit formation and to develop deposits with photonic properties based on self-assembly, and (ii) the development of a reliable manufacturing process for all-inkjet-printed thin-film transistors, highlighting the importance of selection of materials and inks, print pattern generation, and the interplay between ink, substrate and printing conditions. (i) Colloidal suspensions containing nanospheres were applied as ink formulation in order to study the fundamental processes of layer formation and to develop structures with periodically arranged nanospheres allowing the modulation of electromagnetic waves. Evaporation-driven self-assembly was found to be the main driver for the formation of the final deposit morphology. Fine-tuning of inkjet process parameters allows the deposition of highly ordered structures of nanospheres to be arranged as monolayer, multilayer or even three-dimensional assemblies with a microscopic spherical shape. (ii) This thesis demonstrates the development of a manufacturing process for thin-film transistors based on inkjet printing. The knowledge obtained from the study with the colloidal nanospheres is used to generate homogeneous and continuous thin films that are stacked well-aligned to each other to form transistors. Industrial printheads were applied in the manufacturing process, allowing for the up-scaling of the manufacturing by printing of several thousands of devices, and thus the possibility to study the process yield as a function of printing parameters. The discrete droplet-by-droplet nature of the inkjet printing process imposes challenges on the control of printed patterns. Inkjet printing of electronic devices requires a detailed understanding about the process and all of the parameters that influence morphological or functional characteristics of the deposits, such as the selection of appropriate inks and materials, the orientation of the print pattern layout to the deposition process and the reliability of the inkjet process.:Bibliography II Abstract III Preface and acknowledgements IV On the major results and novelty of the thesis VII Table of contents VIII List of abbreviations and symbols X List of figures XII List of tables XX 1 Introduction 1 2 Fundamentals 6 2.1 Inkjet printing – an overview 6 2.2 Piezoelectric inkjet technology and a historical overview of inkjet printing 10 2.3 Pattern and film formation in inkjet printing under the scheme of self-assembly 20 2.4 Inkjet printing of colloidal nanospheres 27 2.5 Spherical colloidal assemblies 29 2.6 All-inkjet-printed thin film transistors 31 3 Experimental section 35 3.1 Inkjet printing systems and accessories 35 3.2 Inks and substrates 38 3.3 Print patterns 43 3.4 Post-processing 46 3.5 Optical, morphological and functional characterization 47 4 Inkjet printing of colloidal nanospheres: Evaporation-driven self-assembly based on ink-substrate interaction 49 4.1 Single droplet deposit morphology: Interaction of substrate and ink 49 4.2 Optical properties of inkjet-printed single droplet monolayers and multilayers 54 5 Inkjet printing of colloidal nanospheres: Evaporation-driven self-assembly of SCAs independent on substrate properties 58 5.1 Inkjet printing of spherical colloidal assemblies and their identification 58 5.2 Fine-tuning of the waveform applied to the printhead 60 5.3 Interaction of substrate and ink 66 5.4 Structures, morphologies and materials of SCAs 68 5.5 Optical properties of SCAs 76 6 Inkjet printing of TFTs: Process development and process reliability 80 6.1 Influence of print layout design 80 6.2 Selection of materials and inks 91 6.3 Manufacturing workflow and electrical TFT parameters 108 6.4 Manufacturing yields and failure origins 113 7 Summary and conclusion 124 References 127 Documentation of authorship and contribution of third persons 149 List of publications 151 APPENDIX A Formation of colloidal hemispheres on hydrophobic PTFE substrates 161 APPENDIX B Inkjet-printed higher-order cluster with N < 100 using BL280 162 APPENDIX C Inkjet-printed SCAs based on BS305 with similar sizes and inkjet-printed SCA based on PSC221 163 APPENDIX D Microreflectance spectra of SCAs and the processing of the spectra using the Savitzky-Golay filter with a second-order polynomial and a moving window of 100 data points 164 APPENDIX E Waveform, drop ejection and photographs of the printed patterns of Sun Chemical EMD5603 and UTDots UTDAgIJ1 165 APPENDIX F Smoothening of profiles obtained by profilometry of EMD5603 and UTDAgIJ1 and dependency of print resolution of layer height 166 APPENDIX G Percentage of area increase based on a 4 mm x 4 mm digital print pattern using the ink Harima NPS-JL and influence of print resolution and post-treatment temperature on sheets resistance 168 APPENDIX H Cross-sectional view of a TFT stack printed with the dielectric Sun Chemical EMD6415 that shows high layer thickness due to ink contraction after the deposition as presented in Figure 46 169 APPENDIX I Influence of printing parameters on the dielectric layer applied in the TFT 170 APPENDIX J Reduction of channel length by decreasing the S-D electrode channel length in the print pattern layout 171
36

TU-Spektrum 3/2006, Magazin der Technischen Universität Chemnitz

Steinebach, Mario, Häckel-Riffler, Christine, Brabandt, Antje, Mahler, Janine, Chlebusch, Michael, Doriath, Thomas, Leithold, Nicole, Klein, Jana, Rodefeld, Sara 22 December 2006 (has links) (PDF)
zweimal im Jahr erscheinende Zeitschrift über aktuelle Themen der TU Chemnitz, ergänzt von Sonderheft(en)
37

TU-Spektrum 3/2006, Magazin der Technischen Universität Chemnitz

Steinebach, Mario, Häckel-Riffler, Christine, Brabandt, Antje, Mahler, Janine, Chlebusch, Michael, Doriath, Thomas, Leithold, Nicole, Klein, Jana, Rodefeld, Sara 22 December 2006 (has links)
zweimal im Jahr erscheinende Zeitschrift über aktuelle Themen der TU Chemnitz, ergänzt von Sonderheft(en)

Page generated in 0.0698 seconds