Spelling suggestions: "subject:"positron""
91 |
Effects of termination shock acceleration on cosmic rays in the heliosphere / U.W. LangnerLangner, Ulrich Wilhelm January 2004 (has links)
The interest in the role of the solar wind termination shock (TS) and heliosheath in cosmic ray (CR) modulation
studies has increased sigm6cantly as the Voyager 1 and 2 spacecraft approach the estimated position of the TS. For
this work the modulation of galactic CR protons, anti-protons, electrons with a Jovian source, positrons, Helium,
and anomalous protons and Helium, and the consequent charge-sign dependence, are studied with an improved
and extended two-dimensional numerical CR modulation model including a TS with diffusive shock acceleration, a
heliosheath and drifts. The modulation is computed using improved local interstellar spectra (LIS) for almost all
the species of interest to this study and new fundamentally derived diffusion coefficients, applicable to a number of
CR species during both magnetic polarity cycles of the Sun. The model also allows comparisons of modulation with
and without a TS and between solar minimum and moderate maximum conditions. The modulation of protons
and Helium with their respective anomalous components are also studied to establish the consequent charge-sign
dependence at low energies and the influence on the computed p/p, e-/p, and e-/He. The level of modulation in
the simulated heliosheath, and the importance of this modulation 'barrier' and the TS for the different species are
illustrated. From the computations it is possible to estimate the ratio of modulation occurring in the heliosheath
to the total modulation between the heliopause and Earth for the mentioned species. It has been found that the
modulation in the heliosheath depends on the particle species, is strongly dependent on the energy of the CRs, on
the polarity cycle and is enhanced by the inclusion of the TS. The computed modulation for the considered species
is surprisingly different and the heliosheath is important for CR modulation, although 'barrier' modulation is more
prominent for protons, anti-protons and Helium, while the heliosheath cannot really be considered a modulation
'barrier' for electrons and positrons above energies of ~150 MeV. The effects of the TS on modulation are more
pronounced for polarity cycles when particles are drifting primarily in the equatorial regions of the heliosphere
along the heliospheric current sheet to the Sun, e.g. the A < 0 polarity cycle for protons, positrons, and Helium,
and the A > 0 polarity cycle for electrons and anti-protons. This study also shows that the proton and Helium
LIS may not be known at energies <~ 200 MeV until a spacecraft actually approaches the heliopause because of the
strong modulation that occurs in the heliosheath, the effect of the TS, and the presence of anomalous protons and
Helium. For anti-protons, in contrast, these effects are less pronounced. For positrons, with a completely different
shape LIS, the modulated spectra have very mild energy dependencies <~ 300 MeV, even at Earth, in contrast to the
other species. These characteristic spectral features may be helpful to distinguish between electron and positron
spectra when they are measured near and at Earth. These simulations can be of use for future missions to the
outer heliosphere and beyond. / Thesis (Ph.D. (Physics))--North-West University, Potchefstroom Campus, 2004.
|
92 |
Ion-atom collisions at relativistic and non-relativistic energiesLee, R. J. S. January 2001 (has links)
No description available.
|
93 |
Parallel R-matrix computationHeggarty, Jonathan W. January 1999 (has links)
No description available.
|
94 |
Étalonnage automatique des détecteurs pour scanner LabPET IIJürgensen, Nadia January 2017 (has links)
Depuis une vingtaine d'années, le GRAMS et le CIMS travaillent en collaboration dans le domaine de l'imagerie médicale, plus précisément sur la tomographie d'émission par positrons destinée à la recherche préclinique sur petits animaux. Après le scanner TEP Sherbrooke en 1994 et le LabPET I commercialisé par Advanced Molecular Imaging (AMI) Inc., Gamma Medica Ideas et GE Healthcare au cours des années 2000, l'aspiration vers de meilleures performances est le moteur de la réalisation d'une nouvelle version : le LabPET II. L'augmentation importante du nombre de détecteurs, nécessaire pour atteindre une meilleure résolution spatiale, amène de nouveaux défis autant sur le plan matériel que logiciel. Un des défis est de compenser les disparités en gain des détecteurs à base de photodiodes à avalanche (PDA) qui engendrent des différences intercanaux. Le but de ce projet de maîtrise est de développer et d'implémenter un algorithme capable de corriger ces différences de façon automatisée.
|
95 |
Imagerie moléculaire des lésions d'athérosclérose vasculaires et valvulaires chez la souris / Molecular imaging of vascular and valvular atherosclerosis lesion in mouseRucher, Guillaume 13 February 2019 (has links)
Les lésions d’athérosclérose sont une des causes majeurs du développement de pathologies cardiovasculaires. Cette pathologie chronique à l’origine inflammatoire est caractérisée par des mécanismes moléculaires et cellulaires complexes. L’activité de minéralisation retrouvée au sein des lésions est un critère clé de l’avancée de la maladie. A l’aide d’un modèle murin d’athérosclérose accélérée et de travaux d’optimisation technique, nous avons exploré la faisabilité de l’exploitation de l’imagerie par tomographie à émission de positons au fluorure de sodium associée à l’imagerie à résonance magnétique de la pathologie dans un modèle murin d’athérosclérose accélérée. Dans ce travail nous avons mis en évidence une activité de minéralisation précoce et soutenue associée à un statut inflammatoire plus avancé chez les animaux insuffisants rénaux. Ajouté à cela, nous avons mis en place un nouveau modèle murin de rétrécissement aortique calcifié par irradiation localisée. / Atherosclerosis lesions are a leading cause of cardiovascular events. Atherosclerosis is a chronic inflammatory disease including complex molecular and cellular mechanisms. Mineralization process within the atherosclerosis lesions is a key feature of the disease development. Using a mouse model of accelerated atherosclerosis and imaging optimisation study, we showed the feasability of sodium fluoride positron emission tomography combined to magnetic resonance imaging to assess molecular activity in a mouse model of accelerated atherosclerosis. We showed that uremic animals had an early and sustained mineralization activity associated to an advanced inflammatory state. Furthermore, we developped a new mouse model of calcified aortic stenosis using targeted radiation exposure.
|
96 |
Conception d'un capteur de température, d'un récepteur LVSD et d'un générateur de charge en technologie CMOS 0,18 um pour un scanner TEP/TDMBen Attouch, Mohamed Walid January 2011 (has links)
La recherche en imagerie moléculaire repose beaucoup sur les performances en tomographie d'émission par positrons (TEP). Les avancées technologiques en électronique ont permis d'améliorer la qualité de l'image fournie par les scanners TEP et d'en augmenter le champ d'application. Le scanner LabPET II, en développement à l'Université de Sherbrooke, permettra d'atteindre des résolutions spatiales inégalées.La conception de ce scanner requiert une très grande densité de détecteurs de l'ordre de 39 000 sur un anneau de 15 cm de diamètre par 12 cm de longueur axiale. D'autre part, l'Université de Sherbrooke mène également des travaux en tomodensitométrie (TDM) par comptage de photons individuels. Ces travaux s'insèrent dans un programme de recherche menant à réduire par un facteur 1,5 à 10 la dose de rayon X par rapport aux doses actuelles en TDM. Un circuit intégré (ASIC) a été développé pour supporter les performances attendues en TEP et en TDM. Cependant, la très grande densité de canaux rend inadéquate la vérification externe, sur circuits imprimés (PCB), des fonctionnalités des 64 canaux d'acquisition du circuit intégré actuellement en conception. Ainsi, un générateur de charge électronique a été conçu et intégré dans l'ASIC afin de pouvoir vérifier directement sur le circuit intégré ( On-Chip ) le fonctionnement de la chaine d'acquisition. Il permettra aussi de faire les tests pour le calcul de la résolution d'énergie et de la résolution en temps intrinsèque. La communication des données avec l'ASIC se fait par une ligne différentielle afin de maximiser l'immunité des signaux contre le bruit et d'assurer la vitesse de communication voulue.La norme Low-Voltage Differential Signaling (LVDS) a été choisie pour ce type de communication. En effet, trois récepteurs LVDS, basse consommation, ont été conçus et intégrés dans l'ASIC afin de recevoir les commandes de fonctionnement de l'ASIC à partir d'une matrice de portes programmables Field-Programmable Gate Array (FPGA) et de communiquer le signal d'horloge aux différents blocs. Pour augmenter la fiabilité du traitement effectué par l'électronique frontale, une mesure en température de l'ASIC est nécessaire. Un capteur de température basé sur la boucle à délais Delay-Locked Loop (DLL) a été conçu et intégré. En effet, la mesure de la température de l'ASIC permet d'intervenir en réalisant une compensation sur les mesures et en contrôlant le système de refroidissement en cas de sur-échauffement.
|
97 |
Réalisation d'un convertisseur temps-numérique en CMOS 65 nm pour une intégration par pixel dans un module de comptage monophotoniqueRoy, Nicolas January 2015 (has links)
Les applications nécessitant une grande précision temporelle sont de plus en plus nombreuses, notamment lorsqu'elles requièrent des mesures par temps de vol, c'est-à-dire de mesurer le temps de propagation de la lumière ou de particules. La télémétrie laser et certaines modalités d'imagerie médicale dont la tomographie d'émission par positrons (TEP) en sont des exemples. Ces applications requièrent l'attribution d'étampes temporelles aux photons détectés, tout en assurant une précision temporelle exceptionnelle. Le Groupe de Recherche en Appareillage Médical de Sherbrooke (GRAMS) développe des scanners TEP visant à intégrer des mesures par temps de vol pour améliorer le contraste des images. Pour ce faire, une partie du GRAMS (GRAMS3D) se concentre sur la réalisation de modules de comptage monophotoniques (MCMP) à grande précision temporelle pour intégrer les prochaines générations de scanners TEP. D'autres projets pourraient également se concrétiser dans les prochaines années, dont l'intégration des MCMP du GRAMS dans le Grand Collisionneur de Hadrons (Large Hadron Collider, LHC) au CERN pour des expériences en physique des hautes énergies. Pour atteindre de tels niveaux de performances, le MCMP se compose d'une matrice de photodiodes à avalanche monophotoniques intégrée en 3D avec l'électronique frontale et l'électronique de traitement de l'information. Certains MCMP n'utilisent qu'un seul convertisseur temps-numérique (CTN) pour une matrice de photodétecteurs, limitant le nombre d'étampes temporelles disponibles en plus d'obtenir un temps de propagation différent entre chacun des pixels et le CTN. Pour surpasser ces inconvénients, une autre approche consiste à intégrer un CTN à chacun des pixels. C'est dans cette perspective que le présent ouvrage se concentrera sur le CTN implanté dans chacun des pixels de 50 × 50 µm[indice supérieur 2] du MCMP développé au GRAMS. Le CTN proposé est basé sur une architecture vernier à étage unique afin d'obtenir une excellente résolution et une linéarité indépendante des variations de procédé. Sa taille de 25 × 50 µm[indice supérieur 2] et sa consommation de 163 µW en font un excellent choix pour une implantation matricielle. Le CTN, calibré en temps réel grâce à une boucle à verrouillage de phase numérique, a démontré une résolution de 14,4 ps avec une non-linéarité intégrale (INL)/non-linéarité différentielle (DNL) de 3,3/0,35 LSB et une précision temporelle inférieure à 27 ps[indice inférieur rms]. Les résultats obtenus prouvent qu'il est possible de concilier d'excellentes résolution et précision temporelles avec de très faibles dimensions et consommation.
|
98 |
Efficacité de détection en tomographie d'émission par positrons: une approche par intelligence artificielleMichaud, Jean-Baptiste January 2014 (has links)
En Tomographie d'Émission par Positrons (TEP), la course à la résolution spatiale nécessite des détecteurs de plus en plus petits, produisant plus de diffusion Compton avec un impact négatif sur l’efficacité de détection du scanner. Plusieurs phénomènes physiques liés à cette diffusion Compton entachent tout traitement des coïncidences multiples d'une erreur difficile à borner et à compenser, tandis que le nombre élevé de combinaisons de détecteurs complexifie exponentiellement le problème. Cette thèse évalue si les réseaux de neurones constituent une alternative aux solutions existantes, problématiques parce que statistiquement incertaines ou complexes à mettre en œuvre. La thèse réalise une preuve de concept pour traiter les coïncidences triples et les inclure dans le processus de reconstruction, augmentant l'efficacité avec un minimum d'impact sur la qualité des images. L'atteinte des objectifs est validée via différents critères de performance comme le gain d'efficacité, la qualité de l'image et le taux de succès du calcul de la ligne de réponse (LOR), mesurés en priorité sur des données réelles. Des études paramétriques montrent le comportement général de la solution : un réseau entraîné avec une source générique démontre pour le taux d'identification de la LOR une bonne indépendance à la résolution en énergie ainsi qu'à la géométrie des détecteurs, du scanner et de la source, pourvu que l'on ait prétraité au maximum les données pour simplifier la tâche du réseau. Cette indépendance, qui n'existe en général pas dans les solutions existantes, laisse présager d'un meilleur potentiel de généralisation à d'autres scanners. Pour les données réelles du scanner LabPET[indice supérieur TM], la méthode atteint un gain d'efficacité aux alentours de 50%, présente une dégradation de résolution acceptable et réussit à recouvrer le contraste de manière similaire aux images de référence, en plus de fonctionner en temps réel. Enfin, plusieurs améliorations sont anticipées.
|
99 |
Système microfluidique d'analyse sanguine en temps réel pour l'imagerie moléculaire chez le petit animalConvert, Laurence January 2012 (has links)
De nouveaux radiotraceurs sont continuellement développés pour améliorer l'efficacité diagnostique en imagerie moléculaire, principalement en tomographie d'émission par positrons (TEP) et en tomographie d'émission monophotonique (TEM) dans les domaines de l'oncologie, de la cardiologie et de la neurologie. Avant de pouvoir être utilisés chez les humains, ces radiotraceurs doivent être caractérisés chez les petits animaux, principalement les rats et les souris. Pour cela, de nombreux échantillons sanguins doivent être prélevés et analysés (mesure de radioactivité, séparation de plasma, séparation d'espèces chimiques), ce qui représente un défi majeur chez les rongeurs à cause de leur très faible volume sanguin (-1,4 ml pour une souris). Des solutions fournissant une analyse partielle sont présentées dans la littérature, mais aucune ne permet d'effectuer toutes les opérations dans un même système. Les présents travaux de recherche s'insèrent dans le contexte global d'un projet visant à développer un système microfluidique d'analyse sanguine complète en temps réel pour la caractérisation des nouveaux radiotraceurs TEP et TEM. Un cahier des charges a tout d'abord été établi et a permis de fixer des critères quantitatifs et qualitatifs à respecter pour chacune des fonctions de la puce. La fonction de détection microfluidique a ensuite été développée. Un état de l'art des travaux ayant déjà combiné la microfluidique et la détection de radioactivité a permis de souligner qu'aucune solution existante ne répondait aux critères du projet. Parmi les différentes technologies disponibles, des microcanaux en résine KMPR fabriqués sur des détecteurs semiconducteurs de type p-i-n ont été identifiés comme une solution technologique pour le projet. Des détecteurs p-i-n ont ensuite été fabriqués en utilisant un procédé standard. Les performances encourageantes obtenues ont mené à initier un projet de maîtrise pour leur optimisation. En parallèle, les travaux ont été poursuivis avec des détecteurs du commerce sous forme de gaufres non découpées. Un premier dispositif intégrant des canaux en KMPR sur ces gaufres a permis de valider le concept démontrant le grand potentiel de ces choix technologiques et incitant à poursuivre les développements dans cette voie, notamment en envisageant des expériences animales. L'utilisation prolongée des canaux avec du sang non dilué est cependant particulièrement exigeante pour les matériaux artificiels. Une passivation à l'albumine a permis d'augmenter considérablement la compatibilité sanguine de la résine KMPR. Le concept initial, incluant la passivation des canaux, a ensuite été optimisé et intégré dans un système de mesure complet avec toute l'électronique et l'informatique de contrôle. Le système final a été validé chez le petit animal avec un radiotraceur connu. Ces travaux ont donné lieu à la première démonstration d'un détecteur microfluidique de haute efficacité pour la TEP et la TEM. Cette première brique d'un projet plus global est déjà un outil innovant en soi qui permettra d'augmenter l'efficacité du développement d'outils diagnostiques plus spécifiques principalement pour l'oncologie, la cardiologie et la neurologie.
|
100 |
Imagerie dynamique des processus métaboliques transitoires à l'aide de la tomographie d'émission par positrons (TEP) animale dans l'évaluation de photosensibilisateurs pour la thérapie photodynamique du cancer (TPD)Bérard, Véronique January 2006 (has links)
La tomographie d'émission par positrons (TEP) est un outil d'imagerie moléculaire puissant et non invasif permettant d'étudier in vivo des processus physiologiques et moléculaires, tant au niveau cardiaque, cérébral qu'oncologique. En oncologie clinique, la TEP est surtout utilisée pour détecter des tumeurs cancéreuses et évaluer leur réponse à diverses thérapies. Au niveau de la recherche pré-clinique en oncologie, cette modalité d'imagerie moléculaire prometteuse est portée à jouer un rôle important dans le développement de nouveaux protocoles de traitement. Le radiotraceur le plus utilisé pour évaluer le métabolisme tumoral du glucose est le 2-deoxy-2-[[indice supérieur 18]F]-fluoro-D-glucose ([[indice supérieur 18]F]-FDG). La thérapie photodynamique (TPD) est de plus en plus employée dans le traitement de certains cancers.La TPD nécessite la présence combinée de photosensibilisateurs (PS) localisés dans les tumeurs, de lumière à une longueur d'onde appropriée et d'oxygène moléculaire afin d'induire des dommages oxydatifs aux tissus tumoraux.La thérapie photodynamique peut amener une régression tumorale selon deux mécanismes d'action différents. Elle peut engendrer la mort des cellules tumorales directement, alors qu'elle peut aussi endommager la vascularisation de la tumeur amenant une mort indirecte des cellules malignes.La contribution relative de ces deux principaux mécanismes d'action sur la réponse tumorale dépend de la distribution du photosensibilisateur au niveau des compartiments cellulaires ou vasculaires de la tumeur qui à son tour, dépend de la nature chimique de celui-ci. Les PS amphiphiles, comme la phtalocyanine ZnPcS[indice inférieur 2], sont préférentiellement transportés par des lipoprotéines qui pénètrent directement dans les cellules tumorales, alors que les PS hydrophiles tels que la phtalocyanine AlPcS[indice inférieur 4] sont principalement transportés par la protéine albumine et sont déposés dans le stroma vasculaire de la tumeur. Il s'ensuit que la TPD faite avec le ZnPCS[indice inférieur 2] induit plutôt une mort cellulaire directe, alors que l'emploi du AlPcS[indice inférieur 4] affectera en premier lieu le système vasculaire de la tumeur amenant une mort cellulaire indirecte par la suite. Étant donné que l'application de la thérapie photodynamique occasionne très rapidement des effets au niveau des tumeurs traitées, la tomographie d'émission par positrons pourrait certes être un outil idéal pour étudier les réponses biochimiques et physiologiques au niveau des tumeurs tôt suite à ce traitement. L'imagerie TEP avec le [[indice supérieur 18]F]-FDG s'est effectivement avérée être une méthode prometteuse dans l'étude des effets de la thérapie photodynamique du cancer in vivo, soit dans l'évaluation de l'efficacité d'un photosensibilisateur ou dans la détermination de son mécanisme d'action. Des travaux antérieurs en ont montré le potentiel en procédant à des scans à différents temps après la TPD pour mesurer la captation tumorale du [[indice supérieur 18]F]-FDG, injecté sous forme de bolus. Toutefois, cette approche conventionnelle ne donne pas d'informations sur les processus biologiques transitoires impliqués dans la destruction des cellules tumorales, c'est-à-dire les processus survenant durant et immédiatement après l'illumination. Ce mémoire illustre donc une nouvelle approche utilisant l'imagerie TEP, avec infusion continue du radiotraceur [[indice supérieur 18]F]-FDG, pour l'évaluation en temps réel de la réponse tumorale à la TPD chez le rat. De façon plus spécifique, le mécanisme d'action de différents photosensibilisateurs sera investigué en fonction des processus métaboliques transitoires observés durant et immédiatement après l'illumination. De plus, afin de mieux comprendre les processus physiologiques impliqués dans l'avènement de certains changements métaboliques, des études TEP en temps réel évaluant le flot sanguin tumoral durant la TPD ont aussi été amorcées avec les radiotraceurs [[indice supérieur 13]N]-NH[indice inférieur 3] et [[indice supérieur 64]Cu]-PTSM. En somme, nous avons réussi à démontrer la faisabilité d'utiliser l'imagerie TEP en temps réel avec des infusions continues de [[indice supérieur 18]F]-FDG afin d'étudier la réponse métabolique tumorale durant la thérapie photodynamique chez un modèle de rongeur. Cette méthode s'est avérée très pertinente dans l'étude des changements métaboliques transitoires survenant au niveau tumoral et systémique pendant et tout de suite après la TPD, particulièrement pour la caractérisation des mécanismes d'action de différents photosensibilisateurs. En effet, l'observation de différences significatives au niveau des profils de captation du [[indice supérieur 18]F]-FDG procure une façon rapide de distinguer entre un mécanisme de destruction directe ou indirecte des cellules tumorales et ce, en temps réel. En plus de visualiser la réponse métabolique tumorale à la thérapie photodynamique, cette procédure d'imagerie TEP en temps réel pourrait aussi être appliquée à l'étude des changements du flot sanguin tumoral pendant la TPD, ainsi qu'à l'étude de mécanismes de réponse spécifiques tels que les processus apoptotiques.
|
Page generated in 0.0601 seconds