• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 73
  • 32
  • 1
  • Tagged with
  • 102
  • 102
  • 37
  • 27
  • 19
  • 19
  • 17
  • 12
  • 12
  • 11
  • 11
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Development of gas diffusion layer for proton exchange membrane fuel cell, PEMFC

Yakisir, Dinçer 12 April 2018 (has links)
Presently, fuel cell technology is one of the most exciting fields in the area of new energy development with high scientific and technological challenges. Progress made up to now in the field of Proton Exchange Membrane Fuel Cell, PEMFC, technology offers large perspectives of applications. The interest in this environmentally benign technology has grown during the last years due to the Kyoto protocol requirements. However, a drastic decrease in PEMFC cost is needed prior to the widespread acceptance of PEMFC as automotive power Systems. The main objective of this study was to develop a new concept of high performance and low-cost porous electrode gas diffusion layer for PEMFC. Novel and industrially viable processing techniques based on twin-screw extrusion, post-extrusion film stretching or selective dissolution treatment were used. Conventional materials presently used for PEMFC electrodes were replaced in this project by new formulations based on highly filled thermoplastic polymers. To create the porous structure of the gas diffusion layer, two different techniques were used. For the first technique, a thin film was made from low viscosity polypropylene, PP, filled with high specific surface area carbon black and synthetic flake graphite. Conductive blends were first prepared in a co-rotating twin-screw extruder and subsequently extruded through a sheet die to obtain films of around 500 microns in thickness. These films were then stretched in two successive steps to generate a film (100-200 microns) of controlled porous structure. However, for the second technique, the thin film was made from two immiscible polymers filled with a mixture of electronic conductive additives via twin-screw extrusion followed by selective extraction of one of the two polymers. The two polymers were a low viscosity PP and polystyrene, PS, and the conductive additives were the same as those used in the first technique. Conductive blends were first compounded in a co-rotating twin-screw extruder and subsequently extruded through a flexible film die to obtain a 500 microns film of high electronic conductivity. The PS phase was then extracted with tetrahydrofuran, THF, solvent and a film of controlled porosity was generated. The morphology of the porous structures was then analyzed by scanning electron microscopy, SEM, and by BET surface area measurements. The effects of PS concentration and extraction time with THF on film conductivity and porosity were also studied. / Actuellement, la technologie des piles à combustible représente l'un des champs les plus passionnants avec des défis scientifiques et technologiques élevés. Les progrès réalisé jusqu'à date dans le domaine des piles à combustibles à membrane échangeuse de proton, PEMFC, offre de grandes perspectives d'applications. L'intérêt pour cette technologie non polluante a fortement grandit durant les dernières années à cause des conditions exigeantes du protocole de Kyoto. Cependant, l'optimisation des coûts de production des piles de type PEMFC est nécessaire avant leur intégration en tant que systèmes d'alimentation des véhicules à moteur. L'objectif principal de cette étude était de mettre au point un nouveau design non coûteux de couche poreuse de diffusion de gaz pour électrodes de piles PEMFC. Des techniques pouvant être intégrées à l'échelle industrielle qui sont basées sur l'extrusion bi-vis, l'étirage postextrusion de film mince ou la dissolution sélective ont été utilisés. Les matériaux conventionnels présentement utilises pour fabriquer les électrodes ont été remplacés dans le cadre de ce projet par des nouvelles formulations basées sur les polymères thermoplastiques fortement chargés avec des additifs à conductivité électronique élevée. Pour créer la structure poreuse de la couche de diffusion de gaz, deux techniques différentes ont été employées. Pour la première technique, un film a été développé à partir d'une matrice en polypropylène, PP, de faible viscosité, chargé d'un grade spécial de noir de carbone possédant une surface spécifique élevée et de graphite synthétique en forme de feuillets. Les mélanges conducteurs ont d'abord été préparés dans une extrudeuse co-rotative bi-vis puis poussés à travers une filière plate. Cela a permis d'obtenir des films d'environ 500 microns d'épaisseur. Ces films ont ensuite été étirés en deux étapes successives afin de produire des films (de 100 à 200 microns) à structure poreuse contrôlée. En ce qui concerne la seconde technique, le film fin a été obtenu en mélangeant deux polymères immiscibles puis en y additionnant un mélange de charges électriquement conductrices. Cette opération a été menée en extrusion bi-vis. Elle a ensuite été suivie d'une extraction sélective de l'un des deux polymères. Les deux polymères dont il s'agit sont le PP à basse viscosité et le polystyrène, PS. Les charges conductrices sont les mêmes que celles utilisées à la première technique. Ces mélanges conducteurs ont été composés dans une extrudeuse co-rotative bi-vis puis poussés à travers une filière plate flexible afin d'obtenir un film de 500 microns à grande conductivité électrique. Le phase PS a été extraite par la suite grâce à un solvant : le tétrahydrofurane, THF. Des films à porosité contrôlée ont ainsi été générés. Les morphologies des structures poreuses ont été analysées par microscopie électronique à balayage, SEM, ainsi que par des mesures de surfaces spécifiques BET. Les effets de la concentration du PS et du temps d'extraction sélective par THF sur la conductivité et la porosité des films ont également été étudiés.
52

Développement et caractérisation de nouveaux matériaux à base de PET, PVDF, et de mélanges PET/PVDF, pour la fabrication de plaques bipolaires pour piles à combustibles à membrane échangeuse de protons, PEMFC

Nguyen, Luc 16 April 2018 (has links)
La recherche d'énergies propres et renouvelables est un enjeu de premier plan pour lutter contre les changements climatiques. La recherche scientifique sur les piles à combustibles est en constante croissance. Le caractère non polluant et l'efficacité énergétique des piles à combustibles en font une candidate très prometteuse pour un large éventail d'applications (production d'électricité, aérospatial, transport, etc.). Avant que ce type de pile ne soit produit à grande échelle, son coût de production doit être diminué. Or, cette diminution de prix passe par la recherche de matériaux performants, à faible coût et faciles à mettre en oeuvre. La PEMFC (pile à combustible à membrane échangeuse de protons) est une pile à combustible à electrolyte solide constituée d'une membrane de polymère acide. Son principe de fonctionnement est de transformer l'énergie chimique en énergie électrique par le biais de réactions électrochimiques. Cette pile a une vie utile de plusieurs milliers d'heures, du fait que c'est une pile à électrodes non consommables. La PEMFC est alimentée par de l'hydrogène et de l'oxygène moléculaire; son seul rejet est de l'eau. Cette pile est formée de plusieurs unités individuelles connectées en série et séparées entre elles par des plaques bipolaires. Ces plaques bipolaires ont plusieurs rôles au sein de la PEMFC: elles conduisent les électrons entre les différentes unités, assurent la distribution des gaz réactifs sur la surface des électrodes et procurent un support mécanique à la pile. Le coût élevé des PEMFC est son principal désavantage par rapport au moteur à combustion. C'est entre autre pour cette raison que la PEMFC est le sujet d'intenses recherches. D'énormes efforts sont faits pour trouver des matériaux moins coûteux aux performances élevées et des procédés de mise en oeuvre plus rentables. Ainsi, il sera possible de produire des PEMFC économiquement concurrentielles par rapport aux autres modes de propulsion automobile. Le sujet de cette étude est de produire une plaque bipolaire à base de matériaux peu onéreux par un procédé de mise en oeuvre simple. De plus, les paramètres de mise en oeuvre devront être optimisés de façon à obtenir un matériau aux propriétés améliorées. L'ultime étape de ce projet est de comparer les performances de la plaque bipolaire produite à celles d'une plaque bipolaire commerciale dans une PEMFC. La conception d'une plaque bipolaire doit tenir compte des conditions d'opération de la PEMFC: température, pression et présence de gaz corrosifs. Les matériaux utilisés pour la fabrication de plaques bipolaires doivent rencontrer certaines exigences en matière de conductivité électrique, perméabilité aux gaz et résistance mécanique et chimique. C'est pour cette raison que le matériau développé doit subir une étroite caractérisation avant d'être employé dans la PEMFC. Le graphite et l'acier sont les matériaux les plus couramment utilisés pour la fabrication des plaques bipolaires grâce à leur excellente conductivité électrique. Par contre, ils présentent certains désavantages: le graphite est massif et fragile alors que l'acier est sujet à la corrosion. De plus, ces deux matériaux nécessitent de l'usinage mécanique, ce qui en augmente le coût et diminue la cadence de production. Les polymères sont des candidats très intéressants pour la fabrication de cette pièce de la PEMFC puisque ces derniers ont une faible densité, sont peu onéreux, faciles à mettre en oeuvre par des procédés industriels continus et ne se corrodent pas. Par contre, ils sont des isolants électriques. Pour palier à ce désavantage par rapport au graphite et à l'acier, il faut incorporer des charges solides conductrices lors de leur mise en oeuvre. Ainsi, il est possible de fabriquer une plaque bipolaire de polymère contenant des charges conductrices par le procédé d'extrusion et de pressage à chaud. L'extrudeuse permet de produire une plaque mince sur laquelle le design de la plaque bipolaire est obtenu par compression à chaud. Ces opérations sont suivies par une étape de découpe pour obtenir une plaque bipolaire. Pour ce projet, une extrudeuse bi-vis co-rotative a été utilisée pour effectuer divers mélanges à base de polymères et de charges conductrices. Ces types de mélanges sont appelés composites, ils sont composés d'une matrice de polymère et de charges solides. Le mélange obtenu a ensuite été moulé par compression à chaud dans un moule ayant les empreintes du design de la plaque bipolaire. Divers mélanges ont été caractérisés : ? Polyvinilidiène fluorure (PVDF) avec noir de carbone (CB). ? Polyvinilidiène fluorure avec noir de carbone et graphite (GR). ? Polyethylene téréphthalate (PET) avec noir de carbone. ? Polyethylene téréphthalate avec noir de carbone et graphite. ? Polyvinilidiène fluorure, polyethylene téréphthalate avec noir de carbone. ? Polyvinilidiène fluorure, polyethylene téréphthalate avec noir de carbone et graphite. Afin de caractériser les matériaux développés dans le cadre de ce projet, les propriétés électriques, les propriétés mécaniques et la perméabilité aux gaz ont été caractérisées. La plaque bipolaire finale a été développée à partir d'un mélange de PVDF et de deux types de charges conductrices, du CB et du GR. Les performances dans une PEMFC de cette plaque bipolaire ont été comparées à celle d'une plaque bipolaire commerciale fournie avec la pile.
53

Étude du comportement d'une pile à combustible alimentée avec différents alcools

Jean, Dominique 11 April 2018 (has links)
Le travail a consisté, en premier lieu, à vérifier l'électro activité sur platine en milieu acide de l'éthylène glycol et du glycérol. Ces deux polyols sont actifs et l'activité est fonction de la concentration pour l'éthylène glycol. Des essais de diffusion ont aussi montré que ces deux alcools diffusent à travers une membrane de Nafion 117. Par la suite, les trois combustibles, incluant le méthanol, ont été alimentés dans une pile PEMFC. Les trois combustibles permettent d'obtenir une densité de courant, mais plus la molécule est grosse, plus le potentiel enregistré, à une densité de courant donnée, est faible, ce qui est en accord avec les résultats obtenus en voltammétrie cyclique dans ce travail. En augmentant la température, les réactions d'oxydation et de réduction à la cathode se produisent plus rapidement et permettent d'obtenir, pour une densité de courant fixe, une valeur du potentiel plus élevée, malgré une diffusion du combustible à travers le Nafion 117 promue à plus haute température. Lorsque la concentration a été augmentée, il y a eu diminution du potentiel à basse densité de courant due aux surtensions de concentration, mais le transfert de matière amélioré permet d'augmenter, globalement, les performances de la pile. Lorsque la pression d'oxygène a été augmentée à la cathode, les performances ont peu varié.
54

Étude des caractéristiques physico-chimiques des membranes sicopion

Ben Yakhlef, Sonia 16 April 2018 (has links)
Dans certains procédés électromembranaires tels que les piles à combustibles des agents agresseurs chimiques comme les radicaux libres se forment suite à une réaction d'oxydation, et peuvent conduire à la destruction des membranes hydrocarbonées. Le test ORAC est une méthode qui utilise les composés ±azo¿ (R-N=N-R) comme initiateurs de réaction. Ces composés sont utiles à l' étude quantitative des cinétiques d'oxydation car ils génèrent des radicaux à une vitesse constante et reproductible. L'ajout d'un antioxydant naturel extrait d'une infusion de thé, l'épigallocatéchine gallate (EGCG), dans une membrane constituée de polyétheréthercétone de faible taux de sulfonation (SPEEK) (3:97) a montré une réponse ORAC de 1254 ± 336 [mu]mol d' équivalents de Trolox / g comparé à la même membrane sans EGCG qui a donné une réponse de 59 ± 14 [mu]mol d'équivalents de Trolox / g. La molécule d'EGCG possède un pouvoir antioxydant élevé, suggérant qu' elle serait responsable de la réponse ORAC élevée de la membrane enrichie.
55

Surface behavior of sulfonated hydrocarbon proton exchange membranes

He, Chen Feng 18 September 2018 (has links)
La pile à combustible a suscité une attention croissante en tant que solution de rechange écologique aux carburants fossiles. Les membranes échangeuses d’ions (PEM)s sont utilisées dans des piles à combustible à membrane échangeuse de protons (PEMFC) et des piles à combustible directes au méthanol (DMFC) comme composant séparateur pour fournir une barrière au transfert de carburant entre les électrodes et pour transférer des protons de l'anode à La cathode. Les PEMFC et les DMFC suscitent des intérêts plus particuliers pour l'utilisation dans les applications automobiles, stationnaires et électroniques portables. En tant que composante clé d’une PEMFC, une PEM est nécessaire pour effectuer des fonctions multiples telles que la séparation de gaz, l'isolation électrique et le transfert ionique pour transporter des protons de l'anode à la cathode. La présence d'eau dans une PEM est essentielle pour que les polymères traditionnels sulfonés transfèrent les protons et facilitent la conductivité protonique. Comme le Nafion, la conduction protonique des polymères de type PEM sulfonés dépend de le teneur en eau dans les membranes. Cependant, une absorption excessive d'eau dans une PEM conduit à un changement dimensionnel inacceptable, à une mésadaptation dimensionnelle avec les électrodes, à une délamination des couches de catalyseur de la PEM et à une perte des propriétés mécaniques, ce qui pourrait conduire à une mauvaise performance ou un manque de durabilité de l'assemblage membrane – électrode (MEA). En tant que systèmes hautement intégrés, les piles à combustible sont faites de matériaux hétérogènes comportant contenant du gaz, du liquide et du solide. Les MEA sont typiquement fabriqués par collage d'électrodes de catalyseur de platine supporté sur du carbone sur l'électrolyte PEM, en utilisant un ionomère de type Nafion liant du catalyseur, quel que soit la PEM utilisée. La structure et l'activité des différentes interfaces, l'adhérence et la compatibilité entre les différentes couches ainsi que les caractéristigues du carburant jouent des rôles clés sur la performance globale de la pile à combustible. Parmi ces questions diverses, le transfert inévitable de méthanol dans une PEM, telle que le Nafion, limite les applications en DEMFC. Malgré le développement de nombreuses PEM à base d'hydrocarbures en tant que substituts au Nafion, le comportement de surface et l'adaptation / compatibilité interfaciale entre ce type de PEM et les autres couches est moins bien compris. Dans cette thèse, nous... / The fuel cell has received attention as a promising eco-friendly alternative energy source to fossil fuels. Polymer exchange membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) have attracted increasing interest for use in motor vehicles and electronic applications including stationary and portable devices. As a key component of PEMFC and DMFC, PEM is required to perform multiple functions such as fuel separator, electrical insulator and ionic path to transport protons from the anode to the cathode. The presence of water in PEM is essential for traditional, sulfonated polymers to transfer protons and to facilitate proton conductivity. As Nafion, the proton conduction of the sulfonated PEM-type polymers depends upon the water content in the membranes. However, excessive water uptake in a PEM results in unacceptable dimensional change, dimensional mismatch with the electrodes, delaminating of catalyst layers from the PEM and loss of mechanical properties, which could result in poor membrane electrode assembly (MEA) performance or durability. As a highly integrated system, fuel cells are used in a heterogeneous environment containing gas, liquid, and solid. Typically, MEAs are constructed by bonding carbonsupported platinum catalyst electrodes onto the PEM electrolyte. Regardless of the PEM used, a Nafion-type ionomer is usually employed as a catalyst support. The structure and activity at the different interfaces, the adhesion and compatibility among various layers, as well as fuel property on PEM play key roles on the fuel cell universal performance as vital as the individual components. Among these heterogeneous concerns, crossover of methanol in PEM, such as Nafion, limits DEMFC applications. In spite of the development of numerous hydrocarbon PEMs as substitutes to Nafion, the surface behavior and interfacial match between a PEM and the other layers, such as, the interface between a PEM and gas diffusion layer/catalyst layer/methanol layer are less understood. In this thesis, the surface/interface behavior of a representative selection of hydrocarbon-based proton exchange membranes (PEMs) was investigated. These PEMs are: copolymerized sulfonated poly(ether ether ketone) (SPEEK-HQ), sulfophenylated poly(aryl ether ether ketone) (Ph-SPEEK), sulfophenylated poly(aryl ether ether ketone ketone) (Ph-m-SPEEKK), and sulfonated poly (aryl ether ether nitrile) (SPAEEN-B).
56

Membranes ionomères renforcées par des nanofibres obtenues par électrofilage pour piles à combustible et l'électrolyseur / Ionomer membranes reinforced with electrospun nanofibres for fuel cell and electrolysis applications

Giancola, Stefano 16 December 2016 (has links)
La production de membranes échangeuses de protons (PEM) robustes et présentant une conductivité élevée est essentielle pour le développement à grande échelle de dispositifs de stockage et de conversion de l’énergie tels que les piles à combustible (PEMFC) et les électrolyseurs (PEMWE). Ces travaux de thèse portent sur la préparation et la caractérisation de membranes composites préparées à partir d’acide perfluorosulfonique, à chaine latérale courte (SSC-PFSA), de type Aquivion®, et de fibres de polymères obtenues par filage électrostatique. Cette dernière technique permet de préparer des matériaux fibreux à porosité élevée, caractérisés par la présence de fibres de diamètres sub-micrométriques, et pouvant être utilisés comme renfort mécanique des membranes ionomères. Le polysulfone a été retenu comme constituant des fibres étant donné ses stabilités mécanique et chimique élevées d’une part et pour la possibilité de modifier ses propriétés physico-chimiques par fonctionnalisation, d’autre part. Ces membranes comportant une distribution homogène des nanofibres dans toute leur épaisseur ont été préparées à partir d’un procédé d’imprégnation Des membranes renforcées, Aquivion®-PSU, basées sur un PFSA dont le poids équivalent (EW) varie entre 700 et 870 g.mol-1 et dont la concentration massique de fibres varie entre 5 et 18 %, ont été préparées. Les membranes renforcées sont caractérisées par des faibles gonflements volumique et surfacique et par une rigidité plus élevée en comparaison des membranes non renforcées de même EW. La perméabilité a l’hydrogène a engluement été réduite. Les améliorations en terme de propriétés mécaniques et dimensionnelles n’ont pas amené à une diminution significatif de la conductivité protonique, qui été maintenue aux mêmes valeurs des membranes non renforcée. Les assemblage membrane-électrode (AME) préparés à partir de ces membranes composites ont montré des caractéristiques i/V intéressantes et prometteuses (1.76 V à 2 A/cm²).Des Polysulfones fonctionnalisés avec le 1,2,3 triazole portant des groupements alkyle ou aryle ont été préparés par une voie de synthèse rapide et a haute rendement assistée par micro-ondes. Les nanofibres electrofilées de PSU fonctionnalisé avec le 4-ethyl-1,2,3-triazole (PSUT), avec un degré de fonctionnalisation en espèce triazole de 0.3 et 0.9 par unité répétitive de PSUT ont été intégrées à une matrice Aquivion®. L’objectif de ces travaux est d’améliorer la stabilité mécanique des membranes composites à partir des interactions acido-basiques PFSA-PSUT (réticulation ionique). Les membranes Aquivion®-PSUT sont caractérisées par une rigidité, une dureté et une ductilité plus élevées en comparaison des membranes Aquivion® renforcées par les fibres de PSU non fonctionnalisées. Une diminution du gonflement volumique et surfacique a également été observée sans perte de la conductivité jusqu’à une concentration massique de fibres de 12 %. Les AME préparés à partir de membranes renforcées Aquivion®-PSUT (12%) sont caractérisés par les mêmes propriétés courant/tension, en monocellule de pile à combustible fonctionnant à 80 °C et 100 % d’humidité relative, que ceux préparés à partir d’Aquivion®. / The preparation of highly proton conducting and durable proton exchange membranes (PEM) for low temperature fuel cells (PEMFC) and electrolysers (PEMWE) is crucial for the large scale application of these energy conversion/storage devices. This PhD thesis focuses on the preparation and characterisation of composite membranes based on highly conducting Aquivion® short side chain perfluorosulfonic acid (PFSA) and polymer fibres obtained by electrospinning. This technique allows the preparation of highly porous mats of fibres with sub-micrometric diameters that can act as an efficient mechanical reinforcement for ionomer membranes. The chosen polymer is the mechanically robust and chemically stable polysulfone (PSU), which can also been functionalised to modify its physico-chemical properties. Reinforced PEM with fibres homogeneously dispersed through the entire membrane cross-section have been realised by a fast and efficient impregnation process.Aquivion®-PSU reinforced membranes based on PFSA with equivalent weight (EW) ranging from 700 to 870 g mol-1 and fibre loading ranging from 5 to 18 wt% have been prepared. They showed reduced volume and area swelling and higher stiffness with respect to non-reinforced membranes with the same EW. The hydrogen crossover was also reduced. The improvement in mechanical and dimensional properties was not detrimental for the in-plane proton conductivity that was kept at the same value of non-reinforced membranes. Membrane-electrode assemblies (MEA) based on these composite PEM show promising i/V characteristics in PEMWE (1.76 V at 2 A cm-2).Polysulfones functionalised with 1,2,3-triazole bearing alkyl and aryl ring substituents have been synthesized by a fast and high-yield chemical route involving the azide-alkyne cycloaddition reaction assisted by microwaves as last step. Electrospun nanofibers of polysulfone functionalised with 4-epthyl-1,2,3-triazole (PSUT) with a degree of functionalisation of 0.3 and 0.9 triazole moiety per PSUT repeat unit have been embedded into the Aquivion® matrix. The aim of this study was to further improve the mechanical properties of the membrane by PFSA-PSUT acid-base interactions (ionic crosslinking). Aquivion®-PSUT membranes showed enhanced mechanical stiffness, toughness and ductility with respect to Aquivion® membranes reinforced with the non-functionalised polymer with the same EW and fibre loading. Reduced volume and area swelling have also been observed with no drop of proton conductivity until a fibre loading of (12 wt%). MEA based on Aquivion®-PSUT reinforced membrane with 12 wt% fibre loading showed identical fuel cell polarisation curve with respect to a MEA based on Aquivion® at 80 °C and 100 % of relative humidity (RH).
57

Polyoxométallates et chimie verte : molécules et matériaux nanostructurés pour la conversion de l’énergie et l’environnement / Polyoxometalates and green chemistry : nanostructured composite molecules and materials based on polyoxometalates for energy conversion and environment

Ngo Biboum Bimbong, Rosa 27 June 2011 (has links)
Ce mémoire porte sur la synthèse de matériaux composites nanostructurés à base de polyoxométallates pour la conversion de l’énergie et des applications à des problèmes environnementaux. Pour atteindre ces objectifs, de nombreux composés nouveaux de cette famille d’oxydes moléculaires ont été synthétisés puis ont été associés à différentes matrices éco-compatibles dans le respect des principaux critères de la Chimie Verte. Les principales techniques d’étude sont l’électrochimie, la photochimie et la spectroscopie UV-visible. Dans le domaine de l’énergie, les catalyseurs obtenus se sont révélés très efficaces dans des réactions très importantes mais difficiles à réaliser, comme la production de l’hydrogène, la réduction de l’oxygène et l’oxydation de l’eau. De même, parmi les applications aux problèmes de dépollution, ces nanomatériaux ont montré une forte activité électrocatalytique et photocatalytique pour la réduction des oxydes d’azote, des bromates et la photodégradation d’un colorant textile toxique, l’Acide Orange 7. Les performances de ces nouveaux catalyseurs sont comparables à celles des meilleurs systèmes connus. / This thesis focuses on the synthesis of nanostructured composite materials based on polyoxometalates for energy conversion and applications to environmental problems. To achieve these goals, many new compounds of this family of molecular oxides were synthesized and were associated with different nature friendly matrices, in agreement with the main criteria of Green Chemistry. In the field of energy, the new catalysts have proved very effective in important but difficult to achieve reactions, such as producing hydrogen, oxygen reduction or water oxidation. Similarly, among applications to pollution problems, these nanomaterials have shown a strong electrocatalytic and photocatalytic activity for the reduction of nitrogen oxides, bromate and for the photodegradation of a toxic textile dye, Acid Orange 7. The performances of these new catalysts are comparable to those of the best known systems.
58

Solid oxide fuel cell modeling and lifetime prediction for real-time simulations / Modélisation de pile à combustible à oxyde solide et prédiction de durée de vie pour des simulations en temps réel

Ma, Rui 20 September 2018 (has links)
Cette thèse présente d'abord une modélisation multi-physique d'une cellule de pile à combustible à oxydes solides de géométrie tubulaire réversible 2D. Le modèle développé peut représenter à la fois une cellule d'électrolyse à oxydes solides (SOEC) et une cellule de pile à combustible à oxydes solides (SOFC). En tenant compte des phénomènes physiques, électrochimiques, fluidiques et thermiques, le modèle présenté peut décrire avec précision les effets multi-physiques à l'intérieur d'une cellule pour le fonctionnement en mode électrolyseur ou en mode pile sur toute la plage de fonctionnement en courant et en température. En outre, un solveur itératif a été mis en place afin de résoudre la distribution 2D des quantités physiques le long de la cellule tubulaire. Le modèle de cellule réversible est ensuite validé expérimentalement dans les deux configurations sous différentes conditions. Par ailleurs, un modèle de pile à combustible alimentée par du syngas a été développé. Ce dernier est orienté contrôle et prend en compte à la fois des phénomènes de co-oxydation de l'hydrogène et du monoxyde de carbone. Le modèle de gaz de synthèse développé est validé expérimentalement dans différentes conditions de fonctionnement. Le modèle développé peut être utilisé dans des applications embarquées comme la simulation en temps réel, ce qui peut aider à concevoir et tester la stratégie de contrôle et de diagnostic en ligne pour le système de génération d'énergie des piles à combustible dans les applications industrielles.La simulation en temps réel est importante pour le diagnostic en ligne des piles à combustible et les tests HIL (hardware-in-the-loop) avant les applications industrielles. Cependant, il est difficile de mettre en œuvre des modèles de piles à combustible multi-dimensionnels et multi-physiques en temps réel en raison des problèmes de rigidité numérique du modèle. Ainsi, la rigidité numérique du modèle en temps réel de la pile de type SOFC est d'abord analysée. Certains des solveurs d'équations différentielles ordinaires (ODE) couramment utilisés sont ensuite testés par la mise en place d’une simulation en temps réel comme objectif principal. Enfin, un nouveau solveur ODE rigide est employé pour améliorer la stabilité et réduire le temps d'exécution du modèle de pile à combustible en temps réel multidimensionnel. Pour vérifier le modèle proposé et le solveur ODE, des expériences de simulation en temps réel sont réalisées au sein d’une plate-forme temps réel embarquée commune. Les résultats expérimentaux montrent que la vitesse d'exécution satisfait à l'exigence de la simulation en temps réel. La stabilité du solveur sous forte rigidité et la grande précision du modèle sont également validées.Les piles à combustible sont vulnérables aux impuretés de l'hydrogène et aux conditions de fonctionnement qui entraînent une dégradation des performances de la pile au cours du temps. Ainsi, au cours de ces dernières années, la prédiction de la dégradation des performances attire l'attention qui conduit à des remarques critiques sur la fiabilité du système. Ainsi, une méthode innovante de prédiction de dégradation PEMFC utilisant un réseau neutre récurrent (RNN) à longue distance (G-LSTM) est étudiée. Le système LSTM peut efficacement éviter les problèmes d'explosion et de disparition de gradient en comparaison avec l'architecture RNN conventionnelle, ce qui le rend pertinent pour le problème de prédiction pour une longue période. En mettant en parallèle et en combinant les cellules LSTM, l'architecture G-LSTM peut optimiser de façon avantageuse la précision de prédiction de la dégradation des performances de PEMFC. Le modèle de prédiction proposé est validé expérimentalement par trois types différents de PEMFC. Les résultats indiquent que le réseau G-LSTM utilisé peut prédire la dégradation de la pile à combustible d'une manière précise. / This thesis first presents a multi-physical modeling of a 2D reversible tubular solid oxide cell. The developed model can represent both a solid oxide electrolysis cell (SOEC) and solid oxide fuel cell (SOFC) operations. By taking into account of the electrochemical, fluidic and thermal physical phenomena, the presented model can accurately describe the multi-physical effects inside a cell for both fuel cell and electrolysis cell operation under entire working range of cell current and temperature. In addition, an iterative solver is proposed which is used to solve the 2D distribution of physical quantities along the tubular cell. The reversible solid oxide cell model is then validated experimentally in both SOEC and SOFC configurations under different species partial pressures, operating temperatures and current densities conditions. Meanwhile, a control-oriented syngas fuel cell model includes both hydrogen and carbon monoxide co-oxidation phenomena are also proposed. The developed syngas model is validated experimentally under different operating conditions regarding different reaction temperatures, species partial pressures and entire working range of current densities. The developed model can be used in embedded applications like real-time simulation, which can help to design and test the control and online diagnostic strategy for fuel cell power generation system in the industrial applications.Real-time simulation is important for the fuel cell online diagnostics and hardware-in-the-loop (HIL) tests before industrial applications. However, it is hard to implement real-time multi-dimensional, multi-physical fuel cell models due to the model numerical stiffness issues. Thus, the numerical stiffness of the tubular solid oxide fuel cell (SOFC) real-time model is analyzed to identify the perturbation ranges related to the fuel cell electrochemical, fluidic and thermal domains. Some of the commonly used ordinary differential equation (ODE) solvers are then tested for the real-time simulation purpose. At last, the novel stiff ODE solver is proposed to improve the stability and reduce the multi-dimensional real-time fuel cell model execution time. To verify the proposed model and the ODE solver, real-time simulation experiments are carried out in a common embedded real-time platform. The experimental results show that the execution speed satisfies the requirement of real-time simulation. The solver stability under strong stiffness and the high model accuracy are also validated.Fuel cell are vulnerable to the impurities of hydrogen and operating conditions, which could cause the degradation of output performance over time during operation. Thus, the prediction of the performance degradation draws attention lately and is critical for the reliability of the fuel cell system. Thus, an innovative degradation prediction method using Grid Long Short-Term Memory (G-LSTM) recurrent neutral network (RNN) is proposed. LSTM can effectively avoid the gradient exploding and vanishing problem compared with conventional RNN architecture, which makes it suitable for the prediction of long time period. By paralleling and combining the LSTM cells, G-LSTM architecture can further optimize the prediction accuracy of the PEMFC performance degradation. The proposed prediction model is experimentally validated by three different types of PEMFC: 1.2 kW NEXA Ballard fuel cells, 1 kW Proton Motor PM200 fuel cells and 25 kW Proton Motor PM200 fuel cells. The results indicate that the proposed G-LSTM network can predict the fuel cell degradation in a precise way. The proposed G-LSTM deep learning approach can be efficiently applied to predict and optimize the lifetime of fuel cell in transportation applications.
59

Copolymères fluorés à base de fluorure de vinylidène porteur de groupements acide sulfonique ou acide phosphoniques pour membranes de piles à combustible

Sauguet, L. 19 December 2005 (has links) (PDF)
L'objectif de cette étude consiste à synthétiser et à évaluer les performances électrochimiques d'une nouvelle génération d'électrolyte pour piles à combustible à membrane échangeuse de protons (PEMFC), à partir de copolymères fluorés incorporant du fluorure de vinylidène (VDF) et des comonomères fonctionnalisés par des acides sulfoniques. Dans cette optique, deux stratégies de synthèse pour l'obtention d'architectures macromoléculaires originales ont été réalisées. La première, s'appuie sur la co- et terpolymérisation radicalaire directe d'un monomère fluoré aliphatique fonctionnalisé fluorure de sulfonyle avec des oléfines fluorées (VDF, hexafluoropropène (HFP), chlorotrifluoroethylène (CTFE), bromotrifluoroethylène (BrTFE) et 8-bromo-1H,1H,2H-perfluorooct-1-ène (BDFO)) conduisant à des copolymères statistiques. La seconde est basée sur la modification chimique de copolymères à base de VDF et BDFO conduisant à l'obtention de copolymères fluorés greffés PVDF-g-PS et/ou réticulés.
60

Pore network modelling of condensation in gas diffusion layers of proton exchange membrane fuel cell / Modélisation à l'aide d'une approche réseau de pores de la condensation dans les couches de diffusion des piles à combustible de type PEM

Straubhaar, Benjamin 30 November 2015 (has links)
Une pile à membrane échangeuse de protons (PEMFC) est un dispositif convertissant l’hydrogène en électricité grâce à une réaction électrochimique appelé électrolyse inverse. Comme chaque pile à combustible ou batterie, les PEMFC sont composées d’une série de couches. Nous nous intéressons à la couche de diffusion (GDL) du côté de la cathode. La GDL est constituée de fibres de carbone traitées pour être hydrophobes. Elle peut être vue comme un milieu poreux mince avec une taille moyenne de pores de quelques dizaines de microns. Une question clé dans ce système est la gestion de l'eau produite par la réaction. Dans ce contexte, le principal objectif de la thèse est le développement d'un outil numérique visant à simuler la formation de l'eau liquide dans la GDL. Une approche réseau de pores est utilisée. Nous nous concentrons sur un scénario où l’eau liquide se forme par condensation dans la GDL. Les comparaisons entre simulations et expériences effectuées grâce à un dispositif microfluidique bidimensionnel, sont d'abord présentées pour différentes conditions de mouillabilité, de distributions de température et d'humidité relative à l’entrée, afin de valider le modèle. Une étude de sensibilité est alors effectuée afin de mieux caractériser les paramètres contrôlant l'invasion de l'eau. Enfin, les simulations sont comparées à des distributions d’eau obtenues in-situ par micro-tomographie à rayons X, ainsi que des distributions expérimentales de la littérature obtenues par imagerie neutronique. / A Proton Exchange Membrane Fuel Cell (PEMFC) is a device converting hydrogen into electricity thanks to an electrochemical reaction called reverse electrolysis. Like every fuel cell or battery, PEMFCs are made of a series of layers. We are interested in the gas diffusion layer (GDL) on the cathode side. The GDL is made of carbon fibers treated hydrophobic. It can be seen as a thin porous medium with a mean pore size of few tens of microns. A key question in this system is the management of the water produced by the reaction. In this context, the main objective of the thesis is the development of a numerical tool aiming at simulating the liquid water formation within the GDL. A pore network approach is used. We concentrate on a scenario where liquid water forms in the GDL by condensation. Comparisons between simulations and experiments performed with a two-dimensional microfluidic device are first presented for different wettability conditions, temperature distributions and inlet relative humidity in order to validate the model. A sensitivity study is then performed to better characterize the parameters controlling the water invasion. Finally, simulations are compared with in situ experimental water distributions obtained by X-ray micro-tomography as well as with experimental distributions from the literature obtained by neutron imaging.

Page generated in 0.0816 seconds