1 |
Étude d'une classe d'équations aux dérivées partielles semi-linéaires sur le groupe de HeisenbergMokrani, Houda 07 December 2009 (has links) (PDF)
L'objectif de cette thèse est l'étude d'une classe d'équations aux dérivées partielles sous-elliptiques semi-linéaires avec un potentiel singulier sur le groupe de Heisenberg. Le terme non linéaire de cette équation est contrôlée par les inégalités de Sobolev et la singularité est contrôlé par l'inégalité de Hardy. Ce problème est une généralisation du problème classique de l'espace euclidien. Le premier résultat de cette thèse est une généralisation de l'inégalité classique Hardy avec un potentiel singulier dont la croissance est exactement l'analogue de celle du cas classique. Le second résultat est d'établir l'existence de solution du problème de Dirichlet semi-linéaire avec un potentiel singulier sur le groupe de Heisenberg en utilisant la théorie de points critiques, comme le théorème de Rabinowitz et de Palais-Smale.
|
2 |
Contributions à l'étude de l'équation de Schrödinger : problème inverse en domaine borné et contrôle optimal bilinéaire d'une équation de Hartree-FockBaudouin, Lucie 09 November 2004 (has links) (PDF)
L'objet de cette thèse est l'étude de quelques propriétés de l'équation d'évolution de Schrödinger. Dans un premier temps, on s'intéresse à un problème inverse concernant cette équation posée en domaine borné, avec potentiel, lequel dépend uniquement de la variable d'espace, et donnée de Dirichlet sur le bord. On démontre, à l'aide d'une inégalité de Carleman, que le problème inverse de la détermination du potentiel à partir de la mesure du flux de la solution à travers une partie du bord est un problème bien posé. Dans un deuxième temps, il est question de l'équation de Schrödinger considérée dans $\mathbb R^3$ avec un potentiel coulombien, localement singulier, et un potentiel électrique non borné, tous deux dépendant des variables d'espace et de temps. On montre successivement l'existence d'une unique solution régulière pour l'équation linéaire et pour l'équation avec non-linéarité de Hartree. Ce sont des étapes préliminaires à l'étude d'un système couplant à travers le potentiel coulombien, cette équation de Hartree-Fock et une équation issue de la dynamique newtonienne. Les résultats obtenus ici sont indispensables à l'étude finale des problèmes de contrôle optimal bilinéaire posés à partir de ces différentes équation, le contrôle de la solution étant effectué par le potentiel électrique. On démontre l'existence d'un contrôle optimal et on donne la condition d'optimalité correspondante dans les cas appropriés\vspace(0,5cm)
|
3 |
Equations elliptiques semilineaires avec potentiel singulierDupaigne, Louis 13 June 2001 (has links) (PDF)
On considère des équations elliptiques semilinéaires simples de la forme Lu = F(x,u), où L est le Laplacien usuel avec condition de Dirichlet sur un ouvert borné régulier de R^n et où F peut être singulière en la variable x. On obtient notemment un critère exact pour l'existence de solutions, qui se traduit par l'apparition d'un nouvel exposant critique dans les applications.
|
4 |
Étude asymptotique de modèles en transition de phase / Asymptotic study of phase transition modelsWehbe, Charbel 05 December 2014 (has links)
Ce rapport de thèse est consacré à l'étude de modèles de champ de phase de type Caginalp. Nous considérons ici, deux parties : la première étant une généralisation du modèle de champ de phase de Caginalp basée sur la loi de Maxwell-Cattaneo et la seconde traite le même modèle dans sa version conservative. L'étude dans les deux parties est faite dans un domaine borné. De plus, dans la première partie on distingue les cas de conditions aux bords de type Dirichlet ainsi que Neumann, tandis que dans la deuxième partie le modèle est étudié uniquement avec les conditions Dirichlet (avec un potentiel régulier puis un potentiel singulier). Tout d'abord, l'existence, l'unicité, et la régularité des solutions sont analysées aux moyens d'arguments classiques. Ensuite, l'existence d'ensembles bornés absorbants est établie. Enfin, dans certains cas, l'existence de l'attracteur global et d'attracteurs exponentiels sont analysés. / This thesis report is devoted to the study of Caginalp type phase-field Models. Here, we consider two parts : the first is a generalization of the Caginalp type phase-field model based on a generalization of the Maxwell-Cattaneo law and the second with the same model in its conservative version. The study in the two parts is made in a bounded domain. In addition, in the first part we distinguish cases of boundary conditions of Dirichlet and Neumann, while in the second part the model is studied only with Dirichlet conditions (with a regular potential and a singular potential). First, the existence, uniqueness, and regularity of solutions are analyzed by means of classical arguments. Then, the existence of bounded absorbing sets is established. Finally, in some cases, the existence of the global attractor and exponential attractors are analyzed.
|
Page generated in 0.0801 seconds