• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 8
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 48
  • 31
  • 9
  • 8
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Distinct roles of PI4P 5-kinase isoforms in polar tip growth of pollen tubes / Unterschiedliche Funktionen von PI4P 5-Kinasen in der Kontrolle des polaren Spitzenwachstums von Pollenschläuchen

Ischebeck, Till 29 October 2008 (has links)
No description available.
42

Um m?todo para determina??o da profundidade combinando vis?o est?reo e autocalibra??o para aplica??o em rob?tica m?vel

Sousa Segundo, Jos? S?vio Alves de 30 April 2007 (has links)
Made available in DSpace on 2014-12-17T14:55:09Z (GMT). No. of bitstreams: 1 JoseSASS.pdf: 1375081 bytes, checksum: 1561bdbc1ba8feb7671abf9ebca84641 (MD5) Previous issue date: 2007-04-30 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / This work proposes a method to determine the depth of objects in a scene using a combination between stereo vision and self-calibration techniques. Determining the rel- ative distance between visualized objects and a robot, with a stereo head, it is possible to navigate in unknown environments. Stereo vision techniques supply a depth measure by the combination of two or more images from the same scene. To achieve a depth estimates of the in scene objects a reconstruction of this scene geometry is necessary. For such reconstruction the relationship between the three-dimensional world coordi- nates and the two-dimensional images coordinates is necessary. Through the achievement of the cameras intrinsic parameters it is possible to make this coordinates systems relationship. These parameters can be gotten through geometric camera calibration, which, generally is made by a correlation between image characteristics of a calibration pattern with know dimensions. The cameras self-calibration allows the achievement of their intrinsic parameters without using a known calibration pattern, being possible their calculation and alteration during the displacement of the robot in an unknown environment. In this work a self-calibration method based in the three-dimensional polar coordinates to represent image features is presented. This representation is determined by the relationship between images features and horizontal and vertical opening cameras angles. Using the polar coordinates it is possible to geometrically reconstruct the scene. Through the proposed techniques combination it is possible to calculate a scene objects depth estimate, allowing the robot navigation in an unknown environment / Este trabalho prop?e um m?todo para determinar a profundidade de objetos em cena utilizando uma combina??o das t?cnicas de vis?o est?reo e autocalibra??o. Determinando a dist?ncia relativa entre objetos visualizados e um rob? m?vel, dotado de uma cabe?a est?reo, ? poss?vel efetuar sua navega??o em ambientes desconhecidos. As t?cnicas de vis?o est?reo fornecem uma medida de profundidade a partir da combina??o de duas ou mais imagens de uma mesma cena. Para a obten??o de estimativas da profundidade dos objetos presentes nesta cena ? necess?rio uma reconstru??o da geometria da mesma. Para tal reconstru??o ? necess?rio o relacionamento das coordenadas tridimensionais do mundo com as coordenadas bidimensionais das imagens. Atrav?s da obten??o dos par?metros intr?nsecos das c?meras ? poss?vel fazer o relacionamento entre os sistemas de coordenadas. Estes par?metros podem ser obtidos atrav?s da calibra??o geom?trica das c?meras, a qual ? geralmente feita atrav?s da visualiza??o de um objeto padr?o de calibra??o com dimens?es conhecidas. A autocalibra??o das c?meras permite a obten??o dos par?metros intr?nsecos das mesmas sem a utiliza??o de um padr?o conhecido de calibra??o, sendo poss?vel a obten??o e a altera??o destes durante o deslocamento do rob? m?vel em um ambiente desconhecido. ? apresentado neste trabalho um m?todo de autocalibra??o baseado na representa??o de caracter?sticas da imagem por coordenadas polares tridimensionais. Estas s?o determinadas relacionando-se caracter?sticas das imagens com os ?ngulos de abertura horizontal e vertical das c?meras. Utilizando-se estas coordenadas polares ? poss?vel efetuar uma reconstru??o geom?trica da cena de forma precisa. Atrav?s desta combina??o das t?cnicas proposta ? poss?vel obter-se uma estimativa da profundidade de objetos cena, permitindo a navega??o de um rob? m?vel aut?nomo em um ambiente desconhecido
43

Caracterização química e biológica das partículas respiráveis (PM10) do material particulado atmosférico coletado em um sítio urbano da cidade de São Paulo / Chemical and biological characterization of the respirable particles (PM10) of atmospheric particulate matter collected in an urban site of the city of São Paulo

Bruno Spinosa de Martinis 03 November 1997 (has links)
A região metropolitana de São Paulo apresenta um intenso e desordenado processo de urbanização e industrialização. Devido a estes processos, a região sofre grandes problemas de poluição atmosférica, agravados em certos meses devido às dificuldades de dispersão dos poluentes. Estes poluentes causam efeitos indesejáveis ao meio ambiente e à saúde humana. A caracterização química e a avaliação da atividade mutagênica desses compostos presentes no material particulado atmosférico (MPA) é um grande desafio analítico e, é de extrema importância para o conhecimento das possíveis correlações entre os poluentes, os efeitos deletérios à saude e as fontes de emissão. Os objetivos deste trabalho foram caracterizar quimicamente os extratos orgânicos polares e semi-polares do material particulado atmosférico da cidade de São Paulo e avaliar sua atividade mutagênica. O MPA é uma mistura complexa de compostos orgânicos e inorgânicos presentes em diferentes faixas de concentrações. Devido a esta complexidade, o fracionamento químico do extrato orgânico deste material é necessário para isolar classes de compostos ou compostos individuais, permitindo a identificação e quantificação dos mesmos. Os resultados obtidos pelas diversas técnicas analíticas empregadas mostraram que os extratos em diclorometano e acetona contém inúmeros compostos orgânicos pertencentes a diferentes classes, tais como hidrocarbonetos policíclicos aromáticos, quinolinas, cetonas, piridinas, furanos, aldeídos, amidas e aminas, sendo que alguns destes compostos são considerados agentes genotóxicos. O extrato em DCM contem a maior massa e sua composição é quase exclusivamente orgânica. Já o extrato em ACE contem além dos orgânicos, espécies inorgânicas. Testes de mutagenicidade indicaram que o MPA coletado na cidade de São Paulo apresenta uma atividade mutagênica relativamente alta quando comparada a outros centros urbanos. / São Paulo metropolitan area presents an intense and chaotic process of urbanization and industrialization. Due to this processes, this region has big atmospheric pollution problem. In certain months of the year, this problem gets worse due to the unfavorable dispersion conditions. The pollutants cause undesirable effects to the environment and to the human health. The chemical characterization and the mutagenic activity evaluation of the compounds present on the atmospheric particulate matter APM) represents an analytical challenge and it is very important for understanding of the correlation among pollutants, health hazards and emission sources. The goal of this work was chemically characterize the polar and moderately polar organic extracts from the APM collected in São Paulo city and to evaluate their mutagenic activity. The APM is a complex mixture of organic and inorganic compounds present in large range of concentration. Due to this complexity, the chemical fractionation of these organic extracts is necessary to isolate classes or individual compounds, to allow their identification and quantification. The results obtained using different analytical techniques demonstrated that the dichlorometane and acetone extracts has several organic compounds belonging to different classes, such as, polycyclic aromatic hydrocarbons, quinolines, ketones, pyridines, furanes, aldehydes, amides and amines. Some of these compoundsa are considered carcinogens and/or mutagens. The dichloromethane extract presented the highest mass yield and its composition is almost exclusively organic. The acetone extract has organic and inorganic species. Mutagenicity tests revealed that the APM from São Paulo city presented a have relatively high mutagenic activity when compared to other urban regions.
44

[en] SINGULAR RIEMANNIAN FOLIATIONS WITH SECTIONS AND TRANSNORMAL MAPS / [pt] FOLHEAÇÕES RIEMANNIANAS SINGULARES COM SEÇÕES E APLICAÇÕES TRANSNORMAIS

MARCOS MARTINS ALEXANDRINO DA SILVA 25 February 2003 (has links)
[pt] Um resultado clássico da teoria de grupos de Lie garante que as órbitas da ação adjunta de um grupo de Lie compacto interceptam um toro máximo ortogonalmente. Esta ação é um exemplo das chamadas ações polares. Ações polares são ações de grupos compactos de isometrias que admitem seções (subvariedades totalmente geodésicas que interceptam as órbitas ortogonalmente). Ações polares e subvariedades isoparamétricas são casos particulares das chamadas folheações riemannianas singulares com seções,assunto que é estudado nesta tese. Além de apresentarmos resultados sobre essas folheações singulares apresentamos também resultados sobre as chamadas aplicações transnormais (generalizações das aplicações isoparamétricas) destacando como estes objetos estão relacionados. / [en] It follows from the classical Lie group theory that the orbits of an adjoint action of a compact Lie group intercept a maximal toru in a orthogonal way. This is an example of the so called Polar Action. A compact isometric action is said to be Polar if it admits sections, i.e. totally geodesic submanifolds that intercept the orbits orthogonally. Polar Actions and isoparametric manifolds are examples of a more general structure, the so called singular Riemannian Foliation with Section, the main subject of the thesis. Besides the results about these singular foliations we show also some results about transnormal maps (generalization of isoparametric maps) and stress the its connections with the singulare riemannian foliation with section.
45

Segmentação de imagens SPECT/Gated-SPECT do miocárdio e geração de um mapa polar. / Segmentation of myocardial SPECT/Gated-SPECT images and polar map generation.

Luis Roberto Pereira de Paula 23 May 2011 (has links)
Tomografia computadorizada por emissão de fóton único (SPECT) é uma modalidade da medicina nuclear baseada na medida da distribuição espacial de um radionuclídeo. Esta técnica é amplamente utilizada em cardiologia para avaliar problemas de perfusão miocárdica, relacionados ao fluxo sanguíneo nas artérias coronárias. As imagens SPECT proporcionam melhor separação das regiões do miocárdio e facilitam a localização e a definição dos defeitos de perfusão. Um dos grandes desafios em estudos SPECT é a eficiente apresentação da informação, uma vez que um único estudo pode gerar imagens de centenas de cortes a serem analisados. Para resolver este problema, são utilizados mapas polares (também conhecidos como gráficos Bulls Eye). Mapas polares são construídos a partir de cortes tomográficos do ventrículo esquerdo e apresentam as informações dos exames de forma sumarizada, em uma imagem bidimensional. Essa dissertação apresenta um método para segmentação do ventrículo esquerdo em estudos SPECT do miocárdio e a construção de mapas polares. A segmentação do ventrículo esquerdo é realizada para facilitar o processo de geração automática de mapas polares. O método desenvolvido utiliza a transformada watershed, no contexto do paradigma de Beucher-Meyer. Para visualização dos resultados, foi desenvolvida uma aplicação, chamada Medical Image Visualizer (MIV). O MIV será disponibilizado como projeto Open Source, podendo ser livremente utilizado e/ou modificado pela comunidade de usuários, desenvolvedores e pesquisadores. / Single photon emission computed tomography (SPECT) is a nuclear medicine tomographic imaging technique based on the measurement of spatial distribution of a radionuclide. This technique is widely used in cardiology to assess myocardial perfusion problems related to blood flow in coronary arteries. SPECT images provide better separation of regions of the myocardium and facilitate the location and definition of perfusion defects. One of the major challenges in SPECT studies is the efficient presentation of information, since a single study can generate hundreds of images of slices to be analyzed. To address this issue, polar maps (also known as Bulls Eye display) are used. Polar maps are built from slices of the left ventricle and provide summarized information of exams in a two dimensional image. This dissertation presents a method for the segmentation of the left ventricle in myocardial SPECT studies and the construction of polar maps. The segmentation of the left ventricle is performed to facilitate the process of automatic generation of polar maps. The method uses the watershed transform, in the context of the Beucher-Meyer paradigm. To display the results, it was developed an application called Medical Image Visualizer (MIV). MIV will be available as an Open Source project and the communities of users, developers and researchers will be able to freely use and/or modify the application.
46

DIVISÃO DE POLÍGONOS IRREGULARES DO ELIPSÓIDE BIAXIAL NA SUPERFÍCIE DA PROJEÇÃO AZIMUTAL EQUIVALENTE DE LAMBERT / Irregular polygon partitioning on the biaxial ellipsoid on the surface of the Lambert azimuthal equal-area projection

Stanque, Edson Luis 03 October 2007 (has links)
This dissertation supplies the methodology of the measure (area) in the Earth model adopted for Geodesy. This model is the ellipsoid of revolution, in which the system of Cartesian coordinates, the curvilinear coordinate system and the polar coordinate system are described. The coordinate nature in the development of the surface measure calculation is discussed. The following demonstrations are illustrated: the ellipse equation, the eccentricity of the ellipse, the meridian section curvature radius equation, the meridian transversal section curvature radius equation and elliptic integral. It define algebraic geodesic line and geometrically. The juridical basis are the article 3º of Brazilian Federal Law 10.267/2001, which modify article 176 of the Brazilian Federal Law 6.015/1973 (Public Record Law) and adds to this article the paragraphs 3º and 4º, the paragraph 3º of article 225 of the Brazilian Law 6.015/1973 and the article 971 of the Código de Processo Civil (CPC), which require the coordinates of the corners of the real property on the Brazilian Geodetic System (SGB). The partitioning of the regular ellipsoid quadrilateral and the partitioning of the irregular ellipsoid quadrilateral located in the real property Pó de Serra is presented. To become this partitioning, it was used surface of the Lambert azimuthal equal-area projection, i. e., the curvilinear geodetic coordinates in plane coordinates has been transformed. The surface partitioning was determined using the method area equation of the Gauss trapezes connected with the equation of the straight line. The direct problem of the Lambert azimuthal equal-area projection and the inverse problem supply the methodology that become feasible the juridical exigence (articles 176 and 225 of Brazilian Federal Law 6.015/1973 and article 971 of the CPC). The methodology to the geodetic coordinates system with the purpose to calculate the partitioned areas of surface on the ellipsoid can be applied. The calculation of surface measure supplies the effective practice of the mencioned juridical basis. / O propósito deste trabalho é fornecer os fundamentos de cálculo de medida de superfície (área) no modelo de Terra adotado pela Geodésia. Esse modelo é o elipsóide de revolução ao qual se vincula o sistema de coordenadas cartesianas, o sistema de coordenadas curvilíneas e o sistema de coordenadas polares. Discute a natureza das coordenadas no desenvolvimento do cálculo da medida de superfície. Efetuam-se as seguintes demonstrações: equação da elipse, equação da excentricidade da elipse, equação do raio de curvatura da seção meridiana, equação do raio de curvatura da seção transversal meridiana e integral elíptica. Define linha geodésica algébrica e geometricamente. Apresentam-se os instrumentos legais que são o artigo 3º da Lei 10.267/2001, o qual altera o artigo 176, inciso II da Lei 6.015/1973 (Lei de Registros Públicos) e acrescenta a este artigo os parágrafos 3º e 4º, o parágrafo 3º do artigo 225 da Lei 6.015/1973 e o artigo 971 do Código de Processo Civil (CPC), os quais vinculam as coordenadas dos vértices do imóvel ao Sistema Geodésico Brasileiro (SGB). Efetuam-se a divisão do quadrilátero elipsóidico regular e também do quadrilátero elipsóidico irregular localizado na gleba Pó de Serra. Para se fazer esta divisão, usou-se a superfície da projeção azimutal equivalente de Lambert, ou seja, as coordenadas elipsóidicas curvilíneas foram transformadas em coordenadas planas desse sistema de projeção. A divisão destas superfícies foi efetuada pelo método da equação da área dos trapézios de Gauss em conjunto com a equação da reta. Os problemas direto e inverso da projeção azimutal equivalente de Lambert fornecem a metodologia que tornam exeqüíveis os dispositivos legais (artigos 176 e 225 da Lei 6.015/1973 e artigo 971 do CPC). A metodologia de cálculo proposto pode ser aplicada ao sistema de coordenadas geodésicas com a finalidade de calcular as áreas de uma divisão de superfície no elipsóide. Os fundamentos do cálculo de medida de superfície instrumentalizam o efetivo cumprimento dos dispositivos legais retrocitados.
47

Gepulste Laserabscheidung und Charakterisierung funktionaler oxidischer Dünnfilme und Heterostrukturen

Zippel, Jan 04 December 2012 (has links) (PDF)
In der vorliegenden Arbeit wird das Hauptaugenmerk auf die Untersuchung der Auswirkungen einer Modifikation der zugänglichen Prozessparameter auf die funktionalen Eigenschaften oxidischer Dünnfilme während der gepulsten Laserabscheidung (PLD) gelegt. Der erste Teil der Arbeit stellt die Herstellung von BaTiO3/SrTiO3-Mehrfach-Heterostrukturen auf thermisch und chemisch vorbehandelten SrTiO3-Substraten mittels gepulster Laserabscheidung (PLD) vor. Die zugängliche in-situ Wachstumskontrolle durch ein reflection high-energy electron diffraction (RHEED)-System ermöglicht es die Wachstumsprozesse in Echtzeit zu überwachen. Angestrebt wird ein stabiler zwei-dimensionaler Wachstumsmodus, der neben glatten Grenzflächen auch eine hohe Dünnfilmqualität ermöglicht. Es wird erstmals die prinzipielle Anwendbarkeit von BaTiO3/SrTiO3-Heterostrukturen als Bragg-Spiegel aufgezeigt. Für BaTiO3- sowie SrTiO3-Dünnfilme wurden die PLD-Parameter Substrattemperatur, Sauerstoffpartialdruck, Energiedichte des Lasers sowie Flussdichte der Teilchen variiert und die Auswirkungen auf die strukturellen, optischen und Oberflächeneigenschaften mittels Röntgendiffraktometrie (XRD), spektraler Ellipsometrie (SE) und Rasterkraftmikroskopie (AFM) beleuchtet. Im zweiten Teil werden ZnO/MgxZn1−xO-Quantengrabenstrukturen hetero- und homoepitaktisch auf thermisch vorbehandelten a-Saphir- respektive m- und a-orientierten ZnO-Einkristallen vorgestellt. Die Realisierung eines zwei-dimensionalen „layer-by-layer“ Wachstumsmodus wird für die Quantengrabenstrukturen aufgezeigt. Die Quantengrabenbreite lässt sich aus beobachteten RHEED-Oszillationen exakt bestimmen. Ein Vergleich zwischen, mittels Photolumineszenz gemessenen Quantengrabenübergangsenergien als Funktion der Grabenbreite mit theoretisch ermittelten Werten wird vorgestellt, wobei der Unterschied zwischen polaren und nicht-polaren Strukturen mit Blick auf eine Anwendung aufgezeigt wird. Für c-orientierte ZnO-Dünnfilme wird das Wachstum im Detail untersucht und ein alternativer Abscheideprozess im so genannten Intervall PLD-Verfahren vorgestellt. Die Verifizierung der theoretischen Prognose einer ferromagnetischen Ordnung mit einer Curie-Temperatur oberhalb Raumtemperatur (RT) für kubische, Mangan stabilisierte Zirkondioxid (MnSZ)-Dünnfilme stellt den dritten Teil der Arbeit dar. Die strukturellen Eigenschaften der Dünnfilme werden mittels XRD, AFM sowie Transmissionselektronenmikroskopie (TEM) untersucht. Die Bedingungen einer erfolgreichen Stabilisierung der kubischen Kristallphase durch den Einbau von Mn wird aufgezeigt. Mittels Röntgenphotoelektronenspektroskopie (XPS) sowie Elektronenspinresonanz (EPR) wird der Ladungszustand der, in der Zirkondioxidmatrix eingebauten, Mn-Ionen ermittelt. Die elektrischen Eigenschaftenwerden durch Strom-Spannungsmessungen(IU) sowie der Leitungstyp durch Seebeck-Effekt Messungen charakterisiert. Zur Erhöhung der Leitfähigkeit werden die MnSZ Dünnfilme in verschiedenen Atmosphären thermisch behandelt und Veränderungen durch IU-Messungen aufgezeigt. Ergebnisse von optischen Untersuchungen mittels Transmissionsmessungen und KL werden präsentiert. Superconducting quantum interference device (SQUID)-Magnetometrie wird zur Charakterisierung der magnetischen Eigenschaften genutzt. Magnetische Ordnungen im Bereich zwischen 5 K ≤ T ≤ 300 K werden untersucht und der Einfluss von Defekten sowie einer thermischen Behandlung in verschiedenen Atmosphären auf die magnetischen Eigenschaften diskutiert.
48

Gepulste Laserabscheidung und Charakterisierung funktionaler oxidischer Dünnfilme und Heterostrukturen: Gepulste Laserabscheidung und Charakterisierung funktionaler oxidischerDünnfilme und Heterostrukturen

Zippel, Jan 09 November 2012 (has links)
In der vorliegenden Arbeit wird das Hauptaugenmerk auf die Untersuchung der Auswirkungen einer Modifikation der zugänglichen Prozessparameter auf die funktionalen Eigenschaften oxidischer Dünnfilme während der gepulsten Laserabscheidung (PLD) gelegt. Der erste Teil der Arbeit stellt die Herstellung von BaTiO3/SrTiO3-Mehrfach-Heterostrukturen auf thermisch und chemisch vorbehandelten SrTiO3-Substraten mittels gepulster Laserabscheidung (PLD) vor. Die zugängliche in-situ Wachstumskontrolle durch ein reflection high-energy electron diffraction (RHEED)-System ermöglicht es die Wachstumsprozesse in Echtzeit zu überwachen. Angestrebt wird ein stabiler zwei-dimensionaler Wachstumsmodus, der neben glatten Grenzflächen auch eine hohe Dünnfilmqualität ermöglicht. Es wird erstmals die prinzipielle Anwendbarkeit von BaTiO3/SrTiO3-Heterostrukturen als Bragg-Spiegel aufgezeigt. Für BaTiO3- sowie SrTiO3-Dünnfilme wurden die PLD-Parameter Substrattemperatur, Sauerstoffpartialdruck, Energiedichte des Lasers sowie Flussdichte der Teilchen variiert und die Auswirkungen auf die strukturellen, optischen und Oberflächeneigenschaften mittels Röntgendiffraktometrie (XRD), spektraler Ellipsometrie (SE) und Rasterkraftmikroskopie (AFM) beleuchtet. Im zweiten Teil werden ZnO/MgxZn1−xO-Quantengrabenstrukturen hetero- und homoepitaktisch auf thermisch vorbehandelten a-Saphir- respektive m- und a-orientierten ZnO-Einkristallen vorgestellt. Die Realisierung eines zwei-dimensionalen „layer-by-layer“ Wachstumsmodus wird für die Quantengrabenstrukturen aufgezeigt. Die Quantengrabenbreite lässt sich aus beobachteten RHEED-Oszillationen exakt bestimmen. Ein Vergleich zwischen, mittels Photolumineszenz gemessenen Quantengrabenübergangsenergien als Funktion der Grabenbreite mit theoretisch ermittelten Werten wird vorgestellt, wobei der Unterschied zwischen polaren und nicht-polaren Strukturen mit Blick auf eine Anwendung aufgezeigt wird. Für c-orientierte ZnO-Dünnfilme wird das Wachstum im Detail untersucht und ein alternativer Abscheideprozess im so genannten Intervall PLD-Verfahren vorgestellt. Die Verifizierung der theoretischen Prognose einer ferromagnetischen Ordnung mit einer Curie-Temperatur oberhalb Raumtemperatur (RT) für kubische, Mangan stabilisierte Zirkondioxid (MnSZ)-Dünnfilme stellt den dritten Teil der Arbeit dar. Die strukturellen Eigenschaften der Dünnfilme werden mittels XRD, AFM sowie Transmissionselektronenmikroskopie (TEM) untersucht. Die Bedingungen einer erfolgreichen Stabilisierung der kubischen Kristallphase durch den Einbau von Mn wird aufgezeigt. Mittels Röntgenphotoelektronenspektroskopie (XPS) sowie Elektronenspinresonanz (EPR) wird der Ladungszustand der, in der Zirkondioxidmatrix eingebauten, Mn-Ionen ermittelt. Die elektrischen Eigenschaftenwerden durch Strom-Spannungsmessungen(IU) sowie der Leitungstyp durch Seebeck-Effekt Messungen charakterisiert. Zur Erhöhung der Leitfähigkeit werden die MnSZ Dünnfilme in verschiedenen Atmosphären thermisch behandelt und Veränderungen durch IU-Messungen aufgezeigt. Ergebnisse von optischen Untersuchungen mittels Transmissionsmessungen und KL werden präsentiert. Superconducting quantum interference device (SQUID)-Magnetometrie wird zur Charakterisierung der magnetischen Eigenschaften genutzt. Magnetische Ordnungen im Bereich zwischen 5 K ≤ T ≤ 300 K werden untersucht und der Einfluss von Defekten sowie einer thermischen Behandlung in verschiedenen Atmosphären auf die magnetischen Eigenschaften diskutiert.:Inhaltsverzeichnis 1. Einleitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2. Grundlagen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1. Thermodynamische Grundlagen . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1. Konzept der Übersättigung . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.2. Beschreibung der Grenz- bzw. Oberfläche . . . . . . . . . . . . . . 10 2.2. Keimbildung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1. Thermodynamische Grundlagen der Keimbildung . . . . . .. . . . 12 2.2.2. Atomistische Beschreibung der Keimbildung . . . . . . . . . . . . . 14 2.3. Besonderheiten der Schichtbildung in Homo- und Heteroepitaxie 16 2.3.1. Homoepitaxie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.2. Heteroepitaxie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4. Wachstumskinetik in der gepulsten Laserabscheidung . . . . . . . 19 3. Experimentelle Details 21 3.1. Probenherstellung – Gepulste Laser Abscheidung (PLD) . . . . . . 21 3.1.1. Allgemeine Grundlagen der PLD . . . . . . . .. . . . . . . . . . . . . . . . 21 3.1.2. Reflection high-energy electron diffraction . . . . . . . . . . . . . . . 23 3.1.3. PLD-Kammer mit in-situ RHEED . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1.4. PLD-Kammer ohne in-situ RHEED . . . . . . . . . . . . . . . . . . . . . . 28 3.2. Strukturelle und chemische Charakterisierung . . . . . . . . . . . . . 29 3.2.1. Röntgendiffraktometrie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2.2. Rasterkraftmikroskopie . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 31 3.2.3. Transmissionselektronenmikroskopie . . . . . . . . . . . . . . . . . . . 33 3.2.4. Energiedispersive Röntgenspektroskopie . . . . . . . . . . . . . . . . 33 3.2.5. Rutherford-Rückstreuspektrometrie und Partikel-induzierte Röntgenemission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2.6. Röntgenphotoelektronenspektroskopie . . . . . . . . . . . . . . . . . . 34 3.3. Optische Charakterisierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3.1. Transmissionsmessungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3.2. Lumineszenzmessungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3.3. Spektroskopische Ellipsometrie . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3.4. Raman-Streuung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.4. Magnetische Charakterisierung . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.4.1. Messungen der Magnetisierung mit einem SQUID-Magnetometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 39 3.4.2. Elektronenspinresonanz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.5. Elektrische Charakterisierung . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.5.1. Strom-Spannungs-Messungen . . . . . . . . . . . . . . . . . . . . . . . . 41 3.5.2. Seebeck Effekt Messungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4. Die Herstellung und Charakterisierung von BaTiO3/SrTiO3-Bragg-Spiegeln mittels PLD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.1. Einführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2. Bragg-Spiegel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.3. Die Materialien Strontiumtitanat und Bariumtitanat . . . . . . . . . . 45 4.3.1. Kristallstruktur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.3.2. Substrateigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.4. Epitaktische BaTiO3-Dünnfilme . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.4.1. Heteroepitaktische BaTiO3-Dünnfilme auf SrTiO3 (001)-Substraten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.4.2. Initiale Wachstumsphasen von BaTiO3-Dünnfilmen auf SrTiO3 (001)-Substraten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.4.3. Auswirkung der PLD-Abscheideparameter auf epitaktische BaTiO3-Dünnfilme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 4.4.4. Veränderung der optischen Konstanten durch die Modifikation der PLD-Abscheideparameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.5. Epitaktische SrTiO3-Dünnfilmen . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.6. Abscheidung von BaTiO3/SrTiO3-Bragg-Spiegel . . . . . . . . . . . . . 73 4.6.1. BaTiO3/SrTiO3-Einfach–Heterostrukturen . . . . . . . . . . . . . . . . 73 4.6.2. BaTiO3/SrTiO3-Mehrfach–Heterostrukturen . . . . . . . . . . . . . . . 78 4.6.3. BaTiO3/SrTiO3-Bragg-Spiegel . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.6.4. Abschlussbemerkungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5. Die Herstellung und Charakterisierung von ZnO/MgxZn1−xO-Quantengräben mittels PLD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.1. Einführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.2. Die Materialien ZnO und MgxZn1−xO . . . . . . . . . . . . . . . . . . . . . 88 5.2.1. ZnO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.2.2. MgxZn1−xO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.3. Quantengrabenstrukturen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.3.1. Exzitonen im Zinkoxid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.3.2. Quantum-Confined Stark Effect . . . . . . . . . . . . . . . . . . . . . . . . 91 5.4. Die Abscheidung von ZnO- und MgxZn1−xO-Dünnfilmen mittels PLD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.4.1. Heteroepitaktische Abscheidung von ZnO- und MgxZn1−xO-Dünnfilmen auf a-Saphir-Substraten . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.4.2. Homoepitaktische Abscheidung von ZnO- und MgxZn1−xO-Dünnfilmen auf verschiedenen ZnO-Substraten . . . . . . . . . . . . . . . . 106 5.5. Die Herstellung von ZnO/MgxZn1−xO-Quantengrabenstrukturen auf verschiedenen Substraten . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 5.5.1. Heteroepitaktische Quantengrabenstrukturen auf a-Saphir-Substraten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 5.5.2. Anmerkungen zu homoepitaktischen Quantengrabenstrukturen abgeschieden auf c-ZnO-Substraten . . . . . . . . . . . . . . . . . . . . . . . . 143 5.5.3. Homoepitaktischen Quantengrabenstrukturen abgeschieden auf nicht-polaren ZnO-Substraten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 5.5.4. Abschlussbemerkungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 6. Die Herstellung und Charakterisierung von Mangan stabilisierten Zirkondioxid als potentieller verdünnter magnetischer Halbleiter mittels PLD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 6.1. Einführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 6.2. Theoretische Grundlagen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 6.2.1. Spintronik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 6.2.2. Verdünnte magnetische Halbleiter . . . . . . . . . . . . . . . . . . . . . 158 6.2.3. Ferromagnetische Kopplung in verdünnten magnetische Halbleitern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 6.3. Mangan stabilisiertes Zirkondioxid als möglicher DMS . . . . . . . . 162 6.4. Das Material Zirkondioxid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 6.4.1. Die Phasen des Zirkondioxids . . . . . . . . . . . . . . . . . . . . . . . . . 164 6.5. Substrateigenschaften von (001) und (111) orientiertem Yttrium stabilisierten Zirkondioxid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 6.6. Untersuchungen an Mangan stabilisierten Zirkondioxid Dünnfilmen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176 6.6.1. Strukturelle und chemische Charakterisierung . . . . . . . . . . . . 177 6.6.2. Analyse der unterschiedlichen Phasen im Mangan stabilisierten Zirkondioxid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190 6.6.3. Elektrische und optische Charakterisierung . . . . . . . . . . . . . . 203 6.6.4. Magnetische Charakterisierung von Mangan stabilisiertem Zirkondioxid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210 6.6.5. Magnetische Charakterisierung von nominell undotiertem Zirkondioxid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221 6.6.6. MnSZ-Mehrfach-Heterostrukturen . . . . . . . . . . . . . . . . . . . . . 224 6.6.7. Einfluss einer thermischen Behandlung auf die magnetischen Eigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227 6.6.8. Zusammenfassung der Messergebnisse . . . . . . . . . . . . . . . . 232 6.7. Abschlussbemerkung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 7. Zusammenfassung und Ausblick . . . . . . . . . . . . . . . . . . . . . . . 237 8. Literaturverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 A. Symbole und Abkürzungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 B. Liste der Veröffentlichungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 C. Danksagung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 D. Curriculum Vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .286 E. Selbstständigkeitserklärung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

Page generated in 0.0934 seconds