• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 23
  • 23
  • 9
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Realization of Miniaturized Multi-/Wideband Microwave Front-Ends

Al Shamaileh, Khair Ayman January 2015 (has links)
No description available.
12

Low Loss Substrate Integrated Waveguide N-way Power Divider

Mohammadi, Pejman 01 January 2013 (has links) (PDF)
Substrate Integrated Waveguide (SIW) technology has been used in designing and fabricating SIW n-way power dividers. In this thesis employing this technology three-port and
13

Physically/Electrically Enhanced Microwave & Millimeter Wave Front-ends with Modern Manufacturing Technologies

Hussein, Osama I. January 2020 (has links)
No description available.
14

A Multi-Wilkinson Power Divider Based Complex Reflection Coefficient Detector

Cooper, James Roger 19 May 2010 (has links)
In the field of applied electromagnetics, there is always a need to create new methods for electrical characterization of materials, systems, devices, etc. Many applications need small and/or inexpensive equipment in performing these characterizations. The current method for making measurements of electrical properties at frequencies above 300 MHz, the transmission/reflection method, has severe limitations in these areas due large size and high price of the necessary equipment for making them. Therefore, presented herein is the conceptualization, design and analysis of a complex reflection coefficient detector which is relatively small, lightweight, and inexpensive. A reflection coefficient detector is a device designed to isolate and compare a driving signal against a reflected signal. The reflection of the second signal is caused by a mismatch between the device's output impedance and a load's input impedance. By comparing the driving, or transmitted, signal and the reflected signal, the reflection coefficient at the boundary can be calculated. This coefficient can be used to calculate a load's input impedance, or a material's permittivity when combined with an attached probe's characteristics. The reflection coefficient detector presented is built using microstrip and surface mount components. This makes the device comparably cheap. Its design is based upon five Wilkinson Power Dividers which lends itself to be scaled down for implementation in on-chip, and other micro- and nano- scale systems. The accuracy and functionality of the device will be demonstrated through the use of S-Parameters measurements and CAD simulations. Through this, it will be shown that the device is a practical form of making measurements in applications which are otherwise restricted to certain limitations. In closing, applications, alternative designs and future advancements of the complex reflection coefficient detector will be discussed.
15

Novel Beamforming and Antenna Techniques for Microwave Power Transmission in Radiating Near Field / 放射近傍界マイクロ波送電に向けたビームフォーミング及びアンテナ技術に関する研究

Kojima, Seishiro 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23206号 / 工博第4850号 / 新制||工||1757(附属図書館) / 京都大学大学院工学研究科電気工学専攻 / (主査)教授 篠原 真毅, 教授 和田 修己, 教授 山本 衛 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
16

Microwave Devices and Antennas Based on Negative-refractive-index Transmission-line Metamaterials

Antoniades, Marc A. 23 September 2009 (has links)
Several microwave devices and antennas that are based on negative-refractive-index transmission-line (NRI-TL) metamaterials are presented in this thesis, which exhibit superior performance features compared to their conventional counterparts. These are a Wilkinson balun, a 1:4 series power divider, a four-element printed dipole array, a leaky-wave antenna, and an electrically small folded-monopole antenna. The Wilkinson balun employs +90° and −90° NRI-TL metamaterial lines at the output branches of a Wilkinson divider, to achieve a six-fold increase in the measured differential output phase bandwidth compared to that of an analogous balun employing transmission lines, while occupying only 55% of the area. The 1:4 series power divider comprises four non-radiating 0° NRI-TL metamaterial lines, each with a compact length of λ0/8, to provide equal power split to all four output ports. Compared to a conventional series power divider employing one-wavelength long transmission lines, the metamaterial divider provides a 154% increase in the measured through-power bandwidth, while occupying only 54% of the area. The metamaterial series power dividing concept is also applied to a four-element fully-printed dipole array that is designed to radiate at broadside, in order to demonstrate that the array exhibits reduced beam squinting characteristics. It is shown that the metamaterial-fed array has a measured scan-angle bandwidth that is 173% greater than an array that is fed using a conventional low-pass loaded line. The reduced-beam squinting property that NRI-TL metamaterial lines offer is subsequently exploited to create a leaky-wave antenna that radiates a near-fixed beam in the forward +45° direction, with an average measured beam squint of only 0.031°/MHz. This is achieved by operating the antenna in the upper right-handed band where the phase and group velocities are the closest to the speed of light. Finally, an electrically small antenna comprising four 0° NRI-TL metamaterial unit cells is presented which supports a predominantly even-mode current, thus enabling it to be modeled as a multi-arm folded monopole. This significantly increases its radiation resistance, which allows it to be matched to 50 Ω, while maintaining a high measured efficiency of 70%.
17

Microwave Devices and Antennas Based on Negative-refractive-index Transmission-line Metamaterials

Antoniades, Marc A. 23 September 2009 (has links)
Several microwave devices and antennas that are based on negative-refractive-index transmission-line (NRI-TL) metamaterials are presented in this thesis, which exhibit superior performance features compared to their conventional counterparts. These are a Wilkinson balun, a 1:4 series power divider, a four-element printed dipole array, a leaky-wave antenna, and an electrically small folded-monopole antenna. The Wilkinson balun employs +90° and −90° NRI-TL metamaterial lines at the output branches of a Wilkinson divider, to achieve a six-fold increase in the measured differential output phase bandwidth compared to that of an analogous balun employing transmission lines, while occupying only 55% of the area. The 1:4 series power divider comprises four non-radiating 0° NRI-TL metamaterial lines, each with a compact length of λ0/8, to provide equal power split to all four output ports. Compared to a conventional series power divider employing one-wavelength long transmission lines, the metamaterial divider provides a 154% increase in the measured through-power bandwidth, while occupying only 54% of the area. The metamaterial series power dividing concept is also applied to a four-element fully-printed dipole array that is designed to radiate at broadside, in order to demonstrate that the array exhibits reduced beam squinting characteristics. It is shown that the metamaterial-fed array has a measured scan-angle bandwidth that is 173% greater than an array that is fed using a conventional low-pass loaded line. The reduced-beam squinting property that NRI-TL metamaterial lines offer is subsequently exploited to create a leaky-wave antenna that radiates a near-fixed beam in the forward +45° direction, with an average measured beam squint of only 0.031°/MHz. This is achieved by operating the antenna in the upper right-handed band where the phase and group velocities are the closest to the speed of light. Finally, an electrically small antenna comprising four 0° NRI-TL metamaterial unit cells is presented which supports a predominantly even-mode current, thus enabling it to be modeled as a multi-arm folded monopole. This significantly increases its radiation resistance, which allows it to be matched to 50 Ω, while maintaining a high measured efficiency of 70%.
18

Defected Ground Structure And Its Applications To Microwave Devices And Antenna Feed Networks

Kilic, Ozgehan 01 September 2010 (has links) (PDF)
This thesis reports the analysis of the rectangular shaped defected ground structure (RS-DGS) and the application of the structure on some microwave devices. DGS is analyzed in terms of its superior properties, which enables the designers to easily realize many kind of microwave devices which are impossible to achieve with the standard applications. Within the scope of this thesis, the focus is on the rectangular shaped DGS and its characteristic properties. The basic slow wave and high impedance characteristics are utilized in the design of some microwave devices. The design is carried on at the two different frequency bands: X-band and Ka band, centering at 10 GHz and 35 GHz, respectively. Finally, using the high impedance property and the coupling between the defects, a wide band 1 : 4 beam forming network is designed and implemented at 10 GHz.
19

Nouvelles Topologies des diviseurs de puissance, balun et déphaseurs en bandes RF et millimétiques, apport des lignes à ondes lentes / Design of passive components at 60 GHz (rat race and power divider) in CMOS 28 nm technology using slow wave transmission lines.

Burdin, François 16 July 2013 (has links)
L’objectif de cette thèse a été premièrement de réaliser des dispositifs passifs intégrés à base de lignes à onde lentes nommées S-CPW (pour « Slow-wave CoPlanar Waveguide ») aux fréquences millimétriques. Plusieurs technologies CMOS ou BiCMOS ont été utilisées: CMOS 65 nm et 28 nm ainsi que BiCMOS 55 nm. Deux baluns, le premier basé sur une topologie de rat-race et le second basé sur un diviseur de puissance de Wilkinson modifié, ainsi qu’un inverseur de phase, ont été réalisés et mesurés dans la technologie CMOS 65 nm. Les résultats expérimentaux obtenus se situent à l’état de l’art en termes de performances électriques. Un coupler hybride et un diviseur de puissance avec des sorties en phase sans isolation ont été conçus en technologie CMOS 28 nm. Les simulations montrent de très bonnes performances pour des dispositifs compacts. Les circuits sont en cours de fabrication et pourront très bientôt être caractérisés. Ensuite, une nouvelle topologie de diviseurs de puissance, avec sorties en phase et isolé a été développée, offrant une grande flexibilité et compacité en comparaison des diviseurs de puissance traditionnels. Cette topologie est parfaitement adaptée pour les technologies silicium. Comme preuve de concept, deux diviseurs de puissance avec des caractéristiques différentes ont été réalisés en technologie PCB microruban à la fréquence de 2.45 GHz. Un composent a été conçu à 60 GHz en technologie BiCMOS 55 nm utilisant des lignes S CPW. Les simulations prouvent que le dispositif est faibles pertes, adapté et isolé. Les circuits sont également en cours de fabrication. Enfin, deux topologies de « reflection type phase shifter » ont été développées, la première dans la bande RF et la seconde aux fréquences millimétrique. Pour la bande RF, le déphasage atteint plus de 360° avec une figure de mérite très élevée en comparaison avec l’état de l’art. En ce qui concerne le déphaseur dans la bande millimétrique, la simulation montre un déphasage de 341° avec également une figure de mérite élevée. / The first purpose of this work was the use of slow-wave coplanar waveguides (S CPW) to achieve various passive components with the aim to show their great potential and interest at millimetre-waves. Several CMOS or BiCMOS technologies were used: CMOS 65 nm and 28 nm, and BiCMOS 55 nm. Two baluns, one based on a rat-race topology and the other based on a modified Wilkinson power divider, and a phase inverter, were achieved and measured in a 65 nm CMOS technology. State-of-the-art results were achieved. A branch-line coupler and an in phase power divider without isolation were designed in a 28 nm CMOS technology. Really good performances are expected for these compact devices being yet under fabrication. Then, a new topology of in phase and isolated power divider was developed, leading to more flexibility and compactness, well suited to millimetre-wave frequencies. Two power dividers with different characteristics were realized in a PCB technology at 2.45 GHz by using microstrip lines, as a proof-of-concept. After that, a power divider was designed at the working frequency of 60 GHz in the 55 nm BiCMOS technology with S CPWs. The simulation results showed a low loss, full-matched and isolated component, which is also under fabrication and will be characterized as soon as possible. Finally, two new topologies of reflection type phase shifters were presented, one for the RF band and one for the millimetre-wave one. For the one in RF band, the phase shift can reach more than 360° with a great figure-of-merit as compared to the state-of-the-art. Concerning the phase shifter in the millimetre-wave band, the simulation results show a phase shift of 341° with also a high figure-of-merit.
20

Širokopásmové planární antény / Wideband planar antennas

Špatenka, Vojtěch January 2012 (has links)
In this master´s thesis an issue of broadband planar antennas was analyzed. Firstly, the basic elements that affect bandwidth, such as the influence of the dieletric substrate, suitable shape or feeding network, were described. Furthermore technics that can be used to widen the band of the planar antennas were described. These technics were applied to a chosen type of a planar antenna. This antenna was modeled and simulated for desired dielectric substrate in CST STUDIO SUITE 2010 software. Feeding network with power dividers was designed for the antenna array. In order to obtain a higher gain, the antenna was implemented into the 2x2 element array. The results of the simulation are evaluated in the conclusion.

Page generated in 0.1173 seconds