• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 8
  • 5
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 40
  • 40
  • 19
  • 15
  • 9
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

From Mono- to Tetraphosphines – A Contribution to the Development of Improved Palladium Based Catalysts for Suzuki- Miyaura Cross Coupling Reaction

Alrawashdeh, Albara I. S. 09 November 2011 (has links)
Im ersten Teil der Arbeit wird die Synthese neopentyl- und neosilylsubstituierter Phosphane zur Verwendung als Liganden in katalytisch aktiven Palladiumkomplexen beschrieben. Die Aktivität wurde in der Suzuki-Miyaura Kreuzkupplungsreaktion getestet. Während die neosilylsubstituierten Phosphane 2:1 Addukte (5b und 5d) mit geeigneten Palladiumsalzen bilden, welche moderate Katalyseaktivität zeigen, untergehen die neopentylsubstituierten Komplexe schnelle Cyclometalierungsreaktionen in Gegenwart von Basen und bilden die katalytisch wenig aktiven Palladacyclen (6a, 6e, and 6g). Die deaktivierende Cylometallierung konnte durch Darstellung der Palladiumcomplexe ausgehend von Pd(cod)Cl2 in Abwesenheit von Basen vermieden werden. Die erhaltenen 2:1 Phosphaneaddukte zeigten deutlich verbesserte Aktivität. Daraus wurde geschlossen, dass die Cyclomettalierung als Nebenreaktion eine wichtige Deaktiverungsmöglichkeit darstellt, diese Überlegung veranlasste uns Trialkylphosphane mittlerer Größe, mit Substituenten die nur schwer eine Cyclometallierungen eingehen können zu testen. Die Verwendung der Phosphoniumsalze 4h (R = Cy, R‘ = neopentyl) und 4m (R = iPr, R‘ = CH2Cy) führt zu höheren Aktivitäten in der Suzuki-Miyaura Kreuzkupplung, als bestes Katalysatorsystem hat sich die Kombination aus Pd2(dba)3 oder Pd(OAc)2 und entsprechendem Phosphoniumsalz ergeben. Im zweiten Teil dieser Arbeit werden Synthesen zu neuen biphenylbasierten Diphosphanen (70, 71, 76, and 77) vorgestellt. Die Palladiumkomplexe wurden ebenfalls auf ihre Eignung als Katalysatoren in palladiumkatalysierten Suzuki-Miyaura Kreuzkupplungen getestet und zeigen für diese Klasse von Komplexen gute Aktivität. Das Tetraphosphan 82 wurde für die Synthese des zweikernigen Palladium(II)-komplex 83 eingesetzt. Durch die Koordination des D2h-symmetrischen Tetraphosphanes an die Palladiumatome wird die Symmetrie des Moleküls erniedrigt und folglich erhält man den formal D2-symmetrischen Komplex 83. / In the first part of this thesis, the synthesis and catalytic activity of neopentyl and neosilyl substituted phosphine palladium complexes is described. The complexes have been tested in the Suzuki-Miyaura cross-coupling reaction. Whereas the neosilyl substituted phosphines form 2:1 adducts (5b and 5d) with Palladium salts which showed moderate activity, the neopentyl complexes quickly undergo cyclometallation in presence of bases to form Palladacycles (6a, 6e, and 6g) which showed only moderate catalytic activity. Cyclometallation could be avoided by the preparation starting from Pd(cod)Cl2 in the absence of bases. The obtained 2:1 phosphine adducts showed superior activity. We concluded that cyclometallation process is an important deactivation pathway, this prompted us to test trialkyl phosphine ligands with medium size but substituents not reliable to cyclometallation. We have been pleased to find that 4h (R = Cy, R‘ = neopentyl) and 4m (R = iPr, R‘ = CH2Cy) showed good activity in the Suzuki-Miyaura cross-coupling reaction. The best results have been obtained by in situ preparation of active catalyst from Pd2(dba)3 or Pd(OAc)2 and the appropriate phosphonium salt. In the second part of this thesis, the first synthesis of a new family of biphenyl based bisphosphine ligands (70, 71, 76, and 77) has been reported. Their palladium complexes were successfully tested as catalyst in the Suzuki cross-coupling reaction. Within the class of bisphosphine based palladium complexes they show good activity in Suzuki-Miyaura cross-coupling reaction. Systematically, was expanded our synthesis strategy and we were able to introduce the first synthesis of a highly symmetric 2,2',6,6'-tetraphosphinobiphenyl. Tetraphosphine 82 was used as ligand in a dinuclear palladium(II) complex 83. Upon complexation the D2h symmetric 2,2’,6,6’-tetraphosphine lead to a chiral D2 symmetric complex 83.
32

Synthesis and biological evaluation of novel chloroethylaminoanthraquinones with potent cytotoxic activity against cisplatin-resistant tumor cells

Pors, Klaus, Paniwnyk, Z., Patterson, Laurence H., Ruparelia, K.C., Hartley, J.A., Kelland, L.R. January 2004 (has links)
No / Novel 1- and 1,4-substituted chloroethylaminoanthraquinones with DNA binding and alkylating properties along with their respective hydroxyethylaminoanthraquinone intermediates were synthesized. Selected chloroethylaminoanthraquinones were shown to cross-link DNA and alkylate guanines (at low nM concentration) with a preference for reaction sites containing 5'-PyG. A compound (Alchemix) with the bis-chloroethyl functionality confined to one side chain alkylated but did not cross-link DNA. All the 1,4-disubstituted chloroethylaminoanthraquinones were potently cytotoxic (nM IC50s) against cisplatin-resistant ovarian cancer cell lines.
33

Spectroscopie de luminescence et Raman de matériaux moléculaires cristallins et modélisation par la théorie de la fonctionnelle de la densité

Bélanger Desmarais, Nicolas 08 1900 (has links)
No description available.
34

Bimetallocen- und Metallocen-Komplexe in Elektronentransfer- und Katalysestudien

Lohan, Manja 31 March 2011 (has links) (PDF)
Die vorliegende Arbeit beschäftigt sich mit der Synthese, dem Reaktionsverhalten und der Elektrochemie von Bimetallocen- und Metallocen-haltigen Komplexen. Die Eignung von Bis(ethinyl)biferrocen- und Bis(ethinyl)biruthenocen-haltigen Brückenbausteinen, intramolekularen Elektronentransfer zwischen zwei identischen Eisen-, Ruthenium- und Osmium-Halbsandwich-Fragmenten zuzulassen, wurde mittels geeigneter Spektroskopiearten untersucht. Weiterhin wurden zwei verschiedene Übergangsmetallkomplexfragmente über den Bis(ethinyl)biferrocen-Brückenbaustein miteinander verknüpft um neuartige gemischte Übergangsmetallacetylide zu erhalten, an welchen ebenfalls Elektronentransferstudien durchgeführt werden konnten. Zusätzlich waren Biferrocenyl- und Metallocenyl-Phosphane Gegenstand der Untersuchungen. Es erfolgte einerseits die Koordination an PtCl2- und Pt(CCFc)2-Fragmente. Die so erhaltenen neuen heterometallischen Platin(II)-Bisacetylide wurden mittels Cyclovoltammetrie und UV-Vis-NIR-spektroelektrochemischen Methoden untersucht um herauszufinden, in welchem Ausmaß Ladungen delokalisiert vorliegen können. Die Biferrocenyl- und Ruthenocenyl-Phosphane wurden andererseits an PdCl2-Bausteine koordiniert und im Anschluss auf ihre Wirksamkeit als (Prä-)Katalysatoren in Palladium-vermittelten Heck- und Suzuki-C-C-Kupplungsreaktionen getestet.
35

Luminescence de complexes plan-carrés de nickel(II), palladium(II) et platine(II): une histoire d’interactions intermoléculaires, de pression et de température variable

Poirier, Stéphanie 01 1900 (has links)
No description available.
36

Cytotoxicity of Metal Based Anticancer Active Complexes and their Targeted Delivery using Nanoparticles

Pramanik, Anup Kumar January 2016 (has links) (PDF)
Use of metal based anticancer medication began with the clinical approval of cisplatin in 1978. Research led to the development of six platinum based drug candidates which are in use around the world. However there is a great need to develop better treatment strategies. The present work entitled “Cytotoxicity of Metal Based Anticancer Active Complexes and Their Targeted Delivery Using Nanoparticles” is an effort to prepare cytotoxic metal complexes based on platinum(IV) and copper(II) and deliver them selectively to cancer cells using a targeting ligand, biotin, with two different delivery vehicles, viz. PEGylated polyamidoamine dendrimer (PAMAM) and gold nanoparticles (AuNPs). Chapter 1 provides a brief introduction to cancer and its characteristic features, followed by a short description about different treatment modalities in clinical practice. An account of the development of anticancer drugs starting from purely organic drugs to the field of metal based anticancer drugs is discussed. An overview of the available targeting strategies are discussed with specific examples. The section ends with the scope of the present work. Platinum based anticancer drugs currently in use contain platinum in the +2 oxidation state. These drugs showed side effects and are often ineffective against resistant cells, especially in the latter stages of treatment. A recent focus of metal based anticancer drug research is the development of platinum(IV) systems which shows promise to have greater activity in cancer cells in a reducing environment. Reported platinum(IV) dual drugs contain the components of “cisplatin” or an analogue along with an active organic drug. But there are no known dual drugs based on platinum(IV) that would generate a cytotoxic metal complex along with cisplatin. In Chapter 2, a bimetallic dual drug (M4) (Figure 1), the first of its kind, with components of cisplatin and copper bis(thiosemicarbazone) has been prepared (Figure 1). The components and the bimetallic complex were characterized using several spectroscopic techniques. The dual drug M4 was found to be highly cytotoxic (IC50 1.3 M) against HeLa cells and was better than cisplatin (IC50 6.8 M). The bimetallic complex turned out to be better than the mixture (IC50 7.2 M) of individual drugs which indicated possible synergism of the released cisplatin and the copper bis(thiosemicarbazone) from the dual drug. Figure 1: Structure of the platinum(IV) and copper bis(thiosemicarbazone) complexes. A novel approach towards conjugation of platinum(IV) drugs to a carrier has been developed using a malonate moiety (Figure 2). The bis(butyric acid) complex, Pt(NH3)2(OCOC3H7)2Cl2 (M1), was taken as model complex to demonstrate the conjugation strategy. The complex M4 was also conjugated to the partially PEGylated 5th generation PAMAM dendrimers. Figure 2: Schematic representation of the platinum(IV) drug conjugated PAMAM dendrimer. The cytotoxicity of M4 was reduced to a small extent on conjugation to the dendrimer. In the presence of 5 mM sodium ascorbate as a reducing agent, sustained release (40 %) of the drug was shown to occur over a period of 48 h by the drug release study. The reduction in cytotoxicity of the dendrimer conjugates could be due to incomplete release of the active drug. Unfortunately, no enhanced activity was observed with the additional targeting ligand, biotin. The drug uptake study revealed that the dendrimer conjugates were successful in entering cancer cells. There was no preferential uptake with biotin conjugated dendrimers which explained the similar cytotoxicity of dendrimer conjugates with and without biotin. Different delivery vehicles showed varied efficiency in delivering the pay load (drugs) to the cancer site. In this connection, PEGylated gold nanoparticles have shown good promise as a drug delivery vehicle. In Chapter 3, M1 and M4 are both conjugated to malonate functionalized PEGylated gold nanoparticles (30 nm). Biotin was also attached to the AuNPs for targeting HeLa cells. Figure 3: Schematic representation of the platinum(IV) drug and biotin conjugated AuNPs. The AuNPs were highly stable in water without agglomeration. There was no shift in the Surface Plasmon Resonance (SPR) band after conjugation of the drug molecules and targeting ligands. TEM images and DLS measurements showed there was no change in particle size. Drug conjugated AuNPs were also very stable in high salt concentrations as well as over a large range of pH. AuNPs with M1 were found to be less cytotoxic than the parent drug. Biotinylated AuNPs with M1 were more potent than non-biotinylated nanoparticles and increased cytotoxicity (35 %) was observed with biotin conjugation. Surprisingly, the enhanced activity of biotinylated AuNPs could not be correlated to the drug uptake study. The cytotoxicity of the bimetallic dual drug containing AuNPs were about 10-fold less and no increased activity was observed with the biotinylated conjugates. The reduced activity of AuNPs with the bimetallic drug was due to incomplete release from the AuNPs (20 % release after 48 h). But the release kinetics was very slow and sustained which might increase in vivo activity. The unexpected lower activity of biotinylated conjugates with copper bis(thiosemicarbazone) was suggestive of interference between bis(thiosemicarbazone) complex and the biotin receptor resulting in reduced drug uptake. Copper bis(thiosemicarbazone) complexes hold very good promise as a class of non-platinum anticancer drug candidates. However, they lack selectivity towards malignant cells. Recently, CuATSM has shown hypoxia selectivity and very good cytotoxicity resulting in 64CuATSM being used in advanced stages of clinical trials for imaging hypoxic cells. In Chapter 4, a copper bis(thiosemicarbazone) complex analogous to Cu(ATSM) with a redox active cleavable disulfide linker and a terminal carboxylic acid group (CuATSM-SS-COOH) was synthesised and characterised spectroscopically. The complex was highly cytotoxic and has an IC50 value (6.9 M) similar to that of cisplatin against HeLa cells. The complex was conjugated to PEGylated gold nanoparticles by amide coupling between the acid group from the drug molecule and the amine on the AuNPs (20 nm) for smart drug delivery. The gold nanoparticles were decorated with biotin for targeted delivery to the HeLa cells. Figure 4: Schematic representation of the CuATSM-SS-COOH and biotin decorated AuNPs. The CuATSM-SS-COOH was insoluble in water but conjugation to PEGylated gold nanoparticles made it water soluble. The drug molecules and biotin conjugated AuNPs were highly stable which was confirmed by TEM and DLS measurements. Similar to the study described in the previous chapter, these AuNPs were also stable in a wide range of pH and salt concentrations. In vitro glutathione (GSH) triggered release study demonstrated substantial release of the cytotoxic agent from the AuNPs (60 %) over a period of 48 h. In vitro cell viability study with HeLa cells showed reduced cytotoxicity (IC50 15 M) of AuNPs with and without biotin containing drug conjugates relative to the parent copper complex (IC50 6.9 M). The reduction of the cytotoxicity correlated well with the released amount of the active drug from the nanoconjugates over the same time period. In vivo studies demonstrated the effectiveness of these nanoparticle carriers as suitable vehicles as they exhibited nearly four-fold reduction of tumor volume without significant loss in body weight. Moreover, the biotin targeted nanoparticle showed significant (p < 0.5) reduction in tumor volume compared to the non-targeted gold nanoparticles. Thus, this smart linking strategy Can be extended to other cytotoxic complexes that suffer from non-specificity, low aqueous solubility and toxicity. Multinuclear anticancer active complexes do not act in the same way as that of their corresponding mononuclear analogues. In the case of multinuclear platinum complexes, the activity not only depends on the active moiety but also on the spacer length between the moieties. In Chapter 5, a series of multinuclear copper bis(thiosemicarbazone) complexes were prepared and characterised using different techniques. Figure 5: General structures of binuclear copper bis(thiosemicarbazone) complexes. All the complexes showed redox activity and have a very high negative reduction potential, i.e. these compounds would not be easily reduced in the biological medium and would remain as copper(II) species. As the concentration of the reducing agents are more within cancer cells, once these complexes are inside cells they would be reduced to Cu(I). These compounds were shown to be highly lipophilic from the large log P values. Unfortunately, these binuclear complexes were less active than similar mononuclear complexes. One possible reason for the reduced cytotoxicity of these complexes could be adherence of the complexes to the cell membrane due to the high lipophilicity of these complexes. Out of five different methylene spacers between two bis(thiosemicrarbazone) moieties, the complex with a three carbon spacer was shown to be the most active against HeLa cells. The complexes with five and six methylene spacers turn out to be noncytotoxic. Further experiments are necessary to reveal the mechanism of action in these complexes. In summary, bimetallic complexes can be very active and may be a way of overcoming drug resistance in platinum based therapy. A dual drug can be delivered using a malonate moiety and a disulfide linker. Gold nanoparticles are good delivery vehicles for these dual drugs and show great potential for improvement and translation to the next stage. (For figures pl refer the abstract pdf file)
37

Vinylanthracene and Triphenylamine Based Luminescent Molecular Systems : From Aggregation-Induced Emission to Explosive Detection

Chowdhury, Aniket January 2016 (has links) (PDF)
In the last few years, considerable efforts have been given to develop sensitive and effective sensors for explosive materials and to generate systems which exhibit high luminescence in both solution and solid-state. The increasing number of terrorist activities around the world have prompted scientists to design effective ways to detect and disarm even the trace amount of explosives. The nitroaromatics (NACs) are the common constituents of most of the explosives due to high explosive velocity and ease of availability. The NACs were extensively used as the main constituents in landmines until World War II. Apart from their explosive behavior, the NACs are well-known environmental pollutants. The industrial waste and the leakages from unexploded landmines are the major contributors towards the soil and ground water contamination. Presently for effective detection of trace amount of explosives, skilled canines and metal based detectors are commonly used. The canines are trained for a specific type of explosives which limit their ability to detect different types of substrates. The chemical sensors that work on the principle of colorimetric and/or fluorimetric detection techniques have emerged as suitable alternative due to cheap production cost, portability and sensitivity. Different types of materials including conjugated polymers, metal-organic frameworks (MOFs), and quantum-dots have been reported as efficient chemosensors for NACs. However, poor solubility in the common organic solvents, low solid-state fluorescence, very high molecular weight and lack of signal amplification have restricted the application of these material for in-field testing. Renewed interests have been invested in small molecule based systems; and metal-organic discrete molecular architectures due to precise control over their photophysical properties and the supramolecular interaction among neighboring molecules that facilitates energy migration among the molecular backbone. On the other hand, recently post-synthetic modification of different molecular systems including MOFs and polymers has emerged as a potential technique to incorporate desired functional groups into the system and to tune their properties with the retention of basic structures. Reports on the post-synthetic modification of discrete metal-organic architectures are rare due to the delicate nature of the metal-organic bonds that ruptures on mild environmental changes. Therefore, post-synthetic functionalization of discrete molecular systems using mild reaction conditions will open up a myriad of possibilities to generate new systems with desired characteristics. Chapter 1 of the thesis will briefly discuss the history of different explosive materials including different detection methodologies that are widely used. It will also include a brief discussion on different small molecular systems with high solid-state luminescence. In Chapter 2, design and synthesis of triphenylamine-based two Platinum(Pt)(II) molecules functionalized with carboxylic acid and ester groups including their organic analogues have been discussed. The triphenylamine core was chosen due its unique non-planarity and luminescence. On the other hand, Pt(II) center was incorporated to increase intermolecular spacing in solid-state that can induce high luminescence. Scheme 1. Schematic representation of fluorescence quenching using small molecules. All the four molecules were found to be highly sensitive towards NACs including picric acid and dinitrophenol. Although the molecules exhibited similar sensitivity in solution, the carboxylic acid analogues demonstrated superior sensitivity in solid-state. Careful observation of the crystal structures of the systems revealed the acid analogues were oriented in a 2-D grid-like pattern that facilitated energy migration among neighboring molecules (Scheme 1.). Chapter 3 describes design, synthesis, and NACs sensing behavior of anthracene-based four purely organic small molecules. The molecules exhibited high selectivity towards picric acid only. All the molecules were found to be highly emissive in both solution and solid-state due to the vinylanthracene backbone (Scheme 2.). Scheme 2. Schematic representation of fluorescence quenching and solid-state sensing behavior. Chapter 4 discusses the strategy to develop mechano-fluorochromic and AIE active triphenylamine-based Pt(II) complex and its organic analogue. The twisted triphenylamine backbone restricted molecular close packing in solid-state; and weak C-H-- interactions were utilized to hinder the motion of the phenyl rings. As a result, the molecules were highly emissive in solid-state. Grinding disrupted the intermolecular interactions and thus mechano-fluorochromic behavior was observed. Due to twisted backbone, the molecules were also found to be AIE active. Both the systems containing terminal aldehyde groups were finally utilized for selective detection of biomolecule cysteine (Scheme 3.). Scheme 3. Mechano-fluorochromic and AIE behavior of the triphenylamine based Pt(II) complex. In Chapter 5 vinylanthracene-based linear donor was used in combination with carbazole-based 90° and triphenylamine-based 120° Pt(II) acceptors to generate (4+4) and (6+6) molecular squares and hexagons, respectively. The vinylanthracene backbone imparts high solution and solid-state luminescence to the system as well as made them AIE active. The molecules were further investigated for the solution and solid-state sensing for NACs and found to be effective for trinitrotoluene (TNT) and dinitrotoluene (DNT) (Scheme 4.). Scheme 4. Schematic representation of AIE active molecular square and its NACs sensing. Chapter 6 describes the formation of Pd3 self-assembled molecular trinuclear barrels containing triphenylamine imidazole donors and Pd(II) acceptors. Using Knoevenagel condensation the aldehyde group present in the barrel was post-synthetically functionalized with Meldrum’s acid. From spectroscopic characterization, it was proved that the structural integrity remained intact after the post-modification treatment (Scheme 6.). Surprisingly, pre-synthetic modification of the donor alone with Meldrum’s acid followed by self-assembly treatment with the Pd(II) ion did not yield trigonal barrel 6.8. Scheme 6. Post-synthetic functionalization of trinuclear barrels using Knoevenagel condensation.(For colour pictures pl see the abstract pdf file)
38

Bimetallocen- und Metallocen-Komplexe in Elektronentransfer- und Katalysestudien

Lohan, Manja 01 March 2011 (has links)
Die vorliegende Arbeit beschäftigt sich mit der Synthese, dem Reaktionsverhalten und der Elektrochemie von Bimetallocen- und Metallocen-haltigen Komplexen. Die Eignung von Bis(ethinyl)biferrocen- und Bis(ethinyl)biruthenocen-haltigen Brückenbausteinen, intramolekularen Elektronentransfer zwischen zwei identischen Eisen-, Ruthenium- und Osmium-Halbsandwich-Fragmenten zuzulassen, wurde mittels geeigneter Spektroskopiearten untersucht. Weiterhin wurden zwei verschiedene Übergangsmetallkomplexfragmente über den Bis(ethinyl)biferrocen-Brückenbaustein miteinander verknüpft um neuartige gemischte Übergangsmetallacetylide zu erhalten, an welchen ebenfalls Elektronentransferstudien durchgeführt werden konnten. Zusätzlich waren Biferrocenyl- und Metallocenyl-Phosphane Gegenstand der Untersuchungen. Es erfolgte einerseits die Koordination an PtCl2- und Pt(CCFc)2-Fragmente. Die so erhaltenen neuen heterometallischen Platin(II)-Bisacetylide wurden mittels Cyclovoltammetrie und UV-Vis-NIR-spektroelektrochemischen Methoden untersucht um herauszufinden, in welchem Ausmaß Ladungen delokalisiert vorliegen können. Die Biferrocenyl- und Ruthenocenyl-Phosphane wurden andererseits an PdCl2-Bausteine koordiniert und im Anschluss auf ihre Wirksamkeit als (Prä-)Katalysatoren in Palladium-vermittelten Heck- und Suzuki-C-C-Kupplungsreaktionen getestet.
39

Heteroleptic platinum(II) NHC complexes with a C^C* cyclometalated ligand – synthesis, structure and photophysics

Tronnier, Alexander, Heinemeyer, Ute, Metz, Stefan, Wagenblast, Gerhard, Muenster, Ingo, Strassner, Thomas 10 January 2020 (has links)
Platinum(II) complexes [(NHC)Pt(L)] with various β-diketonate based auxiliary ligands (L: 3-meacac = 3-methylacetylacetonato, dpm = dipivaloylmethanato, dbm = dibenzoylmethanato, mesacac = dimesitoylmethanato, duratron = bis(2,3,5,6-tetramethylbenzoyl)methanato) and a C^C* cyclometalated N-heterocyclic carbene ligand (NHC: dpbic = 1,3-iphenylbenzo[d]imidazol-2-ylidene, dpnac = 1,3-diphenylnaphtho[2,3-d]imidazol-2-ylidene or bnbic = 1-phenyl-3-benzylbenzo[d]imidazol-2-ylidene) were found to show different aggregation and photophysical properties depending on the auxiliary ligand. Eight complexes were prepared from a silver(I)–NHC intermediate by transmetalation, cyclometalation and subsequent treatment with potassium-tert-butanolate and β-diketone. They were fully characterized by standard techniques including ¹⁹⁵Pt NMR. Five complexes were additionally characterized by 2D NMR spectroscopy (COSY, HSQC, HMBC and NOESY). Solid-state structures of five complexes could be obtained and show the tendency of the square-planar compounds to form pairs with different Pt–Pt distances depending on the bulkiness of the substituents at the auxiliary ligand. The result of the photophysical measurements in amorphous PMMA films reveals quantum yields of up to 85% with an emission maximum in the blue region and comparatively short decay lifetimes (3.6 µs). Density functional theory (DFT/TD-DFT) calculations were performed to elucidate the emission process and revealed a predominant ³ILCT/³MLCT character. Organic light-emitting devices (OLEDs) comprising one of the complexes achieved 12.6% EQE, 11.9 lm W⁻¹ luminous efficacy and 25.2 cd A⁻¹ current efficiency with a blue emission maximum at 300 cd m⁻². The influence of an additional hole-transporter in the emissive layer was investigated and found to improve the device lifetime by a factor of seven.
40

Development of nonsymmetrical 1,4-disubstituted anthraquinones that are potently active against cisplatin-resistant ovarian cancer cells

Teesdale-Spittle, P.H., Pors, Klaus, Brown, R., Patterson, Laurence H., Plumb, J.A. January 2005 (has links)
No / A novel series of 1,4-disubstituted aminoanthraquinones were prepared by ipso-displacement of 1,4-difluoro-5,8-dihydroxyanthraquinones by hydroxylated piperidinyl- or pyrrolidinylalkyl-amino side chains. One aminoanthraquinone (13) was further derivatized to a chloropropyl-amino analogue by treatment with triphenylphosphine-carbon tetrachloride. The compounds were evaluated in the A2780 ovarian cancer cell line and its cisplatin-resistant variants (A2780/ cp70 and A2780/MCP1). The novel anthraquinones were shown to possess up to 5-fold increased potency against the cisplatin-resistant cells compared to the wild-type cells. Growth curve analysis of the hydroxyethylaminoanthraquinone 8 in the osteosarcoma cell line U-2 OS showed that the cell cycle is not frozen, rather there is a late cell cycle arrest consistent with the action of a DNA-damaging topoisomerase II inhibitor. Accumulative apoptotic events, using time lapse photography, indicate that 8 is capable of fully engaging cell cycle arrest pathways in G2 in the absence of early apoptotic commitment. 8 and its chloropropyl analogue 13 retained significant activity against human A2780/cp70 xenografted tumors in mice.

Page generated in 0.1176 seconds