• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 73
  • 32
  • 1
  • Tagged with
  • 102
  • 102
  • 37
  • 27
  • 19
  • 19
  • 17
  • 12
  • 12
  • 11
  • 11
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Gestion de l’eau dans les piles à combustible électrolyte polymère : étude par micro-spectroscopie Raman operando / Investigation of the water management in the polymer electrolyte fuel cell by operando Raman microscopy

Tran, Thi Bich Hue 19 December 2017 (has links)
Les performances et la durabilité d’une pile à combustible à membrane échangeuse de proton (PEMFC) sont directement liées à la répartition de l’eau dans l’assemblage membrane-électrode (AME), plus particulièrement dans la membrane électrolyte. L’optimisation de cette répartition de l’eau, homogène et suffisante, est donc indispensable pour obtenir de bonnes performances et une grande durabilité. La répartition de l’eau dépend d’une part des conditions de fonctionnement et d’autre part de la géométrie des canaux de distribution des gaz dans les plaques mono ou bipolaires. Cependant, l’effet de ces paramètres n’est pas encore entièrement élucidé malgré de nombreuses études réalisées.Dans ce contexte, la première partie de cette thèse se focalise sur l’effet des conditions d’humidification des gaz et de température de fonctionnement sur les performances et la distribution de l’eau dans une pile de configuration en serpentin. Les profils d’eau à travers l’épaisseur de la membrane au centre de la surface active sont enregistrés par spectroscopie Raman operando. Le lien entre la distribution de l’eau et les performances de la pile sera discuté. Dans la deuxième partie, les performances et la distribution de l’eau dans une pile de configuration en parallèle sont étudiées aux mêmes conditions de température appliquées pour la pile de configuration en serpentin. Les résultats obtenus nous permettent de comparer directement les comportements de ces deux configurations. L’origine des différences de leur répartition de l’eau et donc de leurs performances sera clarifiée. Dans la troisième partie, nous nous concentrons sur la répartition de l’eau dans le plan d’une pile en serpentin aux différentes température de fonctionnement. La pile est alimentée en contre-flux. Les profils d’eau dans l’épaisseur de la membrane sont enregistrés pour trois zones : entrée, centre et sortie. Nous traçons par la suite la répartition de l’eau sur les interfaces cathodique et anodique. Ces informations nous apportent une meilleure compréhension de la répartition de l’eau dans cette configuration ainsi que l’effet du mode d’alimentation des gaz en contre-flux. / In a proton exchange membrane fuel cell (PEMFC), the performance and the durability of the system is directly related to the water management in the membrane electrode assembly (AME), particularly in the membrane electrolyte. The optimization of the water repartition, homogeneous and sufficient, is therefore essential to obtain good performance and great durability. The water management in the membrane depends both on the operating conditions and the gas flow-field design. However, the effect of these parameters is not yet fully understood despite numerous studies.In this context, the first part of this thesis focuses on the influence of gas humidification and operating temperature conditions on the performance and the water distribution in a serpentine flow-field cell. The inner water profiles across the membrane thickness at the center of the active surface are recorded by Raman spectroscopy operando. The relationship between the water distribution and the performance of the cell will be discussed. In the second part, the performance and the water distribution in a parallel flow-field cell are studied under the same temperature conditions applied for the serpentine flow-field cell. The results obtained allow us to directly compare the behavior of these two configurations. The origin of their water distribution and performance differences will be discussed. In the third part, we focus on the distribution of water in the plane of a serpentine flow-field cell at different operating temperatures. The cell is powered in counter-flow. The inner water profiles in the membrane are recorded for three zones: inlet, center and outlet. We then trace the water repartition on the cathodic and anodic interfaces. This information gives us a better understanding of the counter-flow effect on the water distribution in the plane of the serpentine flow-field cell.
62

Films nanométriques poreux élaborés par DLI-CVD comme catalyseurs de mu-PEMFC : une alternative au tout platine ? / Porous thin films obtained by DLI-CVD as mu-PEMFC catalysts to replace platinum

Zanfoni, Nicolas 16 November 2016 (has links)
Ce travail porte sur le développement de protocoles de croissance par CVD à injection directe de liquide (DLI-CVD) de films catalytiques poreux potentiellement utilisables dans les piles à combustible de type PEMFC. Les objectifs étaient de contrôler et de réduire au maximum la charge en platine, d’obtenir des matériaux à grande surface spécifique, c'est-à-dire très poreux, mais aussi d’utiliser des précurseurs à bas coût.Dans un premier temps, le platine a été promu par de l’oxyde de cérium, matériau qui possède lui-même des propriétés catalytiques. L’optimisation des paramètres de croissance a montré le rôle majeur de la température de dépôt mais aussi du flux des précurseurs sur la morphologie finale des films. Un dopage contrôlé en platine de la surface de l’oxyde de cérium a ainsi pu être mis au point à partir du dépôt simultané de cérine et de platine. Le flux de précurseur du platine a alors permis d’ajuster la charge et l’état d’oxydation de cet élément au sein des films sans pour autant modifier leur porosité. Il est, par exemple, possible d’élaborer des films minces d’oxyde de cérium composés de particules nanométriques dopées en extrême surface avec 5 % de platine à l’état +II. L’effet du flux de précurseur sur l’état d’oxydation du platine a été confirmé pour le système Pt/TiO2. Dans un second temps, des oxycarbures de tungstène ont été synthétisés de façon à éliminer totalement le platine du catalyseur. Un procédé en deux étapes a été mis au point permettant d’obtenir des dépôts d’oxycarbure de tungstène possédant de grandes surfaces spécifiques en déposant un film utra-mince et conforme d’oxycarbure sur une couche poreuse d’oxyde de tungstène. / This work is focused on development of growth protocols by direct liquid injection chemical vapor deposition (DLI-CVD) of catalytic porous films which could be used in proton exchange membrane fuel cells (PEMFC). The aim of this work was to reduce or even proscribe platinum in catalysts having large specific surface area i.e. being very porous. Besides, the aim is also to use mainly low cost precursors.Cerium oxide, which is a material widely used as catalyst, has been chosen to partially substitute platinum. Porous CeO2 layers were obtained by the optimization of processing parameters such as deposition temperature or precursors flow rates. Controlled platinum doping of cerium oxide surface has been obtained from deposition of ceria and platinum at the same time. The platinum precursor flow rate has allowed adjusting the load and the oxidation state of Pt in films without changing their porosity. For example, it was possible to synthesize thin cerium oxide films composed of surface Pt doped nanoparticles. In such a case, the Pt content is 5% in top most layers and its oxidation state is +II. The effect of precursor flow rate on the platinum oxidation state was confirmed from the study of the Pt / TiO2 system. Finally, platinum has been fully replaced by tungsten oxycarbide. A two steps process has been developed to obtain porous oxycarbide layers by depositing a conformed tungsten oxycarbide ultra-thin film on a porous tungsten oxide layer.
63

Modification de la porosité de Ce0,9Gd0,1O1,95 par traitement laser : application pile SOFC monochambre / Densification of cerium gadolinium oxide electrolyte by laser treatment : application to single-chamber solid oxide fuel cells

Mariño Blanco, Mariana 19 December 2016 (has links)
Dans les piles à combustible SOFC (Solid Oxide Fuel cell) de type monochambre (SC-SOFC), l’anode et la cathode, séparées par un électrolyte, sont situées dans une même chambre alimentée par un mélange de combustible et d’oxygène. L’électrolyte, n’ayant alors plus le rôle d’étanchéité entre les compartiments anodique et cathodique, peut être mis en forme par sérigraphie. Cependant, il est nécessaire d’avoir une barrière pour éviter la possible diffusion de l’hydrogène produit localement à l’anode vers la cathode, ce qui peut générer une chute de la tension. L’objectif de ce travail de thèse est de créer une barrière de diffusion localisée via la densification de la surface de l'électrolyte par un traitement laser. Le matériau sélectionné pour l’électrolyte est un oxyde mixte Ce0,9Gd0,1O1,95 (CGO) qui est déposé par sérigraphie sur une anode composite NiO-CGO. Deux types de lasers impulsionnels sont utilisés : un laser UV (λ = 248 nm) et un laser IR (λ = 1064 nm). Les caractérisations microstructurales réalisées ont permis de mettre en évidence les effets du traitement laser pour certaines combinaisons fluence – nombre de tirs, montrant un grossissement de grain de l’électrolyte ou bien des surfaces densifiées mais fissurées. Des modifications structurales et chimiques sur la surface ont été évaluées ainsi que la diffusion de gaz au travers des électrolytes modifiés tout comme leur conductivité électrique. Afin de mieux comprendre l'interaction laser-matière, une modélisation thermique a également été mise en œuvre. Finalement, les performances de piles SC-SOFC ont été améliorées pour les dispositifs présentant un grossissement de grain à la surface de l'électrolyte. / In single-chamber solid oxide fuel cells (SC-SOFC), anode and cathode are placed in a gas chamber where they are both exposed to a fuel/air mixture. Similarly to conventional dual-chamber SOFC, the anode and the cathode are separated by an electrolyte, but in the SC-SOFC configuration it does not play tightness role between compartments. For this reason, a porous electrolyte can be processed by screen printing. However, it is necessary to have a diffusion barrier to prevent the transportation of hydrogen produced locally at the anode to the cathode through the electrolyte that reduces fuel cell performances. This study aims to obtain directly a diffusion barrier through the surface densification of the electrolyte by a laser treatment. The material chosen for the electrolyte was cerium gadolinium oxide Ce0.9Gd0.1O1.95 (CGO) which is deposited by screen printing on a composite NiO-CGO anode. UV laser and IR laser irradiations were used at different fluences and number of pulses to modify the density of the electrolyte coating. Microstructural characterizations confirmed the modifications on the surface of the electrolyte for appropriate experimental conditions showing either grain growth or densified but cracked surfaces. Structural and chemical modifications on the surface were evaluated as well as the gas diffusion through the electrolytes and their electrical conductivity. In order to understand interaction between the laser and the material, thermal modelling was also developed. Finally, SC-SOFC performances were improved for the cells presenting grain growth at the electrolyte surface, particularly, the power density has been enhanced by a factor 2.
64

Carbone fonctionnalisé pour une meilleure performance des piles à combustible / Functionalized carbon materials for high performances of PEM fuel cells

Xia, Yuzhen 16 October 2014 (has links)
Dans le contenu de l’amélioration des performances des piles à combustible, des catalyseurs Pt/Vulcan ont été greffés soit avec du polystyrène sulfonate (PSSA) soit avec de l'acide 4-phenysulfonique (PSA). L'influence du ratio du greffage, de la couche de diffusion de gaz et de la qualité de Nafion, sur les performances électrochimiques ont été étudiées en demi-pile et en assemblage membrane-électrodes (AME). La surface électrochimique du catalyseur a été améliorée en présence de la couche microporeuse sur le papier carboné en tant que couche de diffusion de gaz, aussi une densité de courant supérieure et une résistance de transfert de charge inférieure ont été observées. Pt/Vulcan catalyseurs ont été greffés des chaines PSSA avec 5, 10 et 20 wt.% 4-styrènesulfonate de sodium. Les résultats en demi-pile et en pile ont montré que des taux de sulfonation de 5 à 10 wt.% étaient optimaux. La sulfonation des catalyseurs a aussi été effectuée avec 5.8, 11.6, 18.0 et 23.3 wt.% PSA. Des résultats meilleurs ont été obtenus par la sulfonation. L'AME ayant 18.0 wt.% PSA a présenté une excellente stabilité pendant 3000 cycles de test de vieillissement accéléré. Moins de Nafion a entraîné une plus faible performance des demi-piles, aussi des AMEs ayant catalyseurs des greffé de 5 wt.% PSSA ou PSA. Cependant, celles contenant 10 et 20 wt.% de PSSA, ont montré un une densité de puissance élevé lors que la quantité de Nafion a diminué de 0.50 à 0.25 mg•cm-2 / In the development of the performances of PEM fuel cell, sulfonated Pt/Vulcan catalysts were prepared by grafting with either polystyrene sulfonate (PSSA) or with 4-phenysulfonic acid (PSA). The influences of the graft ratio, the amount of Nafion and the gas diffusion layer, on the electrochemical performances were studied in a half-cell and membrane electrode assembage (MEA). Larger electrochemical surface area of the catalyst was obtained in the presence of microporous layer on the carbon paper, as well as higher ORR current and lower charge transfer resistance. PSSA was grafted onto Pt/Vulcan catalysts by in-situ radical polymerization with 5, 10 and 20 wt.% sodium styrene sulfonate. It was presented in the half-cell tests and fuel cell tests that the catalysts grafted with 5 and 10 wt.% sulfonated groups performed improved properties. Pt/Vulcan catalysts were also grafted with 5.8, 11.6 18.0 and 23.3 wt.% PSA. Compared with non-functionalized catalysts, significant developments were achieved because of the sulfonation. The MEA with 18.0 wt.% PSA was studied in accelerated durability tests and showed excellent durability after 3000 cycles. For half-cells and MEAs with catalysts grafted with 5wt.% PSSA or PSA groups, low Nafion addition resulted in to lower performances. However, the MEAs with 10 and 20 wt.% PSSA exhibited an enhanced performance than the counterparts with 0.50 mg•cm-2 Nafion
65

Propriétés thermo-mécaniques des matériaux pour les piles à combustible / Thermo-mechanical properties of materials for fuel cells

Ciria matamoros, Desirée 06 November 2017 (has links)
Les piles à combustible à oxyde solide (SOFC) offrent une alternative réelle aux technologies classiques de génération d’électricité en étant à la fois propre, efficace et respectueuse de l’environnement. Toutefois, leur principale limitation réside en leur durée de vie et fiabilité limitées dues à leur haute température de fonctionnement. Des recherches intenses de matériaux pour SOFC sont actuellement poursuivies pour essayer d’abaisser la température de fonctionnement de ces dispositifs afin de dépasser ces limitations. Parmi les différents candidats qui ont émergé, le Silicate de Lanthane (LSO) et le Zirconate de Baryum dopé à l'Yttrium (BZY) ont été identifiés comme des alternatives potentielles à utiliser comme matériaux d’électrolyte pour SOFC à température intermédiaire.De manière surprenante, alors que de nombreuses études concernent l’optimisation microstructurale et électrochimiques des composants de la pile, très peu d’études concernant l’évaluation de leurs propriétés mécaniques et de leur influence sur la durée de vie du dispositif.La fiabilité et durée de ces dispositifs dépend non seulement de leur stabilité électrochimique, mais aussi de la capacité de leur structure à supporter les contraintes résiduels issus du procédé de fabrication et de contraintes mécaniques de fonctionnement. En raison du fait que les SOFC sont composés d'empilement de plusieurs cellules individuelles qui, à leur tour, sont constituées de couches fragiles individuelles en contact étroit, ces contraintes proviennent principalement de la différence entre le coefficient de dilatation thermique et les propriétés élastiques des couches adjacentes et la déformation du fluage. Des contraintes non coordonnées peuvent entraîner une défaillance mécanique d'une seule cellule et avoir des conséquences dramatiques sur l'ensemble de la pile. De ce fait, la connaissance des propriétés mécaniques des composants de la cellule est une étape importante pour préserver l’intégrité et le développement des SOFC. Le but de cette thèse est la fabrication et l’étude des propriétés structurale, microstructurales et mécaniques de matériaux de type LSO et BZY. / Solid oxide fuel cells (SOFCs) offer a real alternative to classical technologies for the generation of electricity by clean, efficient and environmental-friendly means. Nevertheless, the main limitation of SOFCs lies in their unsatisfactory durability and reliability due to the high operating temperatures and thermal cycling characteristic of these devices. An intense search is currently underway for materials for SOFCs with the objective of lowering the working temperature and then overcoming these limitations. Among the different candidates which have emerged, Lanthanum Silicate (LSO) and Yttrium-doped Barium Zirconate (BZY) were considered as potential alternatives to be used as electrolyte materials for SOFC at intermediate-temperature. While numerous studies have been devoted to characterizing and optimizing the microstructural and electro-chemical properties of SOFC components, as yet there is little research available on mechanical properties and the influence they have on SOFC lifespan.The reliability and durability of these devices depends not only on their electro-chemical stability, but also on the ability of their structure to withstand residual stresses arising from the cell manufacturing process and mechanical stresses from operation. Owing to the fact that SOFCs are composed by stacking of several single cells which in turn are made up of individual brittle layers in close contact, these stresses mainly originate from the difference between the coefficient of thermal expansion and elastic properties of adjacent layers and creep deformation. Mismatched stresses can result in the mechanical failure of a single cell and have dramatic consequences on the whole stack. Therefore, knowledge of mechanical properties of the cell components becomes an important issue for the mechanical integrity and development of SOFCs.The aim of this PhD thesis is the fabrication and structural, microstructural and mechanical characterization of LSO and BZY.
66

Synthèse d’ionomères par polycondensation directe de monomères fonctionnels / Synthesis of ionomers by direct polycondensation of functionnal monomers

Rojo Duran, Sergio 14 December 2017 (has links)
Ce manuscrit de thèse décrit la synthèse et la caractérisation d'ionomères conducteurs protoniques pour une application en tant que membrane pour pile à combustible. La stratégie adoptée pour la synthèse de ces polymères repose sur la polycondensation directe de monomères fonctionnels. Pour ce faire, et dans le cadre d'un travail important de chimie organique, la synthèse de trois monomères sulfonés ainsi que de trois monomères phosphonés a été réalisée. Différents polymères perfluorés (polyperfluorocyclobutane (PFCB) et polyaryléthers (PAE) (Polyétheréther cétone (PEEK) et Polysulfone (PS), ont été obtenus par polycondensation directe de ces monomères fonctionnalisés. Il a été possible de synthétiser des copolymères séquencés (à blocs) et comportant un ou deux types de fonctions conductrices protoniques. Afin d'établir d'éventuelles relations structure-propriété pour ces polymères et l'influence du solvant dans la morphologie de la membrane, une étude de la morphologie a été réalisée à partir de plusieurs séries de polymères PAE et leurs analogues « statistiques ». Les valeurs de conductivité des polymères à blocs sont, en général, supérieures à celles de leurs analogues « statistiques ». Un PAE obtenu est particulièrement intéressant, il possède à la fois une conductivité (216 mS.cm 1) nettement supérieure au Nafion® et un gonflement plus faible. Le polymère perfluoré (PFCB) obtenu est également très prometteur : la conductivité enregistrée pour ce ionomères est de 138 mS/cm. Ce travail de thèse est, à notre connaissance, le premier exemple de synthèse d'un PFCB sulfoné par polymérisation directe d'un monomère fonctionnel mais il constitue également le premier exemple de synthèse de poly(aryléther)s à blocs sulfonés / phosphonés par copolymérisation directe de deux types de monomères fonctionnels / This thesis describes the synthesis and characterization of proton conducting polymers for application as membrane for fuel cells (PEMFC). The approach for the synthesis of polymers consists in creating polymers from direct polycondensation of functional monomers, in order to better control their final IEC. Three sulphonated monomers and three phosphonated monomers have been first synthetized. Different types of polyarylethers (one of them is both sulphonated and phosphonated) and one perfluorinated polymer (PFCB) have been synthetised by direct polycondensation of functional monomers. In order to explain the influence of the solvent in the final morphology of the membrane, and the relation between its structure and properties, one morphological study has been realized to the obtained polymers but also to their analogues “statistical” polymers. In general, the blocks polymers obtained the highest values of conductivity. One polyarylether seems particularly interesting, because its conductivity value is much higher than Nafion®’s, and has a smaller swelling value. The perfluorinated polymer has also an interesting conductivity value (138 mS/cm). This thesis work is, to the best of our knowledge, the first example of the synthesis of a sulphonated PFCB obtained by direct polycondensation but also the first example of synthesis of a both sulfonated/phosphonated polyarylethers by direct copolymerisation of to types of functional monomers
67

Développement de matériaux électriquement conducteurs pour les plaques bipolaires de piles à combustibles à membrane échangeuse de protons, PEMFC

Bouatia Eloumami, Souhail 13 April 2018 (has links)
Dans un contexte de changements climatiques palpables, la recherche dans le domaine des énergies ± propres ¿ devient de plus en plus valorisée. La technologie des piles à combustibles en est une voie qui intéresse les chercheurs autant que les décideurs. Pour cause, leur utilisation à grande échelle est potentiellement capable de défaire la dépendance aux combustibles fossiles. Ces derniers sont en effet accusés de dérégler l'équilibre climatique, mais aussi de créer des tensions internationales. La ± pile à combustible à membrane échangeuse de protons ¿, ou PEMFC pour ± Proton Exchange Membrane Fuel Cell ¿, est une catégorie de piles à combustibles prometteuse, surtout pour les applications mobiles et de transport. Les PEMFC sont des appareils capables de convertir une énergie stockée chimiquement en courant électrique durant des milliers d'heures. La chaîne de réactions qui le permet est respectueuse de l'environnement : son seul rejet dans l'atmosphère est de la vapeur d'eau. Une PEMFC est composée de plusieurs unités qui produisent un courant électrique continu. Les plaques bipolaires ou BPP, abréviation anglaise de ±BiPolar Plates¿ constituent les extrémités de chaque unité. Elles ont pour rôle principal d'assurer le passage des électrons entre les unités adjacentes et de distribuer l'hydrogène ou l'oxygène de façon homogène sur toute la surface des électrodes de chaque unité. Cette dernière étape est assurée grâce à des chemins de circulation de gaz gravés sur chaque face de la BPP. Il existe cependant un frein au développement de cette technologie; son coût. En effet, celui-ci reste encore élevé et empêche les fabricants d'y associer un avantage concurrentiel substantiel. Pourtant, la concrétisation de l'avenir prometteur des PEMFC passe indéniablement par une industrialisation et leur intégration dans des produits compétitifs. La présente étude concerne le développement de nouveaux matériaux pour l'un des éléments les plus massifs ± plaques bipolaires ¿. Pour réduire les coûts, un travail de recherche dans ce domaine peut explorer deux voies: trouver des matériaux alternatifs moins onéreux ou bien, innover dans la fabrication et la mise en oeuvre. Dans ce projet, les deux démarches ont été explorées. Le milieu intérieur d'une PEMFC est relativement chaud, corrosif et possède une pression spécifique. La conception des BPP doit donc tenir compte de plusieurs paramètres. Le produit doit non seulement répondre aux exigences de conductivité électrique, mais aussi de résistances chimique, thermique et mécanique. Établir un compromis entre les propriétés finales s'avère donc nécessaire, en particulier lorsque celles-ci varient de manière opposée. Traditionnellement fabriquées en graphite, les BPP sont les éléments les plus massifs et les plus coûteux dans une PEMFC. Le but de ce projet est de développer, via un procédé de mise en oeuvre viable industriellement, un matériau léger constitué d'un polymère thermoplastique chargé d'additifs solides, électriquement conducteurs. En plasturgie, la mise en oeuvre de matériaux par un processus continu est le meilleur moyen qui permet d'accéder éventuellement à une production industrielle. Dans cette étude, le procédé d'extrusion a été utilisé. Celui-ci a permis de produire en continu des surfaces plates à épaisseurs contrôlées. Pour fabriquer une BPP à base de matériaux polymères, il est possible d'associer le procédé d'extrusion à des étapes de calandrage, de découpe et de compression à chaud. La phase de compression permet alors de graver les chemins de circulation des gaz sur chaque face de la BPP. Dans cette étude, une filière plate montée sur une extrudeuse bi-vis contra-rotatives a été utilisée pour produire des feuilles d'épaisseur 2.5 mm. Les mélanges étaient formés d'une matrice Polyéthylène Téréphtalate, PET, et de plusieurs charges électriques. Ces additifs ont été choisis en fonction de leurs dimensions, de leurs formes et de leurs conductivités électriques. La combinaison de plusieurs charges visait à obtenir un effet synergétique. Deux charges ont été systématiquement utilisées: un noir de carbone à surface spécifique élevée et un graphite synthétique en forme de feuillets. Deux autres charges ont aussi été séparément testées pour examiner leurs effets sur la conductivité électrique. Il s'agit de nanotubes de carbone et de billes de verre enduites d'une mince couche d'argent. Plusieurs propriétés ont été caractérisées pour faire une comparaison avec les valeurs visées pour une BPP. Il s'agit principalement de la conductivité électrique, de la résistance mécanique, ainsi que de la perméabilité au gaz. Des observations au microscope électronique ont par ailleurs permis d'expliquer certains phénomènes électriques. Des résultats encourageants ont été obtenus grâce à la combinaison de charges.
68

Étude de la fabrication de piles à combustible nanostructurées SOFC par l'injection de suspensions et de solutions dans un plasma inductif / Nano-structured SOFCS fabrication using solution/suspension induction plasma spray technology

Jia, Lu January 2010 (has links)
In this work, the nano-structured components of solid oxide fuel cells have been produced, using radio frequency (RF) solution or suspension plasma spraying processes. The emerging technology of suspension plasma spraying was explored to produce thin and gas tight nano-structured solid oxide fuel cells electrolytes, which in an effort to develop a cost-effective and scalable fabrication technique for high performance solid oxide fuel cells (SOFCs). Glycine-nitrate process (GNP) produced cerium oxide (CeO[subscript 2]) and gadolinium oxide (Gd[subscript 2]O[subscript 3]) nano-powders were used to prepare suspensions and then separately injected to form composite GDC electrolyte coatings. A dynamic mask system has been developed to control the heating effects of a high-temperature plasma deposition process. The experimental results of the nano-structured SOFCs GDC electrolytes production by means of a RF suspension plasma spraying process using the newly proposed mask were compared to the ones without mask. The potential of this deposition technique to improve the electrolyte coating uniformity and to reduce the coating porosity was demonstrated. SOFCs anodes require long triple phase boundary (TPB) and appropriate gas diffusion pass for the fast transport of both fuel and exhaust gases, but the area where gas diffusion passes are especially required would be different from the area suitable for electrochemical reaction in the anodes. Functionally graded anodes in both composition and porosity have been proposed to fulfill the anodic functions in adequate anodic areas. On the basis of the optimized spraying conditions and the laboratory-developed solution feeding system, NiO-GDC functionally graded nanostructure anodes were prepared using solution plasma spraying (SolPS) process. Then the microstructure and material composition of the anodes were analyzed. A graded distribution in contents of both nickel and GDC was confirmed in the coating. Field emission scanning electron microscopy (FESEM) observation exhibited a continuous variation in porosity from 35% to 9% along the direction across the coating thickness. The functionally graded anodes deposited by SolPS process may minimize the thermal expansion mismatch between SOFC components and increase the length of triple phase boundary, which should lead to the improvement of the anodic performances. The successful fabrication of the functionally graded nano-structural electrodes as well as dense electrolyte coatings represents an opportunity for the Centre de Recherche en Énergie, Plasma et Électrochimie (CREPE) to fabricate the fully integrated nano-structured SOFC using solution and suspension plasma spraying processes.
69

Electrical valorization of MFC : application to monitoring / La récuperation d’énergie électrique de biopiles microbiennes pour l’application de monitoring

Pietrelli, Andrea 21 January 2019 (has links)
Dans les dernières années, l'utilisation intensive des combustibles fossiles a déclenché une crise mondiale due à la forte production de polluants et à la réduction des stocks, en raison de sa nature de source d'énergie non renouvelable. Parce que l'utilisation généralisée des combustibles fossiles a entraîné la production de grandes quantités de CO2, ce qui est un facteur aggravant du réchauffement de la planète. Les piles à combustible microbiennes (MFC) représentent une technique de récupération d'énergie qui convertit l'énergie chimique des composés organiques en énergie électrique par le biais de réactions catalytiques de micro-organismes. La MFC peut être considérée comme un archétypique de système microbien bioélectrochimique (BES), qui exploite l’activité bio-électrocatalytique de micro-organismes vivants pour la génération de courant électrique. Durant la dernière décennie, l’évolution de l’électronique de faible consommation a rendu la technologie des MFC plus attrayante, car elle commence à pouvoir fournir une énergie comparable à celle consommée par des périphériques dit à faible consommation, comme un nœud de réseau de capteurs sans fil (WSN). En plus, les MFC ont gagné en intérêt car elles peuvent générer de l'énergie électrique tout en traitant des déchets. Contrairement aux autres piles à combustible, les MFC peuvent générer en permanence une énergie propre à une température ambiante, à la pression atmosphérique et à un pH neutre, sans entretien supplémentaire. Les seuls sous-produits sont le CO2 et H2O, qui ne nécessitent aucune manipulation supplémentaire, car le CO2 produit est biogénique, ce qui est inclus dans le cycle du carbone biogéochimique, évitant l'émission nette de carbone dans l'atmosphère. Ce manuscrit examine certains aspects liés à la technologie des piles à combustible microbiennes, depuis les réactions chimiques jusqu’aux systèmes de gestion de l'énergie requis pour exploiter la puissance fournie par les MFC. Une campagne expérimentale a été menée sur les MFCs concernant la caractérisation électrique, la connexion multiple des MFCs et l’influence des principaux paramètres qui affectent les performances de conversion de l’énergie. Le contexte de la pile à biocarburant est introduit et les principes de base de fonctionnement et les applications principales sont expliqués. L'enquête comprend une évaluation de l'impact des différents matériaux d'électrode, du substrat utilisé et des bactéries impliquées dans le processus chimique. Une perspective consiste à ajuster les paramètres afin de maximiser la production d'électricité. La conception spécifique de nos MFC de laboratoire est également présentée. Les essais expérimentaux ont été effectués sur deux types de réacteurs : la pile à combustible microbienne terrestre et la pile à combustible microbienne à eau usée. Un système de mesure approprié est présenté, il est spécialement conçu pour les tests sur les MFC. Il est capable d'assurer une mesure précise de toutes les valeurs et paramètres électriques nécessaires à la caractérisation électrique des réacteurs dans une configuration unique ou dans une connexion multiple. Les solutions utilisées pour alimenter les WWMFC étaient différentes et dans certains cas, on utilisait de vraies eaux usées, alors que dans d'autres, des solutions synthétisées appropriées étaient conçues à cet effet. Les méthodes de synthèse des solutions sont décrites. L'influence des principaux paramètres tels que le pH et la température a été analysée pour les deux types de cellules. La campagne expérimentale comprend des mesures de réacteurs en configuration unique ou disposées dans des connexions en série ou en parallèle. Les résultats confirment l'augmentation de la tension dans le cas de connexions en série et l'augmentation de la puissance dans le cas de connexions en parallèle. [...] / In recent years, the extensive use of fossil fuels has triggered into a global crisis due to high pollution and stock reduction, because of its nature of non-renewable source of energy. Because the wide use of fossil fuels has led to the production of high amounts of CO2, as a result is a trigger of the global warming issue. Microbial fuel cells (MFCs) is an energy harvesting technique that converts chemical energy from organic compounds to electrical energy through catalytic actions of microorganisms. MFC can be considered as archetypical microbial Bioelectrochemical Systems (BESs), that exploit the bio-electrocatalytic activity of living microorganisms for the generation of electric current. In the past decade, the evolution of low power electronics has made MFCs technology more attractive, because it has begun to be able to power low-power devices forming complete systems, such as the nodes of a wireless sensor network (WSN). Moreover, MFCs gained more interest because they can generate electric power while treating wastes. Unlike other fuel cells, MFCs can continuously generate clean energy at normal temperature, atmospheric pressure, and neutral pH value without any supplementary maintenance. The only by-products are CO2 and H2O, which do not require additional handling. The production of CO2 is part of a short duration carbon cycle. The CO2 produced is biogenic, which is included in the biogeochemical carbon cycle, avoiding net carbon emission into atmosphere. This manuscript examines many aspects related to microbial fuel cell technology from chemical reactions inside the cells to the energy management systems required to exploit energy delivered from MFCs for practical usage in autonomous sensors. Experimental campaign was performed on MFCs regarding electrical characterization, multiple connections of MFCs and influence of main parameters that affect energy conversion performances. The experimental tests were performed on two different lab-scale reactor typologies: terrestrial microbial fuel cell and waste water microbial fuel cell. A survey is presented about different proposed energy management systems and other devices able to build a node of a WSN powered by MFCs.
70

Nouveaux copolymères fluorés porteurs de fonctions azole (imidazole, benzimidazole ou triazole) pour membranes pour piles à combustible (PEMFC) fonctionnant en conditions quasi-anhydres / New Fluorinated co-polymers Bearing Azole functions (Imidazole, Benzimidazole or Triazole) for PEMFC membranes Working Under Low Relative Humidity

Campagne, Benjamin 14 November 2013 (has links)
Ce travail de thèse s'inscrit dans la continuité des travaux de recherche sur l'utilisation d'hétérocycles azotés pour l'élaboration de membranes échangeuses de protons pour piles à combustible de type PEMFC fonctionnant sous faible taux d'humidité relative (HR < 25 %) et à des températures allant jusqu'à 200 °C pour l'application automobile. Pour cela, trois nouveaux copolymères partiellement fluorés porteurs de trois groupements azole (imidazole, benzimidazole et 1H-1,2,4-triazole) ont été synthétisés et caractérisés. Ils ont ensuite été utilisés pour l'élaboration de membranes polymères (20 µm < épaisseurs < 100 µm) par mélange avec le s-PEEK. Ces membranes sont stables thermiquement jusqu'à 210 °C. Les trois séries de membranes ont été comparées et les meilleurs résultats de conductivité protonique ont été obtenus pour celles contenant le 1H-1,2,4-triazole (σ = 7,0 mS.cm-1, 140 °C, HR < 25 %). Les propriétés mécaniques de ces membranes ont été mesurées et ont montré des valeurs comparables à celles des principales membranes commerciales (de type Nafion®). Afin d'obtenir une meilleure structuration de ces membranes, une stratégie d'élaboration de pseudo réseaux semi-interpénétrés de s-PEEK dans un réseau polymère réticulé a été mise au point. Pour cela, de nouveaux terpolymères porteurs de groupements 1H-1,2,4-triazole et de groupements cyclocarbonate réticulables par la réaction cyclocarbonate / amine ont été synthétisés et caractérisés. Ces terpolymères ont été mélangés à du s-PEEK puis réticulés par une diamine pour former des pseudo réseaux semi-interpénétrés de faibles épaisseurs (20 µm < e < 60 µm) qui ont été caractérisés. Ces membranes à architecture pseudo réseaux semi-interpénétrés ont montré de meilleures propriétés mécaniques mais des valeurs de conductivité protonique légèrement inférieures à celles des membranes non réticulées. Enfin, les membranes réticulées ou non ont été dopées par l'acide phosphorique pour augmenter leurs valeurs de conductivité protonique. Des essais en mono-cellule de PAC de ces membranes dopées ont été effectués et ont montré de bonnes performances. Des estimations par extrapolations des résultats ont ensuite été effectuées à plus hautes températures (140 – 200 °C) et ont montré que les valeurs de conductivité protonique atteignent jusqu'à 210 et 250 mS.cm-1, à 180 et 200 °C, HR < 25 % (valeurs extrapolées). Ces valeurs extrapolées doivent être vérifiées par la réalisation de mesures de conductivité protonique à ces températures (140 – 200 °C). / This work concerns the syntheses and characterizations of new proton exchange polymer membranes containing N-heterocyclic compounds for PEMFC working under low relative humidity (HR < 25 %) and temperatures up to 200 °C for automotive applications. Three new partially fluorinated copolymers bearing different azole compounds (imidazole, benzimidazole or 1H-1,2,4-triazole) as pendant groups have been synthesized and characterized. Then, they have been used to synthesize blend polymer membranes with s-PEEK (20 µm < thickness < 100 µm) that showed thermal stabilities up to 210 °C. These new families of membranes have been compared and highest proton conductivity values have been observed for 1H-1,2,4-triazole containing membranes (σ = 7,0 mS.cm-1, 140 °C, HR < 25 %). Mechanical properties and oxidative stability of these membranes have been assessed and showed similar values than main commercially available membranes. To improve membranes structuration, pseudo semi-interpenetrating polymer networks have been synthesized. Thus, original cross-linkable terpolymers bearing 1H-1,2,4-triazole and cyclocabonate functions as pendant groups have been synthesized and blended with s-PEEK as linear polymer to synthesize new polymers membranes (20 µm < thickness < 60 µm). Cross-linking has been carried from the cyclocarbonate/diamine reaction to get pseudo semi-interpenetrated polymer networks. Finally, both pseudo semi-interpenetrated polymer networks and uncross-linked membranes were doped by immersion in phosphoric acid solution to increase proton conductivity of these materials. Single cell fuel cell tests have been carried out and showed good performances. High temperatures (140 – 180 °C) proton conductivity values of these doped membranes have been estimated from extrapolation curves and reached up to 210 and 250 mS.cm-1, at 180 and 200 °C, HR < 25 %, respectively (extrapolated values). Proton conductivity values should be assessed at these targeted temperatures (140 to 200 °C).

Page generated in 0.0598 seconds