• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 4
  • 2
  • Tagged with
  • 22
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Oxygenation of Solid Tumor Tissue Facilitated by Polymerized Human Hemoglobins

Belcher, Donald Andrew 30 September 2019 (has links)
No description available.
12

RUBBER-TO-METAL BONDING: AN INVESTIGATION OF CHEMICAL REACTIONS AND ADHESION AT THE INTERFACE

BERTELSEN, CRAIG MICHAEL 11 October 2001 (has links)
No description available.
13

Fonctionnalisation de Nanotubes de Carbone Multi-Parois par des Polymères / Functionalization of Multi-Walled Carbon Nanotubes with Polymers

Tunckol, Meltem 18 July 2012 (has links)
Cette thèse traite de la modification de surface des nanotubes de carbone avec des polymères Le chapitre I présente l'état de l'art des matériaux hybrides associant des liquides ioniques avec des nanotubes de carbone (NTC) ou du graphenes. Le chapitre II commence par un aperçu général de l'adsorption non-covalente de polymères sur la surface de NTC, suivi d'une description détaillée de l'étude réalisée sur la fonctionnalisation non covalente des nanotubes de carbone avec divers liquides ioniques polymérisable (LIP) à base d'imidazolium. Dans ce cadre, nous avons comparé deux méthodes expérimentales: la polymérisation in situ et le mélange en solution. Une des applications les plus importantes des NTC se situe dans le domaine des nanocomposites polymères/NTC. Le chapitre III décrit la formation de composites polyetherimide/NTC à partir des NTC-LIP obtenue dans la chapitre II. La préparation des composites en utilisant la méthode dite « solvent casting » est détaillée. Les NTC bruts, oxydés à l'acide nitrique et fonctionnalisé par le LIP ont été comparés. Des mesures mécaniques, thermiques et électriques de ces composées ont été aussi réalisées. Le dernier chapitre, divisé en deux sections, traite de la fonctionnalisation covalente des nanotubes de carbone avec une variété de polymères en utilisant deux approches différentes: "grafting from" et "grafting to". En utilisant la première approche, nous avons réalisé la croissance de chaînes de polyamide (PA) à partir de la surface de nanotubes de carbone fonctionnalisés avec le caprolactame par polymérisation anionique par ouverture de cycle. Les propriétés de traction des composites à base de PA ainsi préparées ont été étudiées. La polymérisation radicalaire de monomères vinyliques à base de LI de type imidazolium greffés à la surface de NTC est également présentée dans cette partie. Dans la deuxième partie du chapitre IV, nous présentons plusieurs stratégies de fonctionnalisation, y compris l'addition radicalaire et le greffage sur les défauts de NTC, pour la préparation des NTC fonctionnalisés de manière covalente avec des polymères compatibles avec des matrices époxy / This thesis deals with the surface modification of multi-walled carbon nanotubes with polymers with the aim to achieve a high level of dispersion in polymer matrices. Chapter I gives a comprehensive review of the state of the art of hybrids of ionic liquids with carbon nanomaterials, particularly, nanotubes and more recently, graphene. Chapter II starts with a general overview of the non-covalent adsorption of polymers onto the CNT surfaces followed by a detailed description of the study carried out on the non-covalent functionalization of CNTs with various imidazolium based polymerized ionic liquids (PIL). For this purpose, we further compare the two experimental methods: in situ polymerization and solution mixing. One of the most important applications of CNT is in polymer/CNT composites. Chapter III describes the formation of polyetherimide/CNT composites starting from PIL-CNT hybrids obtained in Chapter II. The preparation and characterization of composites using solvent casting methods have been detailed. Pristine, acid oxidized and PIL functionalized CNTs have been compared. Mechanical, thermal and electrical property measurements on these composites have also been described. The last chapter – Chapter IV, divided into two sections, discusses the covalent functionalization of CNTs with a variety of polymers using two main approaches: “grafting from” and “grafting to”. Using the first approach we have grown polyamide (PA) chains from the surface of caprolactam grafted CNTs by anionic ring opening polymerization. The tensile properties of the PA based composites prepared therefrom containing pristine, amine- and PA-functionalized CNTs have been investigated. The radical polymerization of vinyl imidazolium based IL monomers attached to the activated CNT surface is also given in this section. In the second part of Chapter IV, we have reported several “grafting to” functionalization strategies including radical addition and “defect site” grafting used for the preparation of CNTs covalently attached with polymers intended to blend well with epoxy matrices
14

Avaliação da cor, corrosão e rugosidade superficial do titânio c.p., ligas metálicas e resina acrílica termopolimerizável sob a ação de soluções higienizadoras / Color, corrosion and surface roughness evaluation of titanium c.p., alloys and heat-polymerized acrylic resin under the action of daily hygiene solutions

Davi, Letícia Resende 03 May 2010 (has links)
A higienização das próteses parciais ou totais removíveis é fundamental para a durabilidade do tratamento e prevenção de patologias orais. O objetivo deste estudo foi avaliar o efeito de agentes higienizadores de prótese na cor, corrosão e rugosidade superficial do titânio c.p., ligas metálicas e resina acrílica termopolimerizável, simulando um período de 180 dias de higienização. Espécimes em formato de discos (12 mm x 3 mm) foram confeccionados em: titânio comercialmente puro (Tritan - Ti c.p.), liga de níquel-cromo-molibdênio-titânio (Vi-Star), liga de níquel-cromo (Fit Cast-SB Plus) e liga de níquel-cromo-berílio (Fit Cast-V). Cada disco fundido foi incluído em mufla previamente preparada por matrizes retangulares de teflon (38 mm x 18 mm x 4 mm), incorporando-se o disco metálico à resina acrílica termopolimerizável. Os corpos-de-prova (n=5) foram imersos em soluções dos agentes higienizadores: hipoclorito de sódio a 0,05%, Periogard, Cepacol, pastilha Corega Tabs, pastilha Medical Interporous e pastilha Polident 3 Minute. Como controle, foi utilizada a água deionizada. Foram realizados ensaios de estabilidade de cor por meio de espectrocolorímetro (Color-guide 45/0), resistência à corrosão por meio da análise visual da presença de manchas no metal e análise da alteração de massa (balança eletrônica analítica), e rugosidade superficial por meio de rugosímetro (Surftest SJ-201P). Além disso, foi realizada análise quantitativa de liberação de íons metálicos por meio de espectrometria de massa com plasma indutivamente acoplado (ICP-MS - ELAN DRC II). Os resultados de estabilidade de cor, alteração de massa e rugosidade foram submetidos à ANOVA e teste de Tukey (p< 0,05). Quanto à estabilidade de cor da resina acrílica termopolimerizável (E), houve diferença estatisticamente significante entre o titânio c.p. e as ligas. A resina associada ao Ti c.p. apresentou menor alteração de cor, enquanto que a resina associada à Fit Cast-SB Plus apresentou a maior alteração de cor (1,33 ± 1,11 e 5,06 ± 1,96, respectivamente). Com relação à presença de manchas no metal, o hipoclorito de sódio causou manchamento nos espécimes das ligas Vi-Star e Fit Cast-V. Quando avaliada a alteração de massa (g), o Cepacol e a pastilha Corega Tabs propiciaram maior perda de massa. Entre os metais, a amostra do Ti c.p. apresentou maior perda de massa. Quanto à rugosidade (Ra, µm) da resina, o Cepacol causou maior rugosidade, enquanto que a pastilha Corega Tabs e o Periogard propiciaram maior lisura no corpo-de-prova. A resina associada ao Ti c.p. e ao Fit Cast-SB Plus apresentaram maior rugosidade. Quanto à rugosidade do metal, os produtos de imersão não influenciaram nos resultados, mas a liga Fit Cast-SB Plus apresentou maior rugosidade após a imersão. A liberação de íons mais expressiva foi constatada nas ligas Vi-Star e Fit Cast-V após a imersão na pastilha Medical Interporous. Pode-se concluir que as ligas Vi-Star e Fit Cast-V podem ser consideradas seguras para a confecção de aparelhos protéticos removíveis, mas com a condição de não utilizar o hipoclorito de sódio a 0,05% ou a pastilha Medical Interporous para a higienização, pois causaram corrosão e maior liberação de íons, respectivamente. / The hygiene care of the removable partial and complete dentures is required for the longevity of the treatment and prevention of oral diseases. The aim of this study was to evaluate the effect of denture cleansers on color, corrosion and surface roughness of the commercially pure titanium, metal alloys and heat-polymerized acrylic resin, simulating a period of 180 days of hygiene. Disk-shaped specimens (12 mm x 3 mm) had been fabricated with commercially pure titanium (Tritan - Ti c.p.), nickel-chromium-molybdenum-titanium alloy (Vi-Star), nickel-chromium alloy (Fit Cast-SB Plus) and nickel-chromium-beryllium alloy (Fit Cast-V). Each cast disc was invested in the flasks previously prepared by Teflon rectangular matrices (38 mm x 18 mm x 4 mm), incorporating the metal disk to the heat-polymerized acrylic resin. The specimens (n= 5) had been immersed in the solutions: sodium hypochlorite 0.05%, Periogard, Cepacol, Corega Tabs, Medical Interporous and Polident 3 Minute. As a control, it was used deionized water. It was accomplished assays of color stability by means of a colorimeter (Color-guide 45/0), corrosion resistance by means of visual analysis of tarnishes on the metal and mass alteration analysis (analytical electronic balance), and surface roughness by means of a surface analyzer (Surftest SJ-201P). Besides, the quantitative analysis of metal ions release was accomplished by means of inductively coupled plasma mass spectrometry (ICP-MS - ELAN DRC II). Color stability, mass alteration and roughness results were submitted to ANOVA and Tukey test (p<0.05). Considering the color stability of the heat-polymerized acrylic resin (E), there were statistically significant difference between the titanium c.p. and the alloys. The resin associated with the Ti c.p. showed lesser color alteration, whereas the resin associated with Fit Cast-SB Plus showed the higher color alteration (1,33 ± 1,11 e 5,06 ± 1,96, respectively). In relation to the presence of tarnishes on the metals, the sodium hypochlorite caused tarnishes on specimens of the Vi-Star and Fit Cast-V alloys. When evaluated the mass alteration (g), Cepacol and Corega Tabs propitiated higher weight loss. Between the metals, the Ti c.p. samples showed greater weight loss. Considering the resin roughness (Ra, µm), Cepacol caused higher roughness, whereas Corega Tabs and Periogard propitiated greater smoothness on the specimens. The resin associated with the Ti c.p. and Fit Cast-SB Plus showed higher roughness. Considering the metal roughness, the immersion products did not influence on the results, but the Fit Cast-SB Plus showed greater roughness after immersion. The ionic release most significant was with the Vi-Star and Fit Cast-V alloys after immersion in Medical Interporous. It could be concluded that the Vi-Star and Fit Cast-V alloys can be considered safe for removable prosthesis finish, but with the condition of do not use sodium hypochlorite 0.05% or Medical Interporous tablet for hygiene, because they caused corrosion and greater ionic release, respectively.
15

Strategy for construction of polymerized volume data sets

Aragonda, Prathyusha 12 April 2006 (has links)
This thesis develops a strategy for polymerized volume data set construction. Given a volume data set defined over a regular three-dimensional grid, a polymerized volume data set (PVDS) can be defined as follows: edges between adjacent vertices of the grid are labeled 1 (active) or 0 (inactive) to indicate the likelihood that an edge is contained in (or spans the boundary of) a common underlying object, adding information not in the original volume data set. This edge labeling “polymerizes” adjacent voxels (those sharing a common active edge) into connected components, facilitating segmentation of embedded objects in the volume data set. Polymerization of the volume data set also aids real-time data compression, geometric modeling of the embedded objects, and their visualization. To construct a polymerized volume data set, an adjacency class within the grid system is selected. Edges belonging to this adjacency class are labeled as interior, exterior, or boundary edges using discriminant functions whose functional forms are derived for three local adjacency classes. The discriminant function parameter values are determined by supervised learning. Training sets are derived from an initial segmentation on a homogeneous sample of the volume data set, using an existing segmentation method. The strategy of constructing polymerized volume data sets is initially tested on synthetic data sets which resemble neuronal volume data obtained by three-dimensional microscopy. The strategy is then illustrated on volume data sets of mouse brain microstructure at a neuronal level of detail. Visualization and validation of the resulting PVDS is shown in both cases. Finally the procedures of polymerized volume data set construction are generalized to apply to any Bravais lattice over the regular 3D orthogonal grid. Further development of this latter topic is left to future work.
16

Avaliação da cor, corrosão e rugosidade superficial do titânio c.p., ligas metálicas e resina acrílica termopolimerizável sob a ação de soluções higienizadoras / Color, corrosion and surface roughness evaluation of titanium c.p., alloys and heat-polymerized acrylic resin under the action of daily hygiene solutions

Letícia Resende Davi 03 May 2010 (has links)
A higienização das próteses parciais ou totais removíveis é fundamental para a durabilidade do tratamento e prevenção de patologias orais. O objetivo deste estudo foi avaliar o efeito de agentes higienizadores de prótese na cor, corrosão e rugosidade superficial do titânio c.p., ligas metálicas e resina acrílica termopolimerizável, simulando um período de 180 dias de higienização. Espécimes em formato de discos (12 mm x 3 mm) foram confeccionados em: titânio comercialmente puro (Tritan - Ti c.p.), liga de níquel-cromo-molibdênio-titânio (Vi-Star), liga de níquel-cromo (Fit Cast-SB Plus) e liga de níquel-cromo-berílio (Fit Cast-V). Cada disco fundido foi incluído em mufla previamente preparada por matrizes retangulares de teflon (38 mm x 18 mm x 4 mm), incorporando-se o disco metálico à resina acrílica termopolimerizável. Os corpos-de-prova (n=5) foram imersos em soluções dos agentes higienizadores: hipoclorito de sódio a 0,05%, Periogard, Cepacol, pastilha Corega Tabs, pastilha Medical Interporous e pastilha Polident 3 Minute. Como controle, foi utilizada a água deionizada. Foram realizados ensaios de estabilidade de cor por meio de espectrocolorímetro (Color-guide 45/0), resistência à corrosão por meio da análise visual da presença de manchas no metal e análise da alteração de massa (balança eletrônica analítica), e rugosidade superficial por meio de rugosímetro (Surftest SJ-201P). Além disso, foi realizada análise quantitativa de liberação de íons metálicos por meio de espectrometria de massa com plasma indutivamente acoplado (ICP-MS - ELAN DRC II). Os resultados de estabilidade de cor, alteração de massa e rugosidade foram submetidos à ANOVA e teste de Tukey (p< 0,05). Quanto à estabilidade de cor da resina acrílica termopolimerizável (E), houve diferença estatisticamente significante entre o titânio c.p. e as ligas. A resina associada ao Ti c.p. apresentou menor alteração de cor, enquanto que a resina associada à Fit Cast-SB Plus apresentou a maior alteração de cor (1,33 ± 1,11 e 5,06 ± 1,96, respectivamente). Com relação à presença de manchas no metal, o hipoclorito de sódio causou manchamento nos espécimes das ligas Vi-Star e Fit Cast-V. Quando avaliada a alteração de massa (g), o Cepacol e a pastilha Corega Tabs propiciaram maior perda de massa. Entre os metais, a amostra do Ti c.p. apresentou maior perda de massa. Quanto à rugosidade (Ra, µm) da resina, o Cepacol causou maior rugosidade, enquanto que a pastilha Corega Tabs e o Periogard propiciaram maior lisura no corpo-de-prova. A resina associada ao Ti c.p. e ao Fit Cast-SB Plus apresentaram maior rugosidade. Quanto à rugosidade do metal, os produtos de imersão não influenciaram nos resultados, mas a liga Fit Cast-SB Plus apresentou maior rugosidade após a imersão. A liberação de íons mais expressiva foi constatada nas ligas Vi-Star e Fit Cast-V após a imersão na pastilha Medical Interporous. Pode-se concluir que as ligas Vi-Star e Fit Cast-V podem ser consideradas seguras para a confecção de aparelhos protéticos removíveis, mas com a condição de não utilizar o hipoclorito de sódio a 0,05% ou a pastilha Medical Interporous para a higienização, pois causaram corrosão e maior liberação de íons, respectivamente. / The hygiene care of the removable partial and complete dentures is required for the longevity of the treatment and prevention of oral diseases. The aim of this study was to evaluate the effect of denture cleansers on color, corrosion and surface roughness of the commercially pure titanium, metal alloys and heat-polymerized acrylic resin, simulating a period of 180 days of hygiene. Disk-shaped specimens (12 mm x 3 mm) had been fabricated with commercially pure titanium (Tritan - Ti c.p.), nickel-chromium-molybdenum-titanium alloy (Vi-Star), nickel-chromium alloy (Fit Cast-SB Plus) and nickel-chromium-beryllium alloy (Fit Cast-V). Each cast disc was invested in the flasks previously prepared by Teflon rectangular matrices (38 mm x 18 mm x 4 mm), incorporating the metal disk to the heat-polymerized acrylic resin. The specimens (n= 5) had been immersed in the solutions: sodium hypochlorite 0.05%, Periogard, Cepacol, Corega Tabs, Medical Interporous and Polident 3 Minute. As a control, it was used deionized water. It was accomplished assays of color stability by means of a colorimeter (Color-guide 45/0), corrosion resistance by means of visual analysis of tarnishes on the metal and mass alteration analysis (analytical electronic balance), and surface roughness by means of a surface analyzer (Surftest SJ-201P). Besides, the quantitative analysis of metal ions release was accomplished by means of inductively coupled plasma mass spectrometry (ICP-MS - ELAN DRC II). Color stability, mass alteration and roughness results were submitted to ANOVA and Tukey test (p<0.05). Considering the color stability of the heat-polymerized acrylic resin (E), there were statistically significant difference between the titanium c.p. and the alloys. The resin associated with the Ti c.p. showed lesser color alteration, whereas the resin associated with Fit Cast-SB Plus showed the higher color alteration (1,33 ± 1,11 e 5,06 ± 1,96, respectively). In relation to the presence of tarnishes on the metals, the sodium hypochlorite caused tarnishes on specimens of the Vi-Star and Fit Cast-V alloys. When evaluated the mass alteration (g), Cepacol and Corega Tabs propitiated higher weight loss. Between the metals, the Ti c.p. samples showed greater weight loss. Considering the resin roughness (Ra, µm), Cepacol caused higher roughness, whereas Corega Tabs and Periogard propitiated greater smoothness on the specimens. The resin associated with the Ti c.p. and Fit Cast-SB Plus showed higher roughness. Considering the metal roughness, the immersion products did not influence on the results, but the Fit Cast-SB Plus showed greater roughness after immersion. The ionic release most significant was with the Vi-Star and Fit Cast-V alloys after immersion in Medical Interporous. It could be concluded that the Vi-Star and Fit Cast-V alloys can be considered safe for removable prosthesis finish, but with the condition of do not use sodium hypochlorite 0.05% or Medical Interporous tablet for hygiene, because they caused corrosion and greater ionic release, respectively.
17

Développement de membranes à base de polybenzimidazole et de liquides ioniques pour applications à haute température comme membranes échangeuses de protons (PEMs) et pour la séparation de gaz / Development of polybenzimidazole and ionic liquid based membranes for high temperature proton exchange membranes (PEMs) and gas separation applications

Kallem, Parashuram 15 June 2017 (has links)
1. Membranes échangeuses de protons à haute température (HT-PEM) pour application dans les piles à combustible:Le succès des piles à combustible à base de HT-PEM dépend fortement du matériau membranaire. D’importants progrès ont été accomplis dans la conception de PEMs à transport facilité de protons. L'objectif de la première partie de ce travail de thèse était de fabriquer des membranes électrolytes à haute conductivité, capables de fonctionner au-dessus de 120°C dans des conditions anhydres, sans acides minéraux, et sans sacrifier la résistance mécanique. La stratégie suivie combine l’utilisation de micro-filtres (support) à base de polybenzimidazole (PBI) présentant un réseau de pores ordonnés, et de liquides ioniques (ILs)à base de polyimidazolium comme phase conductrice. Deux types de micro-filtres de PBI ont été préparés: avec un réseau de pores droits (SPBI), ou avec une structure poreuse hiérarchique (HPBI). Les ILs polymérisés (PIL) suscitent un grand intérêt comme tous les électrolytes flexibles à l'état solide en raison de leur sécurité d’utilisation et de leur bonne stabilité thermique, chimique et électrochimique. Dans ce travail, un IL monomèrique protique 1-H-3-vinylimidazolium bis(trifluoromethanesulfonyl)imide a été choisi pour sa conductivité protonique élevée, sa faible rétention d'eau et sa bonne stabilité thermique. Puisque les performances d’une PEM formée par immersion d’un support poreux dans un IL dépendent surtout de la structure poreuse du support, il est essentiel d’optimiser l’architecture des pores réservoirs. Ainsi, nos travaux visent à améliorer à la fois la conductivité ionique et la stabilité dimensionnelle des PEMs à base de PIL par une conception appropriée de l'architecture poreuse. En effet, la faible stabilité dimensionnelle et mécanique du poly[1-(3H-imidazolium)éthylène] bis(trifluorométhanesulfonyl) imide est améliorée grâce à son infiltration dans un support PBI architecturé. La configuration d'infiltration, l'addition d’agent réticulant et les conditions de polymérisation UV "in situ" ont été considérées comme paramètres d'optimisation pour les deux types de micro-tamis en PBI.2. Membranes à base de liquide ionique supporté (SILM) pour la valorisation du méthane:La valorisation du gaz naturel, intégrant l'élimination de CO2 et N2, est l’une des applications de séparation des gaz industriels où les membranes sont une alternative prometteuse à petite échelle. L'objectif de nos travaux était de développer des membranes de type SILM, sélectives au CH4. Notre stratégie combine des micro-tamis à base polybenzimidazole (PBI) comme supports présentant une bonne endurance et de bonnes propriétés thermiques, et des liquides ioniques (ILs) protiques avec des ions imidazolium et trifluorométhane sulfonylimide pour la solubilité du CH4. Bien que la faible pression de vapeur du IL protique atténue sa volatilité dans les SILMs traditionnels, son expulsion hors des pores reste une préoccupation majeure. Un design approprié du support, avec des pores submicroniques, combiné à un IL de tension superficielle élevée, devrait générer des SILMs plus stables, adaptées aux applications à pression transmembranaire modérée ou élevée. Ainsi, des supports PBI à porosité aléatoire (RPBI), obtenus par séparation de phase, ont été largement utilisés. En outre, la polymérisation des RTILs peut fournir d’autres avantages en termes de sécurité, de stabilité et de propriétés mécaniques. Dans cette étude, trois classes de SILMs à base de PBI, avec le IL protique 1-H-3-methylimidazolium bis(trifluoromethane sulfonyl)imide (IL), le monomérique 1-H-3-vinyllimidazolium bis(trifluoromethane sulfonyl)imide (MIL) et le polymérique poly[1-(3H-imidazolium)ethylene] bis(trifluoromethanesulfonyl)imide (PIL) ont été fabriqués avec succès et caractérisées en perméation de gaz purs. Des membranes hautement permsélectives au méthane ont été obtenues, qui sont très prometteuses pour la séparation de mélanges de gaz tels que CH4/N2 / 1. High temperature Proton Exchange Membranes (HT-PEMs) for Fuel Cell applications:The success of the High temperature proton exchange membrane fuel cell (HT-PEMFC) direction is very much dependent on the development of the membrane material. With facilitated proton transport chemistries, great progresses in designing and fabricating facilitated PEMs have been accomplished. The objective of this first part of the PhD work was to fabricate highly conductive electrolyte membranes capable to operate above 120°C under anhydrous conditions and in the absence of mineral acids, without sacrificing the mechanical behavior. The followed rationale is based on the combination of polybenzimidazole (PBI) microsieves as structural supports and poly-imidazolium based ionic liquid (IL) moieties as conducting phase. Two types of PBI microsieves have been prepared following two different microfabrication processes: straight porous PBI and hierarchically structured PBI microsieves.Polymeric ionic liquids (PILs) have triggered great interest as all solid-state flexible electrolytes because of safety and superior thermal, chemical and electrochemical stability. In this part, the 1-H-3-vinylimidazolium bis(trifluoromethanesulfonyl)imide has been mainly selected due to its high proton conductivity, low water uptake values as well as thermal stability.The consecution of a polymeric container with optimized pore architecture is extremely essential since the performance of PEM based on immersing a porous support into ILs, mainly depends on the porous structure. Thus, our research efforts have been directed to improve both, the ion conductivity and the dimensional stability of the PIL supported PEMs by a proper design of the porous architecture. Herein, the diminished dimensional and mechanical stability of poly[1-(3H-imidazolium)ethylene]bis(trifluoromethanesulfonyl)imide has been improved thanks to its infiltration on a PBI support with specific pore architecture. The infiltration configuration, cross-linker addition and “in situ” UV polymerization conditions were taken as optimization parameters for both PBI type microsieves.2. Supported Ionic liquid membranes (SILMs) for methane upgrading:The natural gas upgrading, i.e. removal of CO2 and N2, is one of the major industrial gas separation application where membranes arise as promising alternative at small scale.The objective of this second part of the work was to develop CH4 selective Supported Ionic Liquid Membranes (SILMs). Once again, the rationale followed is based on the combination of PBI microsieves as structural supports, to take advantage of its endurance and thermal properties, and protic ILs with imidazolium and trifluoromethane sulfonyl)imide ions due to their CH4 solubility properties. Although the negligible protic IL vapor pressure alleviates one of the problems associated with traditional SILMs, namely liquid volatility; expulsion of the liquid from the membrane pores is a major concern. A proper design of the support, with sub-micron pores, combined with IL having high surface tension could lead to SILM with adequate physical stability for applications involving moderate to high trans-membrane pressures. Therefore, random porous PBI supports, obtained by phase separation method, have been extensively used. In addition, polymerization of RTILs could provide additional advantages in terms of safety, stability and mechanical properties.In this study, three classes of SILMs, based on PBI with the 1-H-3-methylimidazolium bis(trifluoromethane sulfonyl)imide, the 1-H-3-vinylimidazolium bis(trifluoromethane sulfonyl)imide and the poly[1-(3H-imidazolium)ethylene] bis(trifluoromethanesulfonyl)imide have been successfully fabricated and characterized by single gas permeation measurements. Results revealed that the prepared membranes were highly selective to CH4 and thus very promising for CH4/N2 gas mixture separation.
18

Resposta da cultura do milho aos fertilizantes fosfatados e nitrogenados revestidos com polímeros / Response of maize to polymer-covered phosphate and nitrogen fertilizers

Machado, Vanessa Júnia 06 January 2012 (has links)
Fundação de Amparo a Pesquisa do Estado de Minas Gerais / The effective use of fertilizers, besides resulting in greater yield, can reduce production costs, with positive results in the end of the cropping season. Soil correction and fertilization in intensive maize production systems represent, on average, 40% to 45% of the production cost. Phosphorus is considered as a nutrient with low absorption by plants due to fixation reaction with the soil, since the anion H2PO4 - presents great affinity for the surface of iron and aluminum colloid oxides. Nitrogen in soil is predominantly in the organic form. Inorganic fractions are formed by NH4 + and, mostly, NO3 - in well drained soils. In order to reduce losses and increase yield economically and sustainably, using P and N sources, slow release formulations were developed, allowing to reduce losses that usually occur with the use of urea and triple Superphosphate, thus allowing a more effective use of fertilizers without affecting crop yield. Polymerized fertilizers can be of slow release, gradually supplying nutrients to the plants. Therefore, lower application frequency would be required; reducing labor costs with splitting fertilization, avoid damage to seeds and roots due to excessive fertilization, and are less susceptible to losses, reducing the risk of environmental pollution. This study evaluated agricultural and economic efficacy of conventional and polymer-covered phosphate and nitrogen fertilizer sources in no-till maize, in Patos de Minas, region of Alto Paranaíba in Minas Gerais. Increased yield was observed in the experiment with polymer-covered superphosphate triple in relation to the conventional one. Economic return was observed until the dose of 90 kg ha-1 with the polymer-covered fertilizer. In contrast, best results were observed with conventional urea application. / O uso eficiente de fertilizantes, além de proporcionar maior produtividade, pode reduzir os custos de produção, refletindo em margem positiva no final da safra. Para o milho, em sistemas mais tecnificados, os gastos com correção do solo e adubação representam, em média, 40% a 45% do custo de produção. O fósforo é considerado um nutriente de baixo aproveitamento pelas plantas, devido às reações de fixação que sofre no solo, pois o ânion H2PO4 - apresenta forte afinidade pela superfície dos coloides dos óxidos de ferro e alumínio. O N no solo está predominantemente na forma orgânica. As frações inorgânicas são formadas por NH4 + e principalmente NO3 - em solos bem oxigenados. Para minimizar as perdas e aumentar a produtividade de forma rentável e sustentável, utilizando fontes de P e N, foram desenvolvidas fórmulas com liberação gradativa de nutrientes que permitem reduzir as perdas que normalmente ocorrem com a utilização de Ureia e Superfosfato triplo, possibilitando uso mais eficiente de fertilizantes sem influenciar a produtividade das lavouras. Os fertilizantes polimerizados podem ser de liberação lenta, os quais fornecem os nutrientes gradualmente às plantas. Assim, requerem menor frequência de aplicação, diminuindo os gastos com mão de obra para o parcelamento, evitam injúrias às sementes e raízes, decorrentes de aplicações excessivas, e são pouco suscetíveis a perdas, minimizando os riscos de poluição ambiental. O presente trabalho visa avaliar a eficiência agronômica e econômica de fontes de fertilizantes fosfatado e nitrogenado convencionais e revestidos com polímeros na cultura do milho, sob sistema plantio direto em Patos de Minas, região do Alto Paranaíba em Minas Gerais. Observou-se que houve incremento de produtividade no experimento utilizando Superfosfato triplo revestido com polímeros, em relação ao sem revestimento. Até a dose de 90 kg ha-1 do fertilizante revestido acarretou retorno financeiro. Nos experimentos com Ureia com e sem revestimento, observou-se que o fertilizante sem revestimento apresentou melhores resultados. / Mestre em Agronomia
19

Magnetic And Transport Studies On Nanosystems Of Doped Rare Earth Manganites And VPP PEDOT

Padmalekha, K G 10 1900 (has links) (PDF)
The study of novel properties of materials in nanometer length scales has been an extensive area of research in the recent past. The field of nanosciece and nanotechnology deals with such studies and has gained tremendous importance because of the potential applications of these nanosystems in devices. Many of the bulk properties tend to change as a function of size, be it particle size in case of nanoparticles, or thickness in case of very thin films. Not only is it important to study these changes from the point of view of applications, but also the interesting physics behind such changes prompts further research and exploration in this area. In this thesis we try to see how changes in the length scales affect the properties of nanoparticles and how change in thickness affects the properties of thin films, along with making an effort towards measurements of conductivity in the nanoscale using the technique of electron magnetic resonance (EMR) signal shape analysis. Electron magnetic resonance is a general term used to combine both electron paramagnetic resonance (EPR) and ferromagnetic resonance (FMR). This thesis deals with mainly two kinds of systems viz., nanoparticles of doped rare earth manganites and thin films of the conducting polymer, vapor phase polymerized polyethylendioxythiophene (VPP PEDOT). The general formula for doped manganites is A1-xBxMnO3 where A is a rare earth trivalent cation like La3+, Pr3+, Nd3+..., and B is an alkaline earth divalent cation like Sr2+, Ca2+, Ba2+... These together with Mn and O form the distorted perovskite structure to which manganites belong. The phase diagram of doped manganites involves many interesting phases like ferromagnetic metallic, antiferromagnetic insulating and charge ordered insulating phases. The magnetic properties of the manganites are governed by exchange interactions between the Mn ion spins. These interactions are relatively large between two Mn spins separated by an oxygen atom and are controlled by the overlap between the Mn d-orbitals and the O p-orbitals. The changing Mn-O-Mn bond lengths and bond angles as a function of the radius of the A and B cations [1, 2], and the different magnetic interactions among the Mn3+ and Mn4+ ions together are responsible for the different phases that we see in manganites as a function of temperature and magnetic field. Manganites have potential applications in the field of spintronics because of their colossal magnetoresistance (CMR) [3] and half-metallic [4] properties. Studies on nanoscale manganites have shown that as size reduces, their electrical and magnetic properties change significantly[5]. By changing the morphology and grain size, the properties of CMR manganites can be tuned [6-9]. Phase separation seems to disappear in nanoparticles compared to bulk [10]. In the charge ordered manganites, size reduction is known to bring about suppression of charge order [11], emergence of ferromagnetism [12, 13] and even metallicity in some nanostructures [12]. The conducting polymer under study viz., VPP PEDOT is in a semiconducting phase at room temperature and becomes more insulating as temperature reduces. It is a technologically important polymer which has cathodically coloring property, can be used as a highly conducting electrode in organic solar cells and organic LEDs [14-16]. In the following we give a summary of the results reported in the thesis chapter by chapter. Chapter 1: This chapter of the thesis consists of an introduction to the physics of manganites and the technique of EMR. This includes a detailed account of previous EMR studies done on manganites, in particular nano manganites. There is a section about different line shapes observed in EMR of manganites, their origin and how to fit them to an appropriate lineshape function [17]. There is an introduction to the transport properties of conducting polymers, including how magnetic fields can affect the transport and the mechanism behind variable range hopping transport which is the dominant kind of transport in such polymeric systems. There is also a description of the different experimental methods and instruments used to study the systems in the thesis and their working principles. They are: EPR spectrometer, SQUID magnetometer, Janis cryostat with superconducting magnet, atomic force microscope (AFM) and transmission electron microscope (TEM). Chapter 2: This chapter deals with the method of contactless conductivity of nanoparticles using EMR lineshape analysis. It is difficult to measure the conductivity of individual nanoparticles by putting contacts. Other methods tend to include the contribution of grain boundaries which mask the grain characteristics [5]. We have introduced a new contactless method to measure the conductivity of nanoparticles in a contactless manner [18]. Metallic nanoparticles in which the skin depth is less than the size of the particles, exhibit an asymmetric EMR signal called the Dysonian [19]. Dysonian lineshape is an asymmetric lineshape with the so-called A/B ratio >1, where, A is the amplitude of the low field half of the derivative and B is the amplitude of the high field half. In a ferromagnetic conducting sample, the lineshape has contributions from the Dysonian part and also a part which arises due to magnetocrystalline anisotropy [20]. We have developed a method of deconvoluting the signals from conducting nanoparticles to take out the Dysonian part from them and measure the A/B ratio as a function of temperature. The A/B ratio thus determined can then be used to find out the ratio of the sample size to the skin depth using the work by Kodera [21]. The skin depth can be used to determine the conductivity by using the relationship  = (1/)1/2, where,  is the measuring frequency,  is the conductivity and  is the permeability. This technique has been used to determine the conductivity as a function of temperature (from 60 K to 300 K) of La0.67Sr0.33MnO3 (LSMO) nanoparticles of average size 17 nm. The method has been cross-checked by measuring the conductivity of bulk LSMO particles at 300 K by EMR lineshape analysis method and by standard four-probe method, which give conductivity values close to each other within experimental error. Chapter 3: In this chapter, we report a novel phenomenon of disappearance of electron-hole asymmetry in nanoparticles of charge ordered Pr1-xCaxMnO3 (PCMO). In bulk PCMO there is asymmetry in electric and magnetic properties seen on either side of x = 0.5. In the samples with x = 0.36 (hole doped: called PCMH) and x = 0.64 (electron doped: called PCME), the bulk sample has opposite g-shifts as observed in EPR signals [22]. PCME sample shows g-value less than and PCMH sample shows g-value greater than the free electron g-value at room temperature. This is explained using the opposite sign of the spin-orbit coupling constant for the two different kinds of charge carriers. But when the size of PCMH and PCME is reduced to nanoscale (average size ~ 20 nm), the g-shift was seen on the same side i.e., positive and almost equal g-shift in both cases. This points towards a disappearance of electron-hole asymmetry at nanoscale. This positive g-shift is analyzed in the two cases in the light of disappearance of charge ordering and emergence of ferromagnetism in these systems, since emergence of ferromagnetic hysteresis is noticed at low temperatures in both nano PCMH and nano PCME. In nano PCMH, charge ordering completely disappears and in nano PCME it weakens. Exchange bias is seen in both the systems, suggestive of core-shell structure [23] in the nanoparticles. Other competing factors include spin-other orbit interactions and size reduction induced metallicity [12] which can average out the anisotropies in the system, causing the asymmetry to disappear. Chapter 4: This chapter deals with thickness induced change in transport mechanism in VPP PEDOT thin films. Two samples were studied with average thickness of 120 nm (VP-1) and 150 nm (VP-2). The average room temperature conductivity of VP-1 was found to be 126 Scm-1 and VP-2 was 424 Scm-1. The transport mechanism in VP-1 is seen to be 2-dimensional variable range hopping (VRH) [24]. However, as the thickness increases by 30 nm, the transport mechanism in VP-2 is found to be 3-dimensional VRH. The low temperature magnetotransport is analyzed in the two systems and it shows that there is wavefunction shrinkage in both the systems at 1.3 K [24]. The DC transport results are cross checked with AC transport data at 5 different temperatures in the frequency range of 40 Hz to 110 MHz. The data can be analyzed by using the extended pair approximation model [25]. The AC transport shows the presence of a critical frequency 0 which marks the transition from the frequency independent to a frequency dependent region. The value of 0 decreasing with decreasing temperature suggests that the system is becoming more insulating and it supports the DC transport model of VRH. The morphological studies were done using AFM which revealed higher grain size for VP-2, confirming the direct correlation of the average grain size with the conductivity of the sample. Chapter 5: summarizes the main conclusions of the thesis, also pointing out some future directions for research in the field.
20

An Investigation of Plasma Pretreatments and Plasma Polymerized Thin Films for Titanium/Polyimide Adhesion

DiFelice, Ronald Attilio 27 April 2001 (has links)
Plasma pretreatments are environmentally benign and energy efficient processes for modifying the surface chemistry of materials. In an effort to improve the strength of the titanium alloy/FM-5 polyimide adhesive joint for aerospace applications, oxygen plasma pretreatments and novel thin plasma polymerized (PP) films were investigated as adhesion promoters. Plasma treatments were carried out using custom-built, low pressure, radio frequency, inductively coupled plasma reactors. Ti-6Al-4V coupons were plasma treated and used to prepare miniature single lap shear (SLS) joints. The effects of plasma pretreatments on surface chemistry were studied using x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), Fourier transform infrared analysis (FTIR), and contact angle measurements. Relationships between composition, mechanical properties, and adhesion of PP films on Ti-6Al-4V and silicon wafers were investigated. The nanomechanical properties (modulus, hardness and adhesion) were studied using atomic force microscopy (AFM) nanoindentation and nanoscratch testing. A design of experiments (DOE) three factorial model was used to optimize the parameters for oxygen plasma treatments. Oxygen plasma pretreatments enhanced joint strength by cleaning the titanium surface and creating an extended oxide layer. Nanoindentation of oxygen plasma treated substrates showed no change in the surface mechanical properties due to the oxygen plasma treatment. This suggested that the improved SLS strength of the oxygen plasma pretreated substrates was due to the cleaning of the substrate and the removal of carbonaceous contaminants, rather than any changes in the morphology of the oxide layer. PP acetylene films were predominantly carbon, with oxygen as the other main constituent (incorporated mostly as C-O and C=O). For all SLS specimens tested, the adhesion between PP acetylene and FM-5 adhesive was adequate. However, the strength of SLS joints was limited by the adhesion of the PP acetylene to the Ti-6Al-4V substrate. The effects of a large number of plasma parameters, such as substrate pretreatment, carrier gas, input power, flow rate and film thickness were investigated. All samples failed at the PP film/Ti-6Al-4V interface or within the PP acetylene film, and thicker PP films yielded lower SLS strengths. PP films deposited at lower power exhibited higher hardness and reduced modulus than films deposited at higher power. Overall, thinner films exhibited higher hardness and reduced Young's modulus than thicker films. PP films of higher hardness yielded higher critical loads at debond (thickness normalized) during the nanoscratch test. Thin films were developed via the vapor plasma polymerization of titanium(IV) isobutoxide (TiiB). XPS results suggested that titanium was incorporated into the film as TiO2 clusters dispersed in an organic matrix. No evidence for Ti-C was obtained from the XPS spectra. PP films of TiiB were much more compliant than PP acetylene films. This behavior was attributed to decreased fragmentation and lower crosslinking that occurred during PP TiiB film deposition. These PP films did not exhibit sol-gel-like qualities, and because of the way titanium was incorporated into the films, a more appropriate name for these films might be "titanium dioxide-doped plasma polymerized films." / Ph. D.

Page generated in 0.0867 seconds