Spelling suggestions: "subject:"polyadenylation"" "subject:"polyadenylated""
1 |
Etudes biophysiques du facteur de maturation 3’ des ARN pré-messagers CF IA / Biophysical studies of pre-messanger RNA 3’end maturation factor CF IADupin, Adrien 06 November 2014 (has links)
Durant ce processus central qu’est la biogenèse des ARNm, la formation de la queue polyA est une étape clé impliquant de nombreuses activités enzymatiques et complexe protéiques. CF IA (Facteur de Clivage 1A) est un complexe macromoléculaire essentiel pour les deux étapes de clivage et de polyadénylation durant la formation de la queue poly(A) à l’extrémité 3’ de l’ARNm de levure. Constitué par les protéines RNA14, RNA15, Pcf11 et CLP1 dans une stœchiométrie supposée 2:2:1:1. Cependant, contrairement au complexe CPF (Facteur de Clivage et de Polyadénylation) qui porte les activités de clivage et de polyadénylation, aucune activité enzymatique n’a pu être associé au CF IA, suggérant un rôle d’architecture via d’une part la liaison à l’ARN et à d’autres complexes d’autre part. Dans ce travail, j’ai pu combiner les données obtenues par différentes approches biophysiques pour apporter des précisions sur l’organisation structurale au sein du CF IA mais également étudier l’importance biologique de certains motifs spécifiques. / During this major process which is mRNA biogenesis, the formation of the polyA tail is a key step involving numerous enzymatic activities and protein complex. CF IA (Cleavage Factor IA) is a macromolecular complex essential for both cleavage and polyadenylation steps during the formation of the 3'-end poly(A) tail of the yeast mRNA. Composed by RNA14, RNA15, Pcf11 and CLP1 yeast proteins in an assumed stochiometry of 2:2:1:1. However, unlike CPF (Cleavage and Polyadenylation Factor) complex hosting the both cleavage and polyadenylation activities, no enzymatic activity has been associated to CF IA, suggesting a scaffolding and/or positioning activity through the binding on the one hand to the RNA and on the other hand to other complexes. In this work, I was able to cross-use different biophysical technics to get insights on the structural organization within the CF IA as well as studying the biological importance of some specifics sequences.
|
2 |
Insights into the function of short interspersed degenerated retroposons in the protozoan parasite LeishmaniaSmith, Martin January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
3 |
Insights into the function of short interspersed degenerated retroposons in the protozoan parasite LeishmaniaSmith, Martin January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
|
4 |
Caractérisation de l'homologue de PABPN1 (Poly(A)-Binding Protein Nuclear 1) chez la levure à fission Schizosaccharomyces pombeLemieux, Caroline January 2012 (has links)
Deux classes de poly(A)-binding protein (PABP) lient la queue poly(A) des ARNm chez la plupart des mammifères: PABPC1 au cytosol et PABPN1 au noyau. PABPC1 stimule la traduction des ARNm tandis que PABPN1 stimule la processivité de la poly(A) polymérase tout en contrôlant la taille des queues poly(A). Il est à noter que les orthologues de PABPC1 sont bien caractérisés chez la levure, toutefois un homologue de PABPN1 n'avait jamais été identifié. Précédemment, le Dr. Bachand avait réalisé une purification par affinité avec la protéine d’arginine méthyltransférase I (Rmt1) couplée à la spectrométrie de masse, ce qui a permis d'identifier l’homologue de PABPN1 (Pab2) chez la levure à fission. Différentes expériences ont démontré que Pab2 est une protéine nucléaire non-essentielle qui lie spécifiquement des séquences poly(A) in vitro. Pab2 a été identifiée par son interaction avec Rmt1 et cette enzyme méthyle les arginines présentes dans le domaine riche en arginine de la protéine Pab2. Cette modification post-traductionnelle n'affecte pas la localisation nucléaire et l’affinité aux séquences poly(A) de Pab2. Par contre, les niveaux d’oligomérisation de Pab2 sont nettement augmentés lorsque Pab2 n’est plus méthylée. De plus, les ARNs provenant de cellules [Delta]pab2 sont hyperadénylés, ce qui corrobore avec la fonction de PABPN1 à contrôler la taille des queues poly(A) in vitro. Par la suite, j'ai caractérisé l’implication de Pab2 durant la maturation du pré-ARNm. Des essais d'immunoprécipitation de chromatine (ChIP) ont établi que Pab2 est recrutée co-transcriptionnellement aux gènes activement transcrits. De façon surprenante, mes études ont démontré que le recrutement de Pab2 précède celui d'un facteur impliqué dans le clivage et la polyadénylation. De plus, le recrutement de Pab2 dépend de l’ARNm naissant. Conséquemment, j'ai voulu identifier les protéines associées à Pab2. Ainsi, une purification d’affinité par tandem couplée à la spectrométrie de masse a révélé que Pab2 est associée à plusieurs protéines ribosomales ainsi que des facteurs de traduction générale. Ces données étaient étonnantes puisque la traduction des ARNm implique la protéine Pab1. Par conséquent, il était pertinent de vérifier le rôle possible de Pab2 sur la traduction. À priori, j ’ai confirmé que Pab2 fait la navette entre le noyau et le cytosol, ce qui concorde avec l’orthologue PABPN1. Par la suite, j'ai démontré qu’une fraction de la protéine Pab2 demeure associée aux ARNm activement traduits. Il devenait alors intéressant de connaître les cibles de Pab2. L’analyse génomique a établi que Pab2 régule l’expression de certains transcrits, tels que les gènes méïotiques, les snoRNAs et les rétrotransposons. Pour la suite de mes recherches, je me suis concentrée sur le gène codant pour la protéine ribosomale de la large sous-unité Rpl30-2, dont l’expression augmente de 4 fois en absence de Pab2. Il est intéressant de noter que le changement d ’expression de Rpl30-2 dans une souche [Delta]pab2 dépend de la présence de l’intron Rpl30-2. Mes travaux démontrent que l’expression de Rpl30-2 est régulée au niveau du pré-ARNm par Pab2 et Rrp6, une composante de l’exosome nucléaire. De plus, l’analyse du transcriptome par RNA-seq a établi que ce mécanisme permet de réguler l’expression d'une soixantaine de gènes qui sont inefficacement épissés. En ce qui concerne Rpl30-2, l’épissage de ce transcrit est ralenti par Rpl30-1, le paralogue de Rpl30-2. L’ensemble de mes travaux ont pu caractériser l’homologue de PABPN1 (Pab2) chez la levure à fission tout en établissant une fonction spécifique pour cette poly(A)-binding protein.
|
5 |
Epigenetic regulation of transcription from genes-containing heterochromatin / Régulation épigénétique de la transcription des gènes contenant de l’hétérochromatineIdir, Yassir 26 September 2019 (has links)
La maturation des ARN implique un grand nombre d’évènements post-transcriptionnels, parmi lesquels la polyadénylation qui constitue une étape clé. Chez Arabidopsis, la présence de l’hétérochromatine au niveau des introns de certains gènes peut influencer considérablement la polyadénylation de leur transcrits. INCREASED IN BONSAI METHYLATION2 (IBM2) est une protéinequi contrôle cette catégorie de gènes en reconnaissant l’hétérochromatine au niveau des introns via son domaine BOMO-ADJACENT HOMOLOGY (BAH). IBM2 se lie à l’ARNm par son motif RNA RECOGNOTION (RRM), afin d’assurer la transcription complète de ces gènes cibles en favorisant l’utilisation d’un site distal de polyadénylation. Par conséquent, en mutant IBM2, des plus transcrits courts sont synthétisés suite à une polyadénylation précoce au niveau de la régionhétérochromatique. Durant ma thèse, j’ai cherché à comprendre les mécanismes moléculaires sous-jacents de cette régulation tout en étudiant le rôle du complexe protéique IBM2. Nous avons identifié des protéines partenaires d’IBM2 déjà étudiées telle que ENHANCED DOWNY MILDEW2 (EDM2) et ASI-IMMUNOPRECIPITATED PROTEIN1 (AIPP1), ainsi qu’une nouvelle protéine interagissant physiquement avec IBM2 et d’autres protéines. La mutation du gène correspondant à cette protéine conduit à une réduction de l’expression globale des cibles d’IBM2testées, accompagnée d’un niveau réduit de transcrits longs fonctionnels. Moyennant un crible génétique des suppresseurs de la mutation ibm2, nous avons identifié plusieurs facteurs agissant en amont de la voie IBM2, notamment la protéine FLOWERING TIME CONTROL (FPA). FPA est une protéine capable de s’associer à l’ARN pour favoriser l’utilisation de sites proximaux de polyadénylation de plusieurs gènes cibles, avec parmi eux des gènes contrôlés par IBM2, ce qui suggère que la transcription complète de ces gènes dépend étroitement des actions antagonistes entre IBM2 et FPA. Nos résultats ont montré que le choix du site de polyadénylation de gènes contenant de l’hétérochromatine dépend de plusieurs protéines agissant en différents complexes ainsi que l’interconnexion avec d’autres voies. / RNA maturation implies numerous post-transcriptional modifications in whichpolyadenylation is a key step. In Arabidopsis, the heterochromatin found within introns(intronic-HC) can impact transcripts polyadenylation of host genes. INCREASED IN BONSAI METHYLATION2 (IBM2), an RNA-binding protein containing a bromo-adjacent homology (BAH) domain, interacts with intronic-HC to produce functional full-length transcripts by promoting distal polyadenylation. Loss of IBM2 function triggers short transcripts production due to premature polyadenylation from the heterochromatic region. During my thesis, I investigated the role of proteins that may belong to different sub-complexes in the regulation of intronic-HC containing genes. We identified IBM2 partners, including ENHANCED DOWNY MILDEW 2 (EDM2) and ASI-IMMUNOPRECIPITATED PROTEIN1 (AIPP1), and a novel partner that interacts directly with IBM2 and other proteins. Mutating the corresponding gene of the novel partner results in decreased expression of tested IBM2-targets such as IBM1 encoding an H3K9demethylase and the disease resistance gene RECOGNITION OF PERONOSPORA PARASITICA 7 (RPP7), accompanied with compromised use of their distal polyadenylation sites. By conducting a genetic screen of ibm2 mutation suppressors, we identified factors belonging to different pathways that act upstream of IBM2, among them the FLOWERING TIME CONTROL PROTEIN (FPA). FPA is an RNA-binding protein that promotes the use of proximal polyadenylation sitesof several genes such as IBM1. Our data bring evidence that antagonistic actions of FPA and IBM2 regulates polyadenylation sites choice at intronic-HC containing genes. These results provide new insights to understand the interplay between heterochromatin and RNA processing.
|
6 |
Régulation du transcriptome codant et non-codant chez Schizosaccharomyces pombe: facteurs et mécanismes impliqués dans la maturation 3’ des ARNs et la terminaison de la transcriptionLemay, Jean-François January 2016 (has links)
La synthèse d’un ARNm eucaryotique dépend d’une suite d’étapes qui inclut notamment l’ajout d’une queue poly(A) à son extrémité 3’. Au noyau, la queue poly(A) des ARNms est liée par PABPN1 (poly(A)-binding protein nuclear 1). PABPN1 fut notamment caractérisée, d’après des études in vitro, pour stimuler la réaction de polyadénylation en plus de contrôler la taille ultime des queues poly(A). Cela dit, la ou les fonction(s) biologique(s) de PABPN1 est/sont cependant largement méconnue(s). Chez Schizosaccharomyces pombe (S. pombe), Pab2 est l’orthologue présumé de PABPN1. Or, mes travaux indiquent que Pab2 est fonctionnellement différente de PABPN1 à l’égard de son rôle sur le processus général de polyadénylation. Ainsi, in vivo, l’absence de Pab2 entraîne l’expression et l’accumulation d’un groupe limité d’ARNs hyperadénylés parmi lesquels se trouvent de nombreux petits ARNs nucléolaires non-codants (snoRNAs) lesquels constituent normalement un groupe abondant d’ARN poly(A)-. Mes résultats supportent ainsi un mécanisme par lequel des snoRNAs immatures poly(A)+, sont convertis en une forme mature poly(A)- par le biais de Pab2 et de l’activité 3’-->5’ exoribonucléase de l’exosome à ARN. Ces observations sont inusitées dans la mesure où elles associent une fonction pour une PABP dans la maturation d'ARNs non-codants, contrairement à la notion que les PABPs travaillent exclusivement au niveau des ARNms, en plus de procurer une nouvelle perspective face au mécanisme de recrutement de l'exosome à ARN à des substrats poly(A)+.
La formation de l’extrémité 3’ d’un ARN est un processus étroitement lié à la terminaison de sa transcription. Pour les gènes codants, la terminaison transcriptionnelle est initiée par le clivage endonucléolytique du pré-ARNm. Ce clivage génère une extrémité d’ARN 5’ libre laquelle sera ciblée par une exoribonucléase 5'-->3’ afin de mener à bien l’éviction de l’ARNPII de la matrice d’ADN (terminaison transcriptionnelle de type torpedo). Au contraire, chez Saccharomyces cerevisiae (S. cerevisiae), la majorité des gènes non-codants, incluant les snoRNAs, dépendent plutôt du complexe NNS (Nrd1/Nab3/Sen1) pour la terminaison de leur transcription. Cela dit, il est incertain si le complexe NNS est conservé chez d’autres espèces. À cet égard, mes travaux indiquent que S. pombe est dépourvu d’un mécanisme de terminaison de la transcription de type NNS. Seb1, l’orthologue présumé de Nrd1 chez S. pombe, s’associe plutôt à la machinerie de clivage et de polyadénylation et influence la sélection de site de polyadénylation à l’échelle du génome. Mes résultats supportent ainsi l’utilisation de la machinerie de maturation 3’ des ARNms comme principal vecteur de terminaison transcriptionnelle chez S. pombe et identifient Seb1 comme un facteur clé de ce processus.
L’évènement transcriptionnel étant hautement complexe, des erreurs peuvent arriver de manière stochastique menant à l’accumulation d’ARNs aberrants potentiellement néfastes pour la cellule. Or, mes travaux ont mis en lumière un mécanisme de surveillance co-transcriptionnel des ARNs impliquant l’exosome à ARN et lié à la terminaison de la transcription. Pour ce faire, l’exosome à ARN promeut la terminaison transcriptionnelle via la dégradation d’une extrémité 3’ libre d’ARN devenue émergente suite au recul de l’ARNPII le long de la matrice d’ADN (phénomène de backtracking). Mes résultats supportent ainsi une terminaison de la transcription de type torpedo inversé (3'-->5’) réévaluant par la même occasion le concept voulant que la terminaison de la transcription s’effectue uniquement selon une orientation 5’-->3’.
Somme toute, mes travaux de doctorat auront permis d’identifier et de caractériser plus en détail les facteurs et mécanismes impliqués dans la maturation 3’ et la terminaison de la transcription des gènes codants et non-codants chez l’organisme modèle S. pombe.
|
7 |
Les inclusions intranucléaires de la dystrophie musculaire oculopharyngée (DMOP) : relation entre composition, localisation et expressionKlein, Arnaud François January 2007 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
8 |
Étude des G-quadruplexes comme régulateurs de l'ARNBeaudoin, Jean-Denis January 2013 (has links)
Avec la récente découverte que plus de 90% du génome humain est transcrit activement, il est raisonnable d'assumer que les mécanismes de régulation post-transcriptionnelle sont les moyens primaires contrôlant le transfert de l'information de l'ARN messager à la protéine. Ces mécanismes de régulation nécessitent généralement plusieurs éléments et motifs d'ARN en cis retrouvés à l'intérieur des ARN messagers. La structure G-quadruplexe sort de l'ordinaire en terme de motif d'ARN. L'empilement des G-quartets, formés de quatre guanines coplanaires interagissant entre elles via des paires de bases Hogsteen, la présence d'un contre-ion et la structure en tétrahélice procurent à la structure G-quadruplexe une stabilité remarquable. Cette stabilité amalgamée à ces caractéristiques structurales uniques, font de ce motif un élément de régulation post-transcriptionnelle en cis très prometteur. Cette thèse présente une étude des capacités de la structure G-quadruplexe à agir comme un élément de régulation de l'ARN. Tout d'abord, j'ai exploré l'habilité d'une structure G-quadruplexe à moduler l'activité catalytique d'un ribozyme en développant et caractérisant une nouvelle classe de ribozyme, le G-quartzyme. Le G-quartzyme résulte de la fusion d’un motif G-quadruplexe au ribozyme VHD antigénomique. Une activité catalytique dépendante de la présence de potassium en solution a été observée pour ce nouveau ribozyme. La caractérisation de cette chimère G-quadruplexe-ribozyme a permis d'apprécier la flexibilité et la capacité du G-quadruplexe à moduler l'activité catalytique d'un ribozyme. Par la suite, j'ai étudié les G-quadruplexes présents dans les 5-UTR des ARNm en utilisant une approche robuste composée de trois étapes, in silico, in vitro et in cellulo. Cette méthodologie a permis d'avoir une vue d'ensemble du phénomène. L'analyse de neuf candidats de front a été la clé afin d'apprécier l'ampleur des G-quadruplexes dans les 5'-UTR agissant comme répresseurs traductionnels. Les résultats obtenus ont permis d'identifier des nouvelles règles régissant la formation de structure G-quadruplexe d'ARN in vitro et in cellulo. Ce travail suggère que ces répresseurs de la traduction sont vastement distribués à travers le transcriptome. Finalement, cette même approche a été utilisée afin d'explorer les G-quadruplexes présents dans les 3’-UTR des ARNm. Cette analyse m'a permis de discerner un nouveau rôle pour cette structure, celui de stimuler la polyadénylation alternative d'un messager. L'étude plus en détail d'un candidat, FXR1, démontre que la présence d'un G-quadruplexe dans son 3'-UTR augmente l'expression d'un transcrit plus court, produit par polyadénylation alternative, contenant moins de sites de liaison aux microARNs résultant en un gain de synthèse protéique. Les résultats recueillis lors de ce travail suggèrent également que la présence de ce motif dans les 3'-UTR diminue l'efficacité d'un site de polyadénylation situé en aval de celui-ci. Clairement, les G-quadruplexes présents dans les 3-UTR possèdent différents rôles pouvant affecter l'expression d'un gène. En conclusion, ces études ont permis de soulever l'importance majeure des G-quadruplexes d'ARN dans différents phénomènes, dont l'expression génique, et de définir de nouvelles règles majorant leur formation et leur interaction dans divers contextes cellulaires. Les résultats présentés dans cette thèse démontrent que la structure G-quadruplexe, en plus d'être largement distribuée à travers le transcriptome, possède plusieurs caractéristiques faisant de celle-ci un élément de régulation de l'ARN des plus compétent. L’identification et la caractérisation de phénomènes cellulaires associés aux G-quadruplexes s'avèrent indispensables afin de développer de nouvelles thérapies géniques ciblant ces structures.
|
9 |
Implication de la protéine SG1 dans le maintien des épigénomes chez Arabidopsis thaliana / Involvement of SG1 protein in maintaining the epigenomes in Arabidopsis thalianaDeremetz, Aurélie 03 December 2015 (has links)
La chromatine est le support de l’information génétique et sa structure, ainsi que son activitétranscriptionnelle, peuvent être modulées par des modifications épigénétiques. Le maintien des marquesrépressives telles que la méthylation de l’ADN et des histones, hors du corps des gènes, est nécessairepour le bon développement de la plante. Chez Arabidopsis thaliana, le mutant sg1 présente des défautsdéveloppementaux sévères caractéristiques de mutants affectés dans des mécanismes épigénétiques. Nousavons montré que le phénotype de sg1 est causé par une hyperméthylation CHG et H3K9me2 dans denombreux gènes. En effet, SG1 contrôle la transcription de l’histone déméthylase IBM1 et lesmodifications de l’épigénome observées chez sg1 sont dues à une dérégulation de IBM1. Nous avonsidentifié sept protéines partenaires de SG1, dont certaines se lient aux marques chromatiniennes. Nousavons réalisé un crible suppresseur qui a permis d’identifier FPA, une protéine régulant lapolyadénylation de certains transcrits, comme acteur impliqué dans le contrôle des cibles de SG1, dontIBM1. Nos résultats montrent que le complexe SG1 régule la transcription de ses cibles en influençant,par un mécanisme encore inconnu, le choix du site de polyadénylation, en lien avec les marqueschromatiniennes présentes aux locus cibles. D’autre part, certaines épimutations induites par la mutationsg1 peuvent être maintenues pendant plusieurs générations. Pour rechercher un lien entre méthylation desgènes et conséquences phénotypiques, nous avons caractérisé des épimutations liées à un défaut dedéveloppement de la fleur et identifié un certain nombre de gènes candidats potentiellement responsablesdu phénotype. Les résultats obtenus au cours de ma thèse ont contribué à préciser le rôle joué par lecomplexe SG1 et à comprendre le lien entre celui-ci et les marques épigénétiques. / Chromatin is known to contain the genetic information and its structure and transcriptionalstate can be regulated by epigenetic modifications. Repressive marks such as DNA and histonesmethylation needs to be kept away from gene bodies to enable the proper development of the plant. InArabidopsis thaliana, sg1 mutants show a range of severe developmental defects similar to thoseobserved in mutants affected in epigenetic pathways. We have shown that sg1 mutant phenotype iscaused by an increase of CHG and H3K9me2 methylation in many gene bodies. Indeed, SG1 regulatesthe histone demethylase IBM1 transcription and the impairment observed in sg1 mutant epigenomes iscaused by IBM1 misregulation. We found seven proteins interacting with SG1, among which somepartners are able to bind chromatin marks. Through a suppressor screen we identified FPA, alreadyknown to regulate the polyadenylation of some transcripts, as a player involved in SG1 targetsregulation, including IBM1. Our results show that the SG1 complex regulates target genes transcriptionby affecting polyadenylation site choice, in a way that remains to be determined, in a chromatin marksdependent manner. We also found that some of the sg1-induced epimutations can be maintained throughseveral generations. To investigate the link between gene body methylation and phenotypicconsequences, we have characterized epimutations related to a defect in floral development andidentified some candidate genes potentially responsible for the floral phenotype. Thus, our resultscontributed to clarify the role of SG1 and to understand its connection with epigenetic marks.
|
10 |
Régulation de l'épissage et de la polyadénylation alternatifs par les agents anti-cancéreux génotoxiques / Regulation of alternative splicing and polyadenylation by genotoxic anti-cancer agentsTanaka, Iris 01 February 2019 (has links)
La plupart des gènes humains codants génèrent des transcrits alternatifs (isoformes) par épissage alternatif (alternative splicing, AS) et polyadénylation alternative (APA) en général dans la région codante et la région 3’ non traduite (3’UTR), respectivement. Le rôle de l’AS et la 3’UTR-APA est de plus en plus reconnu dans l’oncogenèse. En particulier, des réseaux d’AS connectant des facteurs d’épissage et des variants d’épissage ont récemment été identifiés. L’AS est aussi largement régulé par les agents anticancéreux génotoxiques, tel que la doxorubicine et le cisplatine (induisant des différents types de lésions sur l’ADN), qui sont régulièrementt utilisés dans les traitements du cancer du sein et du poumon non-à-petites-cellules (non-small-cell lung cancer, NSCLC), respectivement. Étant donné l’apparition fréquente de résistances aux chimiothérapies, comprendre les mécanismes sous-jacents est crucial pour surmonter ce problème clinique. Il existe des exemples d’évènements d’AS associés à la résistance aux agents anticancéreux, mais l’implication des facteurs d’épissage et des réseaux d’AS est très peu connue. De plus, une étude précédente a démontré que la doxorubicine réprime un grand groupe d’exon terminaux alternatifs (alternative last exons, ALE), qui correspondent à l’utilisation de sites de polyadénylation introniques (intronic polyadenylation, IPA). Les ALEs ont un rôle émergent dans le cancer, mais on ne sait encore que très peu sur leur régulation par d’autres agents anticancéreux, tel que le cisplatine. Afin de mieux comprendre le rôle des régulations d’AS et d’APA dans la réponse et la résistance cellulaire à la chimiothérapie, mon projet de thèse avait deux objectifs principaux : 1) déterminer l’étendue, les réseaux régulateurs, et les fonctions des régulations d’AS dans la résistance à la doxorubicine des cellules de cancer du sein, et 2) déterminer l’étendue, les mécanismes, et l’impact des régulations d’ALE en réponse au cisplatine dans des cellules de NSCLC. Dans la première partie, j’ai identifié par RNA-seq des milliers d’évènements d’AS et des dizaines de facteurs d’épissage régulés dans un modèle cellulaire de cancer du sein ER+ résistant à la doxorubicine. Par un miniscreen siARN, j’ai identifié deux facteurs, ZRANB2 et SYF2, impliqués dans la résistance à la doxorubicine. D’autres analyses RNA-seq ont révélé les évènements d’AS régulés par ces deux facteurs peu étudiés, ainsi que leur convergence vers l’exon 5 alternatif de l’oncogène ECT2. La déplétion de ZRANB2, SYF2, et du variant ECT2-ex5 réduit l’arrêt en phase S induit par la doxorubicine et la résistance des cellules. De plus, un niveau élevé d’inclusion de l’exon 5 d’ECT2 corrèle avec une mauvaise survie spécifiquement de patientes ER+ traitées par chimiothérapie. Dans la deuxième partie, j’ai identifié par 3’-seq que le traitement cisplatine (mais pas oxaliplatine) induit des ALEs/IPAs dans des milliers de gènes enrichis en gènes de cycle et de mort cellulaire. Cet effet est lié à une inhibition de la processivité de l’élongation dans les longs gènes. Une analyse 3’-seq sur polysomes m’a permis de montrer que ces régulations d’ALEs impactent le traductome, et a révélé un groupe d’isoformes particulièrement courtes peu efficacement traduites, dont un transcrit connu avec une fonction non-codante. En conclusion, j’ai pu identifier durant ma thèse un nouveau réseau d’AS impliqué dans la résistance à la doxorubicine des cancers du sein ER+, et une importante régulation d’ALEs impactant le traductome en réponse au cisplatine dans des cellules NSCLC. Ces travaux améliorent notre compréhension du rôle de l’AS et des ALE/IPA dans la réponse et la résistance cellulaire à la chimiothérapie anticancéreuse. Au plus long terme, les transcrits alternatifs et les régulateurs identifiés constituent des biomarqueurs candidats de chimiorésistance. / Most human coding genes generate alternative transcripts (isoforms) through alternative splicing (AS) and alternative polyadenylation (APA), most often within the coding region and the 3’ untranslated region (3’UTR), respectively. Both AS and 3’UTR-APA regulations have been increasingly involved in oncogenesis. In particular, AS networks connecting oncogenic splicing factors and oncogenic splicing variants have been recently identified. AS is also widely regulated by genotoxic anticancer drugs, like doxorubicin and cisplatin that induce different types of DNA lesions and are widely used in breast cancer and non-small-cell lung cancer (NSCLC) therapy, respectively. Given the frequent occurrence of resistance to chemotherapy, understanding the underlying mechanisms is crucial to overcome this major issue. There are examples of AS events associated with anticancer drug resistance, but very little is known about the splicing factors and therefore the AS networks involved. In addition, a previous study showed that doxorubicin represses a large set of alternative last exons (ALE) corresponding to the use of intronic polyadenylation (IPA) sites. ALEs have an emerging role in cancer, but little is known about its regulation by other anticancer drugs, like cisplatin. In order to better understand the role of AS and APA regulation in cell response and resistance to chemotherapy, my PhD project had two main aims: 1) determine the extent, regulatory networks and function of AS regulation in breast cancer cell resistance to doxorubicin, and 2) determine the extent, mechanism and impact of ALE regulation in response to cisplatin in NSCLC cells. In the first part, I identified by RNA-seq thousands of AS events and dozens of splicing factors regulated in a cell model of acquired resistance to doxorubicin in ER+ breast cancer. Through an siRNA miniscreen, I found two splicing factors, ZRANB2 and SYF2, involved in doxorubicin resistance. Further RNA-seq analyses revealed the AS events regulated by depletion of these poorly characterized splicing factors, and their convergence on the alternative exon 5 of the oncogene ECT2. Depletion of ZRANB2, SYF2 and the ECT2-Ex5 variant reduces doxorubicin-induced S phase arrest and doxorubicin resistance. In addition, high inclusion levels of ECT2-Ex5 correlate with poor survival specifically in ER+ breast cancer treated with chemotherapy. In the second part, I found by 3’-seq that in NSCLC cell treatment with cisplatin (but not oxaliplatin) induces ALE/IPA in thousands of genes enriched in cell cycle and cell death. This effect is linked to an inhibition of transcription elongation processivity in long genes. 3’-seq analysis on polysomes showed that this ALE regulation impacts the translatome, and revealed a set of particularly short isoforms that were inefficiently translated, including a transcript with a non-coding function. In conclusion, during my thesis, I could identify a novel AS network involved in doxorubicin resistance in ER+ breast cancer, and widespread ALE regulation impacting the translatome in lung cancer cisplatin response. This work increases our understanding of AS and IPA role in cell response and resistance to anti-cancer chemotherapy. In the longer term, the identified alternative transcripts and regulators constitute candidate biomarkers of chemoresistance.
|
Page generated in 0.0987 seconds