• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 326
  • 47
  • 32
  • 25
  • 9
  • 9
  • 7
  • 6
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 575
  • 575
  • 84
  • 80
  • 59
  • 56
  • 52
  • 50
  • 48
  • 48
  • 47
  • 47
  • 44
  • 44
  • 43
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

Studies on sol-gel-derived monolithic porous polyorganosiloxanes / ゾル-ゲル法によるモノリス型多孔性有機ポリシロキサンに関する研究

Hayase, Gen 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18096号 / 理博第3974号 / 新制||理||1573(附属図書館) / 30954 / 京都大学大学院理学研究科化学専攻 / (主査)准教授 中西 和樹, 教授 北川 宏, 教授 竹腰 清乃理 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
382

Preparation of N-doped porous carbon materials and their supercapacitator performance

Zong, Shuang 01 1900 (has links)
Supercapacitor is the best potential candidate of the energy storage system due to the superior charge or discharge efficiency, high power density (>10 kW kg-1), and long cycling life. Porous carbon materials as the promising electrode material have been widely used in supercapacitor. In fact, conventional porous carbon supercapacitor electrodes cannot fulfil the growing demand of high energy and power densities of supercapacitor. A large number of studies show that nitrogen doping can change the surface electronic structure of carbon materials, thus significantly improving the electrochemical properties. In addition to, the pore structure and morphology of carbon materials have great influence on the electrochemical performance. In this work, we firstly fabricated nitrogen-doped porous carbon nanotubes by using a simple mixed salts (NaCl/ZnCl2) activation strategy. The as-obtained porous carbon nanotubes exhibited excellent electrochemical performance in supercapacitor. Furthermore, two- dimension nitrogen-doping porous nanosheets were prepared by a salt template-assisted monomer deposition method. In this study, by optimizing the synthesis conditions, the as-obtained carbon nanosheets showed a high specific capacitance of 277 F g-1 at 1 A g-1 and excellent cycle stability retained 91 % after 10,000 cycles. / College of Engineering, Science and Technology / M. Tech.( Civil and Chemical Engineering
383

Studies on Porous Soft Materials Based on Linked Rhodium-Organic Cuboctahedra / ロジウム含有金属錯体立方八面体の集合体に基づく多孔性ソフトマテリアルに関する研究

WANG, ZAOMING 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23926号 / 工博第5013号 / 新制||工||1782(附属図書館) / 京都大学大学院工学研究科合成・生物化学専攻 / (主査)教授 古川 修平, 教授 生越 友樹, 教授 浜地 格 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
384

Modeling of Electronic and Ionic Transport Resistances Within Lithium-Ion Battery Cathodes

Stephenson, David E. 25 June 2008 (has links) (PDF)
In this work, a mathematical model is reported and validated, which describes the performance of porous electrodes under low and high rates of discharge. This porous battery model can be used to provide researchers a better physical understanding relative to prior models of how cell morphology and materials affect performance due to improved accounting of how effective resistance change with morphology and materials. The increased understanding of cell resistances will enable improved design of cells for high-power applications, such as hybrid and plug-in-hybrid electric vehicles. It was found electronic and liquid-phase ionic transport resistances are strongly coupled to particle conductivity, size, and distribution of particle sizes. The accuracy of determining effective resistances was increased by accounting for how particle's size, volume fraction, and electronic conductivity affect electronic resistances and by more accurately determining how cell morphology influences effective liquid-phase transport resistances. These model additions are used to better understand the cause for decreased utilization of active materials for relatively highly loaded lithium-ion cathodes at high discharge rates. Lithium cobalt and ruthenium oxides were tested and modeled individually and together in mixed-oxide cathodes to understand how the superior material properties relative to each other can work together to reduce cell resistances while maximizing energy storage. It was found for lithium cobalt oxide, a material with low electronic conductivity, its low rate (1C) performance is dominated by local electronic resistances between particles. At high rates (5C or higher) diffusional resistance in the liquid electrolyte had the greatest influence on cell performance. It was found in the mixed-oxide system that the performance of lithium cobalt oxide was improved by decreasing its local electronic losses due to the addition of lithium ruthenium oxide, a highly conductive active material, which improved the number of electron pathways to lithium cobalt oxide thereby decreasing local electronic losses.
385

Super-adiabatic Combustion In Porous Media With Catalytic Enhancement For Thermoelectric Power Conversion

Mueller, Kyle Thomas 01 January 2011 (has links)
The combustion of ultra-lean fuel to air mixtures provides an efficient way to convert the chemical energy of hydrocarbons into useful power. Conventional burning techniques of a mixture have defined flammability limits beyond which a flame cannot self-propagate due to heat losses. Matrix stabilized porous medium combustion is an advanced technique in which a solid porous matrix within the combustion chamber accumulates heat from the hot gaseous products and preheats incoming reactants. This heat recirculation extends the standard flammability limits and allows the burning of ultra-lean fuel mixtures, conserving energy resources, or the burning of gases of low calorific value, utilizing otherwise wasted resources. The heat generated by the porous burner can be harvested with thermoelectric devices for a reliable method of generating electricity for portable electronic devices by the burning of otherwise noncombustible mixtures. The design of the porous media burner, its assembly and testing are presented. Highly porous (~80% porosity) alumina foam was used as the central media and alumina honeycomb structure was used as an inlet for fuel and an outlet for products of the methane-air combustion. The upstream and downstream honeycomb structures were designed with pore sizes smaller than the flame quenching distance, preventing the flame from propagating outside of the central section. Experimental results include measurements from thermocouples distributed throughout the burner and on each side of the thermoelectric module along with associated current, voltage and power outputs. Measurements of the burner with catalytic coating were obtained for stoichiometric and lean mixtures and compared to the results obtained from the catalytically inert matrix, showing the effect on overall efficiency for the combustion of fuel-lean mixtures
386

A model of the formation of a porous fibrous cake

Williams, Edward McRae 16 June 2009 (has links)
A continuous physical cake made up of porous fibrous media can be formed by using air to draw the fibers to a moving screen. A numerical model of the formation of this cake has been formulated and solved. The numerical model is based on solving Darcy’s law, the Bernoulli equation, and two-material related experimental correlations at discrete points along the screen. A permeability measurement test apparatus was designed and built, and experiments were run to determine the experimental relations for two different materials. A computer code was then written to solve the system of equations at each point on the screen and give a density distribution of the resulting cake. Tests were then run to see the effects of various density anomalies in the material at different points along the screen. The results of the experiments show that the first material was more permeable and more compressible than the second material. This lead to distinct differences in the cake that the two formed in the numerical model. The first material formed a fairly constant density cake that was not greatly affected by the density anomalies. The second material had a large variation in density across the final cake height and was affected more by the different density anomalies. / Master of Science
387

Multiphysics Transport in Heterogeneous Media: from Pore-Scale Modeling to Deep Learning

Wu, Haiyi 21 May 2020 (has links)
Transport phenomena in heterogeneous media play a crucial role in numerous engineering applications such as hydrocarbon recovery from shales and material processing. Understanding and predicting these phenomena is critical for the success of these applications. In this dissertation, nanoscale transport phenomena in porous media are studied through physics-based simulations, and the effective solution of forward and inverse transport phenomena problems in heterogeneous media is tackled using data-driven, deep learning approaches. For nanoscale transport in porous media, the storage and recovery of gas from ultra-tight shale formations are investigated at the single-pore scale using molecular dynamics simulations. In the single-component gas recovery, a super-diffusive scaling law was found for the gas production due to the strong gas adsorption-desorption effects. For binary gas (methane/ethane) mixtures, surface adsorption contributes greatly to the storage of both gas in nanopores, with ethane enriched compared to methane. Ethane is produced from nanopores as effectively as the lighter methane despite its slower self-diffusion than the methane, and this phenomenon is traced to the strong couplings between the transport of the two species in the nanopore. The dying of solvent-loaded nanoporous filtration cakes by a purge gas flowing through them is next studied. The novelty and challenge of this problem lie in the fact that the drainage and evaporation can occur simultaneously. Using pore-network modeling, three distinct drying stages are identified. While drainage contributes less and less as drying proceeds through the first two stages, it can still contribute considerably to the net drying rate because of the strong coupling between the drainage and evaporation processes in the filtration cake. For the solution of transport phenomena problems using deep learning, first, convolutional neural networks with various architectures are trained to predict the effective diffusivity of two-dimensional (2D) porous media with complex and realistic structures from their images. Next, the inverse problem of reconstructing the structure of 2D heterogeneous composites featuring high-conductivity, circular fillers from the composites' temperature field is studied. This problem is challenging because of the high dimensionality of the temperature and conductivity fields. A deep-learning model based on convolutional neural networks with a U-shape architecture and the encoding-decoding processes is developed. The trained model can predict the distribution of fillers with good accuracy even when coarse-grained temperature data (less than 1% of the full data) are used as an input. Incorporating the temperature measurements in regions where the deep learning model has low prediction confidence can improve the model's prediction accuracy. / Doctor of Philosophy / Multiphysics transport phenomena inside structures with non-uniform pores or properties are common in engineering applications, e.g., gas recovery from shale reservoirs and drying of porous materials. Research on these transport phenomena can help improve related applications. In this dissertation, multiphysics transport in several types of structures is studied using physics-based simulations and data-driven deep learning models. In physics-based simulations, the multicomponent and multiphase transport phenomena in porous media are solved at the pore scale. The recovery of methane and methane-ethane mixtures from nanopores is studied using simulations to track motions and interactions of methane and ethane molecules inside the nanopores. The strong gas-pore wall interactions lead to significant adsorption of gas near the pore wall and contribute greatly to the gas storage in these pores. Because of strong gas adsorption and couplings between the transport of different gas species, several interesting and practically important observations have been found during the gas recovery process. For example, lighter methane and heavier ethane are recovered at similar rates. Pore-scale modeling are applied to study the drying of nanoporous filtration cakes, during which drainage and evaporation can occur concurrently. The drying is found to proceed in three distinct stages and the drainage-evaporation coupling greatly affects the drying rate. In deep learning modeling, convolutional neural networks are trained to predict the diffusivity of two-dimensional porous media by taking the image of their structures as input. The model can predict the diffusivity of the porous media accurately with computational cost orders of magnitude lower than physics-based simulations. A deep learning model is also developed to reconstruct the structure of fillers inside a two-dimensional matrix from its temperature field. The trained model can predict the structure of fillers accurately using full-scale and coarse-grained temperature input data. The predictions of the deep learning model can be improved by adding additional true temperature data in regions where the model has low prediction confidence.
388

The effect of continuous pore stratification on the acoustic absorption in open cell foams

Mahasaranon, Sararat, Horoshenkov, Kirill V., Khan, Amir, Benkreira, Hadj January 2012 (has links)
No description available.
389

Porous Sulfur-Based Materials for Photocatalytic Applications

Silva Gaspar, Beatriz 03 March 2024 (has links)
[ES] La presente tesis doctoral se centró en el desarrollo y modificación de materiales microestructurados basados en sulfuros metálicos para la producción de combustibles solares. Se obtuvieron y caracterizaron dos nuevos materiales laminares basados en sulfuro de estaño y zinc, IZM-5 e ITQ-75. Dado que se pretende utilizar dichos materiales en procesos basados en el uso de energía solar, fue necesario ajustar su estructura electrónica mediante una estrategia de dopaje y su accesibilidad mediante la modificación de la composición del gel de síntesis o mediante métodos posteriores a la síntesis. Se probaron diferentes agentes dopantes como cobre, cobalto, níquel y hierro, así como la inserción de un complejo de rutenio. Los más exitosos fueron el cobre y el cobalto, ya que con su presencia es posible reducir el valor de la band gap a 2,0 eV, un valor dentro del rango óptimo para procesos de producción de combustibles solares. Cuando estos agentes dopantes estuvieron presentes en el gel de síntesis de IZM-5, se descubrió que no se obtenía el patrón de difracción esperado, sino uno de un nuevo material, denominado ITQ-76. Al igual que con las zeolitas, los primeros intentos para permitir el acceso a los centros fotoactivos consistieron en liberar la microporosidad, la superficie interna, mediante la eliminación del agente orgánico director de estructura utilizado durante el proceso de síntesis. Se intentó alternativamente mejorar la superficie externa (tamaño de partícula o mesoporosidad). De las diferentes estrategias probadas, se descubrió que variar la composición del gel de síntesis fue la más exitosa. Se probaron la inserción de sacáridos, previamente estudiados en la literatura como agentes inductores de mesoporosidad, y el aumento de la viscosidad del gel de síntesis para disminuir el tamaño de cristal final. Sin embargo, la presencia de sacáridos no condujo a la formación de un sistema mesoporoso; la mejora en la accesibilidad se debió a la disminución del tamaño de partícula. Al aumentar la viscosidad del gel, también fue posible disminuir el tamaño promedio de los cristales y, en consecuencia, aumentar la superficie externa. Después de la modificación de las estructuras estudiadas con el fin de obtener una amplia gama de propiedades, se evaluó su rendimiento fotocatalítico mediante la reacción de ruptura de la molécula de agua. Parecía existir una relación tipo "volcano" entre el rendimiento fotocatalítico y la superficie externa. Según la literatura revisada, este comportamiento podría explicarse por el equilibrio entre el aumento de los centros activos disponibles y el aumento de los defectos en la superficie, los cuales son centros potenciales de recombinación. En cuanto a la relación entre el rendimiento fotocatalítico y el valor de la band gap, nuevamente parece existir una relación tipo "volcano". Según la bibliografía revisada, se encontró que con la reducción del valor de la band gap aumenta el número de fotones absorbidos y, como tal, se espera que aumente el rendimiento. Sin embargo, es necesario que las cargas fotogeneradas tengan un potencial suficiente para participar en la reacción deseada. Como resultado, por debajo de cierto valor de band gap, las cargas fotogeneradas ya no tienen un potencial suficiente y, por ello, el rendimiento disminuye. De las diferentes muestras probadas, las modificadas con sacarosa destacaron por tener el mejor rendimiento. Hasta ahora no ha sido posible desentrañar el fenómeno detrás de esta mayor reactividad. Por lo tanto, se requiere una caracterización más detallada de estas muestras para comprender cómo la presencia del componente orgánico influye en la estructura electrónica del material y, en consecuencia, en su rendimiento. También sería importante evaluar la estabilidad del componente orgánico durante la reacción, específicamente para verificar que no sufra un proceso de oxidación que pueda producir protones, que luego sean capaces de formar hidrógeno. / [CA] La present tesi doctoral es va centrar en el desenvolupament i modificació de materials microestructurats basats en sulfurs metàl·lics per a la producció de combustibles solars. Es van obtenir i caracteritzar dos nous materials lamel·lars basats en sulfur d'estany i zinc, IZM-5 i ITQ-75. Com que es pretén utilitzar aquests materials en processos basats en l'ús d'energia solar, va ser necessari ajustar la seua estructura electrònica mitjançant una estratègia de dopatge i la seua accessibilitat mitjançant la modificació de la composició del gel de síntesi o mitjançant mètodes posteriors a la síntesi. Es van provar diferents agents dopants com coure, cobalt, níquel i ferro, així com la inserció d'un complex de ruteni. Els més reeixits van ser el coure i el cobalt, ja que amb la seua presència és possible reduir el valor de la band gap a 2,0 eV, un valor dins de l'abast òptim per a processos de producció de combustibles solars. Quan aquests agents dopants van estar presents en el gel de síntesi d'IZM-5, es va descobrir que no s'obtenia el patró de difracció esperat, sinó un de nou material, anomenat ITQ-76. Al igual que amb les zeolites, els primers intents per a permetre l'accés als centres fotoactius van consistir en alliberar la microporositat, la superfície interna, mitjançant l'eliminació de l'agent orgànic director d'estructura utilitzat durant el procés de síntesi. Es va intentar alternativament millorar la superfície externa (mida de partícula o mesoporositat). De les diferents estratègies provades, es va descobrir que variar la composició del gel de síntesi va ser la més reeixida. Es van provar la inserció de sacàrids, prèviament estudiats en la literatura com a agents inductors de mesoporositat, i l'augment de la viscositat del gel de síntesi per a disminuir la dimensió del cristall final. No obstant això, la presència de sacàrids no va conduir a la formació d'un sistema mesoporós; la millora en l'accessibilitat va ser a causa de la disminució de la mida de partícula. Augmentant la viscositat del gel, també es va poder disminuir la mida mitjana dels cristalls i, en conseqüència, augmentar la superfície externa. Després de la modificació de les estructures estudiades amb l'objectiu d'obtenir una àmplia gamma de propietats, es va avaluar el seu rendiment fotocatalític mitjançant la reacció de ruptura de la molècula d'aigua. Hi semblava haver una relació tipus "volcà" entre el rendiment fotocatalític i la superfície externa. Segons la literatura revisada, aquest comportament podria explicar-se per l'equilibri entre l'augment dels centres actius disponibles i l'augment de les defectes en la superfície, els quals són centres potencials de recombinació. Pel que fa a la relació entre el rendiment fotocatalític i el valor de la band gap, de nou sembla existir una relació tipus "volcà". Segons la bibliografia revisada, es va trobar que amb la reducció del valor de band gap augmenta el nombre de fotons absorbits i, com a tal, s'espera que augmenti el rendiment. No obstant això, és necessari que les càrregues fotogenerades tinguin un potencial suficient per a participar en la reacció desitjada. Com a resultat, per sota d'un cert valor de band gap, les càrregues fotogenerades ja no tenen un potencial suficient i, per tant, el rendiment disminueix. De les diferents mostres provades, les modificades amb sacarosa van destacar per tenir el millor rendiment. Fins ara no ha estat possible desxifrar el fenomen darrere d'aquesta major reactivitat. Per tant, es requereix una caracterització més detallada d'aquestes mostres per a comprendre com la presència del component orgànic influeix en l'estructura electrònica del material i, en conseqüència, en el seu rendiment. També seria important avaluar l'estabilitat del component orgànic durant la reacció, específicament per a verificar que no patisca un procés d'oxidació que puga produir protons, que després siguen capaços de formar hidrogen. / [EN] The present doctoral thesis focused on the development and modification of metal sulfide based microstructured materials for the solar fuels production. Two new materials, IZM-5 and ITQ-75 made of tin and zinc sulfide, were obtained and characterized. Since it is intended to use such materials on solar-driven processes, it was necessary to fine tune their electronic structure, through a doping strategy, and their accessibility, through the modification of the synthesis gel composition or by post synthesis methods. Different doping agents, such as copper, cobalt, nickel and iron, as well as the insertion of a ruthenium complex were tested. The most successful ones were copper and cobalt, since with their presence it is possible to reduce the optical band gap value to 2,0 eV, a value within the optimal range of optical band gaps for solar fuel production processes. When such doping agents were present into the IZM-5 gel, it was found that the expected diffraction pattern was not obtained, but one of a new material, entitled ITQ-76. As with zeolites, the firsts attempts to allow accessibility to photoactive sites was about releasing the microporosity, the internal surface, by removing the organic structure directing agent used during the synthesis process. Because no strategy was successful, it was alternatively attempted to enhance the external surface (grain surface or mesoporosity). Of the different strategies tested, it was found that varying the gel composition was the most successful one. The insertion of saccharides, previously studied in the literature as mesoporosity agents, and increasing the synthesis gel viscosity in order to decrease the final crystal size were tested. However, the presence of saccharides did not lead to the formation of a mesoporous system. The improvement in accessibility was due to the decrease of particle sizes. By increasing the gel viscosity it was also possible to decrease the average size of the crystals and consequently increase the external surface area. After the modification of the structures under study in order to obtain a wide range of properties, their photocatalytic performance was evaluated by using the water splitting reaction. A volcano-like relationship seemed to exist between photocatalytic performance and the external surface area. According to the literature reviewed, this behavior might be explained by the balance between the increase of available active centers and the increase of surface defects which are potential recombination sites. Regarding the relation between the photocatalytic performance and the optical band gap value, again a volcano-like relationship seems to exist. According to the reviewed bibliography, it was found that with the reduction of the optical band gap value the number of absorbed photons increases and, as such, the performance is expected to increase. However, it is necessary that the photogenerated charges have a sufficient potential to participate in the desired reaction. As a result, below a certain optical band gap value, the photogenerated charges no longer have sufficient potential and, as such, the performance decreases. Of the different samples tested, those modified with sucrose stand out as having the best performance. So far it was not possible to unravel the phenomenon behind those enhanced reactivity. Hence, a more detailed characterization of these samples is necessary in order to understand how the presence of the organic component influences the electronic structure of the material and, consequently, its performance. It would also be important to assess the stability of the organic component during the reaction, more specifically to verify that it does not undergo an oxidation process that might produce protons, which are then able to form dihydrogen. / Silva Gaspar, B. (2024). Porous Sulfur-Based Materials for Photocatalytic Applications [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/202895
390

Contribution à l'étude de la dispersion hydrodynamique et de son couplage à la convection naturelle en milieux poreux modèles fracturés

Istasse, Eric 04 May 2004 (has links)
Le présent manuscrit contribue à l’étude des écoulements liquides dans des milieux poreux artificiels, plus spécifiquement dans les cas où la matrice poreuse présente des gradients de perméabilité importants, par exemple dans un milieu stratifié ou fracturé. Nous étudions l’influence de tels milieux poreux hétérogènes sur différents types d’écoulements. Ce travail est principalement expérimental, mettant en oeuvre une technique optique non-intrusive appelée effet Christiansen. Cette méthode permet de déterminer quantitativement des distributions soit de température, soit de concentration au sein d’un milieu poreux. <p><p>Trois problèmes physiques sont étudiés: tout d’abord le problème de Horton-Rodgers-Lapwood qui est l’équivalent du très connu problème de Rayleigh-Bénard mais pour un milieu poreux, ensuite les phénomènes de dispersion hydrodynamique que l’on rencontre dans des écoulements multiphasiques. Cette dispersion hydrodynamique est essentiellement envisagée comme un processus macroscopique de diffusion, renforcé par rapport à la diffusion moléculaire que l’on rencontre en milieu fluide libre. Enfin, le troisième problème englobe les écoulements capillaires en milieux poreux en environnement de pesanteur réduite. Dans le cas d’écoulements immiscibles multiphasiques, il faut prendre en considération l’effet de la tension superficielle aux interfaces. Comme les effets capillaires sont partiellement masqués par les effets de pesanteur durant des expériences au sol, une étude précise des effets de mouillage dans ces écoulements en milieu poreux nécessite de les découpler au maximum des autres effets physiques. Un programme de recherche en microgravité a été réalisé, et un nouveau modèle mathématique qui prend en compte l’influence des forces capillaires a été élaboré dans le cadre d’une collaboration entre le Service de Chimie-Physique et le Prof. N.N. Smirnov du Département de Mécanique et de Mathématique de l’Université d’Etat de Moscou.<p><p><p>La structure de ce travail part du Chapitre 1, qui présente essentiellement les milieux poreux et leurs spécificités. Ce dernier introduit le formalisme et les concepts nécessaires au traitement des trois problèmes de recherche envisagés. Le Chapitre 2 présente ensuite une étude bibliographique du problème de Horton-Rodgers-Lapwood et des phénomènes de dispersion hydrodynamique en milieux poreux. Le Chapitre 3 est consacré à l’effet Christiansen. Le Chapitre 4 présente les dispositifs de laboratoire mis au point, ainsi qu’une compilation des résultats expérimentaux obtenus. Les problèmes d’écoulements capillaires sont exposés au Chapitre 5, étant donné que la technique expérimentale est différente de celle basée sur l’effet Christiansen. Ce Chapitre compare le nouveau modèle mathématique aux résultats des expériences menées en microgravité durant de nombreuses campagnes de vols paraboliques. Le Chapitre 6 referme ce travail par ses conclusions et perspectives. / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished

Page generated in 0.0849 seconds