• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 7
  • 3
  • Tagged with
  • 23
  • 23
  • 17
  • 10
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Survivine et Aurora B kinase, deux cibles potentielles des drogues anti - mitotiques; identification d'une nouvelle classe d'inhibiteurs des Aurora kinases

Hoang, Thi My-Nhung 31 January 2008 (has links) (PDF)
Le complexe passager joue un rôle clé en mitose: contrôlant à la fois la ségrégation des chromosomes, la tension du fuseau, l'entrée en anaphase et la cytodirèse. Le complexe est composé de quatre protéines: INCENP, la kinase Aurora B, Survivine et Boréaline. Sachant que la protéine Survivine est phosphorylée par Aurora B et qu'elle a un role pivot au sein du complexe, nous avons étudié un mutant mimant sa phosphorylation: Survivine T117E. La phosphorylation de Survivine est nécessaire à la transition Métaphase/ Anaphase. Le mutant Survivine T117E est faiblement lié aux centromères en métaphase et agit comme un dominant négatif de la cytodirèse, empêchant la séparation des deux cellules filles. Lors de la recherche d'inhibiteurs des Aurora kinases, nous avons identifié une nouvelle classe de molécules qui inhibent la phosphorylation de l'histone H3 et le point de contrôle du fuseau. Ces molécules préviennent la prolifération des cellules tumorales. Ces composés sont des outils intéressants pour étudier la fonction du complexe passager et représentent un nouveau motif moléculaire pour le développement de drogues anticancéreuses. Survivine et Aurora B kinase dont l'expression est restreinte à la mitose sont deux cibles pour de nouvelles thérapies anti-mitotiques.
2

Relation entre la réponse aux dommages à l'ADN et la dynamique de réplication chez les mammifères : rôle du point de contrôle intra-S

Techer, Hervé 27 September 2012 (has links) (PDF)
Au cours de ma thèse au sein du laboratoire du Professeur Michelle Debatisse, je me suis intéressé aux mécanismes maintenant la stabilité du génome et contrôlant la dynamique de réplication dans les cellules de mammifères. J'ai étudié le rôle des kinases ATR (" Ataxia Telangectasia and Rad3 related ") et Chk1 (" Checkpoint Kinase 1 "), du point de contrôle intra-S (" checkpoint "), dans le contrôle de la dynamique de réplication. Cette première étude m'a amené à étudier la relation entre les dommages à l'ADN et la dynamique de réplication, dans des modèles cellulaires déficients pour des facteurs de la réponse aux dommages à l'ADN (DDR), appartenant soit au " checkpoint ", soit à la voie de réparation par recombinaison homologue (HR), tels que Rad51 et BRCA2. Je montre ici, que le ralentissement des fourches de réplication et l'augmentation de la densité d'événements d'initiation, observés dans des cellules déficientes pour Chk1 ou Rad51, sont la conséquence indirecte des lésions apparaissant spontanément dans de telles cellules. Le ralentissement des fourches dans ces cellules dépend d'une perturbation de la disponibilité en précurseurs de nucléotides qui dépend de la sur-expression et/ou de la re-localisation de la sous-unité p53R2 de la ribonucléotide réductase (RNR). De plus, contrairement à ce qui était proposé, je montre que Chk1 n'a pas de rôle actif dans la répression des origines latentes, mais que c'est la vitesse des fourches qui détermine l'espacement entre les origines actives, par un mécanisme de compensation découvert auparavant au laboratoire (Anglana, 2003 ; Courbet, 2008). L'ensemble de mes résultats permet de proposer un mécanisme général de communication entre la réplication et la réparation. Ce mécanisme confère un avantage aux cellules, puisque le ralentissement des fourches stabilise la machinerie de réplication qui voyage sur une matrice endommagée, et l'activation d'origines latentes procure une source de sauvetage pour les fourches bloquées.
3

Quels sont les signaux détectés par le point de contrôle du fuseau lors de la méiose dans l'ovocyte de souris ? / What are the signals detected by the spindle assembly checkpoint in mouse oocyte meiosis?

Vallot, Antoine 08 September 2017 (has links)
Au cours de mon travail de doctorat, je me suis intéressé aux mécanismes qui contrôlent la séparation équitable du génome lors de la méiose dans l’ovocyte de souris.Le point de contrôle du fuseau contrôle la ségrégation des chromosomes en méiose : en cas d'attachement incorrect des chromosomes au fuseau, l'anaphase est retardée ce qui permet d'éviter les aneuploïdies. En métaphase, l’attachement des chromosomes homologues aux deux pôles opposés du fuseau, génère une force de tension au niveau des kinétochores. Mon travail de thèse a consisté à déterminer si la tension exercée sur les chromosomes est un signal qui permet de satisfaire le point du contrôle du fuseau en méiose I dans l'ovocyte de souris. Lorsque la tension exercée sur les chromosomes homologues par les microtubules est diminuée par un traitement pharmacologique, la dégradation de la sécurine, qui marque l’entrée en anaphase, est retardée. Si le point de contrôle du fuseau est inhibé en absence de tension, l’anaphase n’est pas retardée, ce qui indique que le point de contrôle du fuseau est sensible à la tension.Nous avons aussi montré que la kinase Aurora B/C n’est pas requise pour la réponse du point de contrôle du fuseau aux chromosomes non attachés, mais qu’elle est essentielle à la réponse du point de contrôle du fuseau à la baisse de tensionDans un contexte où les erreurs de ségrégation en méiose sont très fréquentes chez la femme et augmentent drastiquement avec l'âge, nos travaux pourraient permettre d'identifier si ces mécanismes de contrôle sont diminués et moins efficaces avec l'âge chez la femme. / At each cell division, chromosomes must be faithfully segregated so that exactly one set of chromosomes is passed on to the next generation. The spindle assembly checkpoint (SAC) ensures faithful chromosome segregation in meiosis: upon uncorrect attachment of the chromosome to the spindle, anaphase onset is delayed in order to avoid chromosome missegregation and aneuploidies. For my PhD thesis, I wanted to determine whether tension applied by the spindle microtubules on the chromosomes is itself a signal that satisfies the SAC in mouse oocyte meiosis I. When tension is decreased by small molecule inhibitors, securin degradation, which is a readout of anaphase onset, is delayed. If the SAC is inhibited, then tension defects cannot delay anaphase onset. This indicates that the SAC is able to delay anaphase onset upon tension defects.Furthermore, we showed that Aurora B/C kinase is not required for the SAC response to unattached chromosomes but that Aurora B/C is required for the SAC response to tension defects.Chromosome segregation errors are very common in women and increase with age. In that context, our work could help to identify whether these key control mechanisms are less efficient in the mammalian oocyte with age.
4

Implication de l’interférence entre réplication et transcription au cours du développement du cancer / Implication of replication/transcription interference in cancer development

Promonet, Alexy 15 December 2016 (has links)
L’instabilité génomique est une caractéristique majeure des cellules cancéreuses. Dans les premières étapes du développement du cancer, l’activation des oncogènes induit du stress réplicatif à l’origine de cette instabilité. Le mécanisme par lequel la dérégulation des oncogènes induit un blocage des fourches de réplication et du gammaH2AX sur la chromatine reste peu compris. Ainsi déterminer l'origine de ce stress réplicatif dans les cellules précancéreuses est donc essentiel afin de mieux comprendre les premières étapes de la tumorigenèse. Il a été montré dans notre laboratoire que la déplétion dans des cellules humaines de la topoisomérase 1 ou du facteur d’épissage ASF/SF2 perturbe la progression des fourches de réplication, active le checkpoint de phase S et induit des cassures chromosomiques (Tuduri et al., 2009). Puisque les dommages à l’ADN et les défauts de réplication sont corrigés par la RNase H1, il est possible que ce stress réplicatif soit dû à la formation de R-loops. Ces hybrides ADN/ARN se forment au cours de la transcription lorsque l’ARN naissant revient s’hybrider avec sa matrice d’ADN laissant le brin non-transcrit sous forme simple brin. Les R-loops se formant dans des sites spécifiques du génome, nous avons alors cartographié leurs distributions et l’avons comparé à celle de marqueurs de stress réplicatif et de cassure double brin (CDB) de l’ADN dans nos cellules shASF et shTop1. Nous avons donc combiné différentes approches génomiques comme le DRIP-seq (R-loops), le ChIP-seq (pRPA et gammaH2AX) et le BLESS (CDB ; Crosetto et al., Nature Methods, 2013). Nos données montrent une corrélation importante entre les régions formant du stress réplicatif et la formation de R-loops appuyant l’idée que l’interférence entre réplication et transcription augmente l’instabilité génomique dans les cellules humaines. Toutefois puisque les R-loops ont de multiples rôles physiologiques, toutes régions qui en forment ne corrèlent pas avec l’induction de stress réplicatif. Ce projet devrait nous aider à déterminer dans quelles conditions les R-loops représentent une menace pour l’intégrité du génome. Par microscopie confocale à fluorescence, nous avons confirmé que les R-loops s’accumulaient dans nos lignées HeLa déplétées pour ASF et Top1. A noter que les R-loops s’accumulent également dans des fibroblastes immortalisées exprimant la forme oncogénique de Ras et dans des préplasmablastes, une étape du développement plasmocytaire particulièrement à risque pour le développement de myélome multiple. Ensemble, ces données indiquent que les R-loops pourraient être une source du stress réplicatif induit par les oncogènes. / Genome instability is a hallmark of cancer cells. It has been proposed that at early stages of the cancer process, genomic instability is caused by oncogene-induced replication stress, a poorly-understood process characterized with the accumulation of stalled replication forks and gammaH2AX on chromatin. Understanding the origin of chronic replication stress represents a major challenge in cancer biology. We have previously shown that depletion of DNA Topoisomerase 1 or the splicing factor ASF/SF2 in mammalian cells interferes with replication fork progression, activating the DNA damage response and inducing chromosome breaks (Tuduri et al., 2009). Since DNA damage and replication fork stalling are relieved by RNaseH1, an attractive hypothesis could be that replication stress is caused by R-loops. These RNA-DNA hybrid structures form when nascent RNA re-anneals to the template DNA strand, leaving the non-template strand unpaired. Using immunofluorescence confocal microscopy with the S9.6 antibody that recognizes RNA-DNA hybrids, we confirmed that R-loops accumulate in ASF/SF2 and Top1-depleted HeLa cells. Since R-loops are enriched at specific sites in the human genome, wecombined different genomic approaches, including DRIP-seq (R-loops), ChIP-seq (gammaH2AX, pRPA) and BLESS (DSBs; Crosetto et al., Nature Methods, 2013) to monitor their distribution relative to replication stress markers and DNA double-strand breaks (DSBs) in the absence of Top1 or ASF/SF2. . Our data reveal a significant correlation between replication stress and cotranscriptional R-loops, supporting the view that the interference between replication and transcription promotes genomic instability in human cells. However, not all R-loops forming regions colocalize with replication stress since these structures have multiple physiological roles. This approach allowed us to determine the conditions in which R-loops may represent a threat to genome integrity. Moreover, we also observed the accumulation of R-loops in immortalized fibroblasts expressing an oncogenic form of Ras and in preplasmablast during plasma cell differentiation, a crucial process during which multiple myeloma may evolve. In clonclusion, our data indicate that R-loops may represent an important source of oncogene-induced replication stress.
5

Functional characterization of the DNA Polymerase epsilon and its involvement in the maintenance of genome integrity in Arabidopsis / Analyse fonctionnelle de l'ADN polymérase epsilon : à l´interface entre réplication de l´ADN, régulation du cycle cellulaire et réponse aux lésions de l'ADN

Pedroza-Garcia, José Antonio 22 September 2016 (has links)
Contrairement aux animaux, les plantes ont un développement largement post-embryonnaire et forment continuellement de nouveaux organes et tissus grâce à l’activité de leurs méristèmes. Ces massifs de cellules indifférenciées conservent la capacité à se diviser tout au long de la vie de la plante, et c’est également à partir du méristème caulinaire que se forment les gamètes. Chaque cycle de division peut être la source de mutations, suite par exemple à des erreurs de réplication. De plus, les méristèmes sont relativement exposés aux stress environnementaux qui peuvent également endommager l’ADN des cellules. Les mécanismes impliqués dans la détection des lésions de l’ADN ou des défauts de réplication et l’arrêt de la prolifération cellulaire en réponse à ces dommages jouent donc un rôle fondamental dans le maintien de la stabilité du génome, aussi bien au cours du développement végétatif que lors de la reproduction sexuée. Chez tous les eucaryotes, l’ADN Polymérase ε est un acteur central de ces mécanismes parce qu’elle assure non seulement la réplication fidèle de l’ADN au cours de la phase S du cycle cellulaire, mais est également directement impliquée dans la réparation de l’ADN, et dans la perception du stress réplicatif. L’étude détaillée de sa fonction est cependant rendue difficile chez beaucoup d’organismes par le fait que son inactivation est létale. Dans ce travail, nous avons utilisé des approches de génétique pour étudier le rôle de l’ADN Pol ε d’Arabidopsis au cours de la progression du cycle cellulaire et dans la réponse au stress réplicatif et aux lésions de l’ADN. Nous avons ainsi pu montrer que la sous-unité catalytique du complexe Pol ε ainsi que sa principale sous-unité accessoire DPB2 sont essentielles à la détection des défauts de réplication, et fonctionnent en amont de la kinase ATR pour induire l’arrêt du cycle cellulaire et activer les voies de réparation au cours du développement végétatif. En outre, nous avons découvert un nouveau point de contrôle activé lors de la phase de réplication pré-méiotique qui permet l’activation d’une mort cellulaire programmée en réponse à des défauts survenus pendant cette phase, grâce au facteur de transcription SOG1.Tous les stress biotiques ou abiotiques auxquels la plante est soumise pouvant conduire à la formation de lésions au niveau de l’ADN, nos résultats ouvrent des perspectives de recherche pour comprendre la réponse des plantes aux stress environnementaux. En outre, la disponibilité de mutants viables pour différents facteurs impliqués dans la réplication ou la réponse aux lésions de l’ADN nous a permis d’explorer chez un eucaryote pluricellulaire des mécanismes qui sont pour l’instant essentiellement décrits chez la levure, et ainsi d’acquérir des connaissances qui pourront être transférées aux systèmes animaux et notamment à l’Homme. / Plant development is a largely post-embryonic process that depends on the activity of meristems. These pools of undifferentiated cells retain the ability to proliferate throughout the lifespan of the plant, and are at the origin of gamete formation relatively late in its life cycle. Mutations can arise at each round of cell division, for example due to replication errors. In addition, meristems are relatively exposed to all kinds of environmental stresses that can also induce DNA damage. Detection of DNA lesions or replication defects and subsequent cell cycle arrest are thus instrumental to the maintenance of genome integrity, both during vegetative and reproductive growth. In all eukaryotes, DNA Pol ε is a key player of these mechanisms because it is not only responsible for the faithful reproduction of the genetic information during S-phase, but also directly involved in DNA repair and replicative stress perception. Detailed analysis of its function has however been complicated by the lethality of its inactivation in most organisms. In this work, we have used genetic approaches to investigate its role during cell cycle progression and replicative stress response. We have shown that both its catalytic sub-unit and its main accessory sub-unit DPB2 are involved in replicative stress sensing and that they function upstream of the ATR kinase to induce cell cycle arrest and DNA repair during vegetative growth. In addition, we have found that a specific checkpoint exists during pre-meiotic DNA replication that activates a cell death program via the SOG1 transcription factor upon replicative stress. Because all types of biotic and abiotic stresses can generate DNA damage, our work opens new research prospects to understand how plants cope with adverse conditions. Furthermore, the viability of Arabidopsis mutants deficient for various factors involved in DNA replication or DNA Damage Response allowed us to analyse into details in a multicellular eukaryote crucial cellular mechanisms that had until now been mainly investigated in yeast. This work thus allowed us to generate data that can be transferred to animal systems and notably to Human.
6

Rôle de la voie de signalisation Insuline dans le couplage des informations nutritionnelles et développementales au cours de l'ovogenèse chez la drosophile

Jouandin, Patrick 06 December 2013 (has links) (PDF)
Au cours de l'ovogenèse, les stades vitellogéniques nécessitent une énergie considérable, et leur formation doit être ajustée en fonction d'autres besoins physiologiques. En utilisant la drosophile comme modèle, j'ai montré que la signalisation Insuline régule une transition du cycle cellulaire, mitose/ endocyle (M/E), une étape critique qui contrôle l'entrée des follicules en vitellogenèse. Mes travaux montrent que la transition M/E porte le rôle d'un point de contrôle nutritionnel. La carence protéique induit un blocage de cette transition au travers d'une interaction entre FoxO, Cut et Notch, empêchant une perte d'énergie. Ce blocage reste réversible, autorisant la reprise de l'ovogenèse sous retour à une alimentation normale. Ce travail montre qu'un point de contrôle nutritionnel au cours de l'ovogenèse permet de coupler des signaux métaboliques et développementaux pour protéger les tissus des dommages liés à la carence. D'autre part, j'ai montré que la signalisation Insuline contrôle la migration d'une cohorte de cellules d'origine épithéliale pour assurer la fertilité de l'ovocyte. L'insuline participe à la formation d'extensions cytoplasmiques riches en actine. Lors de ce processus, la signalisation Insuline contrôle notamment l'expression de chickadee, qui code pour la Profiline, une protéine nécessaire pour la polymérisation de l'actine qui permet la motilité des cellules. L'ensemble de ce travail montre que des tissus somatiques assurent l'homéostasie de l'ovogenèse malgré des conditions de nutritions fluctuantes. Ces travaux posent les bases de l'étude de nouveaux aspects de l'ovogenèse, potentiellement conservés chez les mammifères.
7

RSK2 et Greatwall, deux AGC kinases actrices de la mitose / RSK2 and Greatwall, two AGC kinases involved in the regulation of mitosis

Brioudes, Estelle 25 November 2010 (has links)
La mitose est une phase importante du cycle cellulaire. Les mécanismes de surveillance s'assurent de l'ordre et de l'exécution correcte des événements du cycle cellulaire dont les erreurs peuvent conduire à l'aneuploïdie. Pendant la mitose, la séparation des chromatides sœurs est régulée par le point de contrôle du fuseau mitotique qui s'assure que tous les chromosomes sont correctement alignés sur la plaque métaphasique. L'entrée et la sortie de mitose sont régulées par l'activation et l'inactivation du complexe cycline B/Cdk1. Cette fine régulation fait intervenir de nombreuses kinases et phosphatases. Dans ce projet nous nous sommes intéressés plus particulièrement à deux AGC kinases : RSK2 et Greatwall (Gwl).Au cours de cette étude nous nous sommes proposés d'analyser l'implication de RSK2, substrat majeur de la MAPK, dans le point de contrôle du fuseau mitotique. Nos résultats montrent que RSK2 est essentielle pour l'activité du point de contrôle du fuseau mitotique dans les extraits d'œufs de xénope ainsi que pour la localisation des autres protéines de ce mécanisme de surveillance localisées aux kinétochores. Nous montrons également que RSK2 participe au point de contrôle dans les cellules humaines. En effet, RSK2 est nécessaire à la localisation aux kinétochores de Mad1, Mad2 et Cenp-E, protéines essentielles à l'activité de ce checkpoint. L'entrée et la sortie de mitose sont régulées par le complexe cycline B/Cdk1 et des phosphatases. Gwl est une nouvelle kinase essentielle à l'entrée en mitose et au maintien de l'état mitotique dans les extraits d'œufs de xénope. En effet, nos résultats montrent que Gwl maintient l'état mitotique indépendamment du complexe cycline B/Cdk1, en régulant négativement PP2A, une phosphatase responsable de la déphoshorylation des substrats mitotiques. / Mitosis is an important phase of cell cycle. The Spindle Assembly Checkpoint (SAC) verifies the orders and the events correct execution of the cell cycle, as errors may lead to aneuploidy. During the mitosis, the checkpoint delays the anaphase onset until all chromosomes are correctly attached to the spindle‘s microtubules. Entry and Exit of mitosis are regulated by the activation and inactivation of cyclin B/Cdk1. A lot of kinases and phosphatases are involved in this fine regulation. In this project, we are particularly focusing on two AGC kinases: RSK2 and Greatwall (Gwl).In this study, we analyzed RSK2, a major substrates of MAPK, involvement in SAC. Our results show that RSK2 is essential to the activation of SAC in xenopus egg extracts and for the localization at the kinétochores of the others SAC components. We also show that RSK2 participate in the maintenance of the SAC in human cells. Indeed, RSK2 is necessary for Mad1, Mad2 and Cenp-E localization, essential proteins for SAC activation.Entry and exit of mitosis are regulated by cyclin B/Cdk1 complex and phosphatases. Gwl is a new kinase essential to the entry into mitosis and maintenance of the mitotic state in xenopus egg extracts. Indeed, our results showed that Gwl maintains the mitotic state independently of cyclin B/Cdk1 but with the negative regulation of PP2A, which dephosphorylate the mitotic substrates
8

Manipulation of the ubiquitin-proteasome system by HIV-1 : role of the accessory protein Vpr

Belzile, Jean-Philippe 02 1900 (has links)
Le virus de l’immunodéficience humaine de type 1 (VIH-1), l’agent étiologique du SIDA, est un rétrovirus complexe arborant plusieurs protéines accessoires : Nef, Vif, Vpr, et Vpu. Celles-ci sont impliquées dans la modulation de la réplication virale, dans l’évasion immunitaire et dans la progression de la pathogenèse du SIDA. Dans ce contexte, il a été démontré que la protéine virale R (Vpr) induit un arrêt de cycle cellulaire en phase G2. Le mécanisme par lequel Vpr exerce cette fonction est l’activation, ATR (Ataxia telangiectasia and Rad3 related)-dépendante, du point de contrôle de dommage à l’ADN, mais les facteurs et mécanismes moléculaires directement impliqués dans cette activité demeurent inconnus. Afin d’identifier de nouveaux facteurs cellulaires interagissant avec Vpr, nous avons utilisé une purification d’affinité en tandem (TAP) pour isoler des complexes protéiques natifs contenant Vpr. Nous avons découvert que Vpr s’associait avec CRL4A(VprBP), un complexe cellulaire d’E3 ubiquitine ligase, comprenant les protéines Cullin 4A, DDB1 (DNA damage-binding protein 1) et VprBP (Vpr-binding protein). Nos études ont mis en évidence que le recrutement de la E3 ligase par Vpr était nécessaire mais non suffisant pour l’induction de l’arrêt de cycle cellulaire en G2, suggérant ainsi que des événements additionnels seraient impliqués dans ce processus. À cet égard, nous apportons des preuves directes que Vpr détourne les fonctions de CRL4A(VprBP) pour induire la polyubiquitination de type K48 et la dégradation protéosomale de protéines cellulaires encore inconnues. Ces événements d’ubiquitination induits par Vpr ont été démontrés comme étant nécessaire à l’activation d’ATR. Finalement, nous montrons que Vpr forme des foyers ancrés à la chromatine co-localisant avec VprBP ainsi qu’avec des facteurs impliqués dans la réparation de l’ADN. La formation de ces foyers représente un événement essentiel et précoce dans l’induction de l’arrêt de cycle cellulaire en G2. Enfin, nous démontrons que Vpr est capable de recruter CRL4A(VprBP) au niveau de la chromatine et nous apportons des preuves indiquant que le substrat inconnu ciblé par Vpr est une protéine associée à la chromatine. Globalement, nos résultats révèlent certains des ménanismes par lesquels Vpr induit des perturbations du cycle cellulaire. En outre, cette étude contribue à notre compréhension de la modulation du système ubiquitine-protéasome par le VIH-1 et son implication fonctionnelle dans la manipulation de l’environnement cellulaire de l’hôte. / Human immunodeficiency virus 1 (HIV-1), the etiologic agent of AIDS, is a complex retrovirus with several accessory proteins. HIV-1 accessory proteins Nef, Vif, Vpr, and Vpu have been implicated in the modulation of viral replication, enhancement of viral fitness, immune evasion, and progression of AIDS pathogenesis. In that regard, viral protein R (Vpr) induces a cell cycle arrest in the G2 phase by activating the canonical ATR (Ataxia telangiectasia and Rad3 related)-mediated DNA damage checkpoint, but cellular factors and mechanisms directly engaged in this process remain unknown. To identify novel Vpr-interacting cellular factors, we used tandem affinity purification (TAP) to isolate native Vpr-containing complexes. We found that Vpr hijacks a cellular E3 ubiquitin ligase complex, CRL4A(VprBP), composed of Cullin 4A, DDB1 (DNA damage-binding protein 1) and VprBP (Vpr-binding protein). Moreover, we observed that recruitment of the E3 ligase by Vpr was necessary but not sufficient for the induction of G2 cell cycle arrest, suggesting that additional events are involved. In this context, we provide direct evidence that Vpr usurps the function of CRL4A(VprBP) to induce the K48-linked polyubiquitination and proteasomal degradation of as-yet-unknown cellular proteins. These ubiquitination events mediated by Vpr were necessary for the activation of ATR. Moreover, we show that Vpr forms chromatin-associated foci that co-localize with VprBP and DNA repair factors. Our data indicate that formation of these foci represent a critical early event in the induction of G2 arrest. Finally, we show that Vpr is able to recruit CRL4A(VprBP) on chromatin and we provide evidence that the unknown substrate targeted by Vpr is a chromatin-associated protein. Overall, our results reveal some of the mechanisms by which Vpr induces cell cycle perturbations. Furthermore, this study contributes to our understanding of the modulation of the ubiquitin-proteasome system by HIV-1 and its functional implication in the manipulation of the host cellular environment.
9

Rôle de la déubiquitinase BAP1 dans la réponse cellulaire aux dommages à l'ADN

Ghram, Mehdi 12 1900 (has links)
L'ubiquitination est une modification post-traductionnelle qui joue un rôle central dans divers processus biologiques. Elle peut être contrecarrée par les déubiquitinases (DUBs). "BRCA1-Associated Protein 1" (BAP1) est une déubiquitinase, qui fait partie de complexes multiprotéiques, possèdant une fonction de suppression tumorale ainsi qu'un potentiel anti-métastatique. De plus, BAP1 est phosphorylée suite aux dommages à l’ADN par les kinases ATM/ATR. En nous basant sur ces données, nous avons purifié les protéines associées à BAP1 dans des conditions de stress génotoxique. Bien que la composition du complexe et l’activité DUB semblent inchangées, nous avons pu identifier des changements critiques dans les niveaux et les sites de phosphorylation, confirmant la régulation de BAP1 suite aux dommages à l’ADN. En déplétant BAP1 par ARNi et en utilisant des mutants dominants négatifs, nous avons obtenu des résultats suggèrant que suite au stress génotoxique, cette DUB est requise pour prolonger le point de contrôle en G2/M et ce, en retardant la reprise du cycle cellulaire. D'un autre côté, l'expression de BAP1 dans des cellules cancéreuses qui en sont déficientes restore une ploïdie normale et diminue la fréquence d'aberrations nucléaires, suggérant que cette protéine joue un rôle dans la stabilité génomique. Nos résultats suggèrent fortement que BAP1 joue un rôle dans la réponse des cellules au stress génotoxique et la stabilité génomique. Nos travaux permettront ainsi d’identifier et de caractériser les voies de signalisation cellulaire régulant l’activité et la fonction de BAP1 durant les périodes d’exposition à des agents qui endommagent l’ADN. Les connaissances acquises seront donc d’une valeur tangible pour nôtre compréhension de la mutagenèse induite par des agents carcinogènes, un déterminant clé de la formation des tumeurs. / Ubiquitination is a reversible, covalent post-translational modification that regulates protein function and as such plays crucial roles in a wide range of physiological processes. Importantly, gain- or loss-of-function mutations in components of the ubiquitin system have been causally linked to tumorigenesis. The reverse reaction of ubiquitination is catalyzed by deubiquitinases (DUBs), a family of enzymes that removes ubiquitin from proteins. BRCA1-Associated Protein 1 (BAP1) is a deubiquitinase known to be a tumor suppressor and anti-metastatic protein since deletions and rearrangements are observed in a wide range of tumors. However, little is known about how BAP1 works into the cells. Here, we show that BAP1 is hyperphosphorylated after DNA damage by gamma radiations and ultraviolet light, probably by ATM and/or ATR. Moreover, we found that BAP1 depletion cause a defect in the maintenance of the G2/M checkpoint after gamma radiation, suggesting that BAP1 is required to maintain the arrest after DNA damage. This delay is important to allow DNA repair and to prevent genomic instability. Consistently, we found that BAP1 expression in BAP1 deficient cells restore normal diploidy and prevent nuclear aberrations, suggesting that BAP1 links DNA damage induced checkpoint regulation to genomic stability: two important processes for carcinogenesis. These findings provide new insights into the role of deubiquitination in cell signaling and neoplastic transformation.
10

Etude de la plasticité du protéasome : identification et caractérisation de cibles et de régulateurs / Study of proteasome plasticity : identification and characterization of targets and regulators

Pellentz-Lemattre, Céline 03 July 2014 (has links)
Le protéasome est une protéase multimérique essentielle et hautement conservée au cours de l’évolution. Le protéasome 26S eucaryote est l’unité catalytique du système Ubiquitine-Protéasome et contrôle de ce fait de nombreux processus cellulaires. Son dysfonctionnement participe à la pathogenèse de nombreuses maladies. Le protéasome émerge notamment comme une cible thérapeutique de choix dans le traitement de cancers. Il semble donc important d’identifier l’ensemble des processus cellulaires dans lesquels le protéasome est impliqué ainsi que l’ensemble de ses régulateurs.Mon travail de thèse a consisté à identifier et caractériser de nouveaux partenaires physiques et fonctionnels du protéasome par une approche multi-technique. Nous étudions ces facteurs dans l’organisme modèle S. cerevisiae et déterminons s’ils sont fonctionnellement conservés dans les cellules de Mammifères.Après avoir identifié des partenaires physiques et fonctionnels au moyen de cribles à grande échelle, j’ai analysé les données et établi une bibliothèque pondérée de ces partenaires. J’ai ainsi mis en évidence de nouveaux acteurs potentiellement impliqués dans le fonctionnement du protéasome. De plus, j’ai caractérisé les protéines Spg5p et Poc5p. Mes données suggèrent que Spg5p participe à la régulation du protéasome en quiescence. Poc5p, présente à la fois chez l’Homme et la levure, participe à la régulation du protéasome à au moins deux niveaux différents : elle joue un rôle de point de contrôle dans l’assemblage du complexe et un rôle inhibiteur sur son activité. / The proteasome is a highly conserved essential proteolytic machine. The eukaryotic 26S proteasome is the hydrolytic heart of the ubiquitin-mediated degradation pathway and therefore controls many cellular pathways. Its dysfunction is involved in the pathogenesis of numerous diseases. Notably, the proteasome has emerged as an interesting drug target for anti-cancer therapy. It seems therefore important to identify all cellular processes in which the proteasome is involved and all of its regulators.My work was to identify and characterize new physical and functional partners of the proteasome by a multi-technical approach. We characterize these factors in the model organism S. cerevisiae and determine if they are functionally conserved in mammalian cells.After identifying physical and functional partners through large-scale screens, I analyzed the data and developed a weighted library of these partners. I have thus highlighted new actors potentially involved in the proteasome functioning. In addition, I characterized the Spg5p and Poc5p proteins. My data suggest that Spg5p participates in the regulation of proteasome during quiescence. Poc5p, presents both in human and yeast, is involved in the regulation of proteasome at at least two different levels: it acts as a checkpoint in the complex assembly and have an inhibitory effect on its activity.

Page generated in 0.0703 seconds