• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 74
  • 32
  • 1
  • Tagged with
  • 103
  • 103
  • 37
  • 27
  • 19
  • 19
  • 18
  • 13
  • 12
  • 12
  • 11
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Compréhension des mécanismes d’interaction des catalyseurs bimétalliques des piles PEMFC avec les polluants de l’hydrogène et de l’air atmosphérique / Understanding of the interaction mechanisms of PEM fuel cells catalysts with the pollutants of hydrogen and atmospheric air

Cheah, Seng Kian 09 January 2012 (has links)
Ce travail a pour objectif général de développer une compréhension approfondie de l’interaction du CO avec des catalyseurs anodiques dans les piles à combustible de type PEM (PEMFC), et d’évaluer son impact vis-à-vis de leur réactivité et stabilité lors de l’oxydation de l’hydrogène. Premièrement un modèle physique multi-échelle a été conçu pour simuler les performances de piles PEMFC alimentées par de l’hydrogène contenant des traces de CO. Il est basé sur la simulation Monte Carlo et la modélisation cinétique des étapes électrochimiques/chimie élémentaires. Une étude expérimentale de l’adsorption et de l’oxydation de CO simulant la technique d’ « O2 bleeding » a été utilisée pour mieux comprendre les mécanismes. Des catalyseurs de Pt ainsi que des bimétalliques PtxCoy et PtRu, supportés sur du carbone de grande aire spécifique, ont été étudiés. La spectroscopie IR (DRIFTS) et l’analyse QMS ont été utilisées pour l’étude de l’adsorption et oxydation de CO. Les défauts de surface, l’historique du catalyseur dans son interaction avec les différents gaz (H2, O2, CO), la température, la charge en Pt, la taille des particules, l’alliage de Pt avec Co ou Ru se sont révélé des paramètres clés dans la réactivité de CO avec O2. Le modèle multi-échelle a été appliqué aux catalyseurs Pt et PtxCoy. Les catalyseurs PtxCoy se révèlent plus tolérants au CO mais, en fonction du rapport Pt/Co, ils peuvent se dégrader par dissolution de Co comme démontré par nos expériences / The general objective of this work is to develop a deep understanding of the interaction of the CO with anodic catalysts in PEM Fuel Cells (PEMFCs), and to evaluate its impact on the reactivity towards the hydrogen oxidation and their stability. Firstly, a multiscale kinetic model is built up based on Monte Carlo simulation and kinetic modelling of elementary electrochemical/chemical steps as a tool to simulate the performance of PEMFCs fed with H2 containing CO traces. Experiments on CO adsorption and oxidation mimicking O2 bleeding were used to better understand the mechanisms. Monometallic Pt and bimetallic PtxCoy and PtRu catalysts supported on high surface area carbon were studied. CO adsorption and oxidation were investigated by means of DRIFT spectroscopy and QMS analysis. Defect sites (kink, edge), history of interaction with different gases (H2, O2, CO), temperature, Pt loading, particle size, alloying with Co or Ru are key parameters influencing the CO reactivity with O2. The multiscale kinetic model was applied to Pt and PtxCoy. PtxCoy nanocatalysts are shown to be highly CO tolerant but might degrade by Co dissolution in long term operation, depending on the Pt to Co ratio
102

Coupling fluid flow, heat and mass transfer with thermo-mechanical process : application to cracked solid oxide fuel cell / Couplage d'écoulement fluide, de transfert de masse et de chaleur avec des processus thermo-mécaniques : application aux piles à combustible Oxyde Solide fissurées (SOFC)

Shao, Qian 24 March 2015 (has links)
Au cours des dernières décennies, les piles à combustible à oxyde solide sont devenues un dispositif prometteur de conversion d’énergie. Ceci est dû principalement à leur efficacité de conversion d’énergie, leur flexibilité du choix du carburant et leurs faibles émissions de polluants. Cependant, la température de fonctionnement élevée de cette variante de piles à combustible induit divers problèmes d’endommagement et de fissuration. Par conséquent, l’optimisation de leur durée de vie reste un problème à résoudre. Dans cette thèse, une approche numérique combinant la méthode des éléments finis (FEM) et la méthode des éléments finis étendus (XFEM) est développée. Le but est de modéliser le problème multi-physique comportant: l’écoulement du fluide, le transfert de la chaleur, le transfert de masse, les réactions électrochimiques et thermomécanique dans une unité de pile à combustible. Dans un premier temps, pour prédire la distribution de la température et des espèces dans le milieu poreux des électrodes, un modèle de Darcy-Brinkman (DB) couplant l’écoulement du gaz, le transfert de chaleur et le transport de masse est développé. Ensuite, la méthode XFEM est introduite pour modéliser la présence des fissures dans les électrodes. Le modèle DB-XFEM combiné est utilisé par la suite pour étudier l’effet de l’écoulement du fluide, le transfert de chaleur et des propriétés thermomécaniques du matériau sur la nucléation et la propagation des fissures. Enfin, un modèle électrochimique (EC) est développé et combiné avec le modèle DB pour étudier les performances de conversion d’énergie dans la cellule de la pile à combustible. / Over the last few decades, Solid Oxide Fuel Cell (SOFC) has been a promising energy conversion device that has drawn a lot of attention due to its high energy conversion efficiency, fuel flexibility and low pollutant emission. However, as the high operating temperature leads to complex material problems in the SOFC, the energy conversion efficiency and life expectancy optimization remain as the challenging issues regarding the design and manufacturing of fuel cells. In this thesis, a numerical approach based on a combination of Finite Element (FEM) and eXtended Finite Element (XFEM) methods is developed to model the coupled fluid flow, heat and mass transfer as well as the electrochemical reactions with thermo-mechanical process in the SOFC unit. At first, to predict the temperature and species distribution within the porous electrodes of a SOFC unit, a Darcy-Brinkman (DB) model coupling the gas flow, heat and mass transport in porous media is developed. Then, the XFEM is introduced to deal with the presence of crack in the porous electrodes. The combined DB-XFEM model is used to investigate the effect of fluid flow, heat transfer, porous material properties and the material anisotropy on the onset of crack growth and the propagation path in the SOFC unit. At last, an electrochemistry (EC) model is developed and combined with the DB model to couple the electrochemical reactions to energy and mass transfer in the SOFC. With the DB-EC model, the cell energy conversion performances are studied.
103

Elaboration de matériaux nanostructurés pour piles à combustible SOFC : application à Nd2NiO4+d et Ce1-xAxO2-y / Elaboration of nanostructured materials for Solid Oxide Fuel Cells : application to Nd2NiO4+d and Ce1-xAxO2-d

Mesguich, David 23 June 2010 (has links)
Le développement actuel des piles à combustible SOFC fonctionnant à température intermédiaire suppose l'optimisation des méthodes de synthèse et de mise en forme pour les matériaux nouveaux développés au cours des dernières années. En effet, les propriétés électrochimiques de ces dispositifs sont étroitement liées aux caractéristiques des poudres de départ ainsi qu'à la microstructure des électrodes (ou de l'électrolyte) après leur mise en forme. Une amélioration significative des dites propriétés peut être obtenue par la nanostructuration des matériaux. Dans ce contexte, ce travail de thèse est consacré à l’élaboration du matériau de cathode Nd2NiO4+d ainsi que du matériau d'électrolyte Ce1-xAxO2-d. Les méthodes mises en œuvre sont la synthèse de nanopoudres en milieux éthanol/eau supercritiques et par voie pyrosol ainsi que le dépôt de couches minces en milieu CO2 supercritique. Les objets obtenus ont enfin été caractérisés par spectroscopie d'impédance électrochimique afin de quantifier leur performance pour l’application SOFC. / The ongoing development of Intermediate Temperature Solid Oxide Fuel Cells implies the optimization of the synthesis and deposition methods for the new materials developed these past years. Indeed, electrochemical properties of these materials are closely linked to the initial powder characteristics as well as the electrode (or electrolyte) microstructure after deposition. Significant improvement of the aforementioned properties can be obtained via nanostructuration of the materials. Thus, this thesis is dedicated to the synthesis of the cathode material Nd2NiO4+d and the electrolyte material Ce1-xAxO2-d. Methods employed are namely nanopowder synthesis in water/ethanol supercritical mixtures and spray pyrolysis as well as thin film deposition in supercritical fluids. The obtained objects have finally been characterized by electrochemical impedance spectroscopy in order to assess their performance for the SOFC application.

Page generated in 0.0871 seconds