• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 80
  • 17
  • 17
  • 9
  • 9
  • 5
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 192
  • 47
  • 35
  • 27
  • 25
  • 25
  • 23
  • 22
  • 21
  • 20
  • 17
  • 15
  • 15
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Development of an Instrumented and Powered Exoskeleton for the Rehabilitation of the Hand

Abolfathi, Peter Puya January 2008 (has links)
Doctor of Philosophy (PhD) / With improvements in actuation technology and sensory systems, it is becoming increasingly feasible to create powered exoskeletal garments that can assist with the movement of human limbs. This class of robotics referred to as human-machine interfaces will one day be used for the rehabilitation of paralysed, damaged or weak upper and lower extremities. The focus of this project was the development of an exoskeletal interface for the rehabilitation of the hands. A novel sensor was designed for use in such a device. The sensor uses simple optical mechanisms centred on a spring to measure force and position simultaneously. In addition, the sensor introduces an elastic element between the actuator and its corresponding hand joint. This will allow series elastic actuation (SEA) to improve control and safely of the system. The Hand Rehabilitation Device requires multiple actuators. To stay within volume and weight constraints, it is therefore imperative to reduce the size, mass and efficiency of each actuator without losing power. A method was devised that allows small efficient actuating subunits to work together and produce a combined collective output. This work summation method was successfully implemented with Shape Memory Alloy (SMA) based actuators. The actuation, sensory, control system and human-machine interface concepts proposed were evaluated together using a single-joint electromechanical harness. This experimental setup was used with volunteer subjects to assess the potentials of a full-hand device to be used for therapy, assessment and function of the hand. The Rehabilitation Glove aims to bring significant new benefits for improving hand function, an important aspect of human independence. Furthermore, the developments in this project may one day be used for other parts of the body helping bring human-machine interface technology into the fields of rehabilitation and therapy.
162

Système de radiocommunication télé-alimenté par voie radiofréquence à 2.45 GHz / Design of radiofrequency energy harvesters in CMOS technology for low-power applications

Karolak, Dean 27 November 2015 (has links)
Récepteurs récupérateurs d’énergie sans fil (WPR) détiennent un avenir prometteur pour la génération d'énergie électrique continue afin d’alimenter complètement ou partiellement les circuits compris dans les systèmes de communication sans fil. Applications importantes telles que l'identification par radiofréquence (RFID) et les réseaux de capteurs sans fils (WSN) fonctionnant aux bandes de fréquences UHF et SHF sont apparues, nécessitant un important effort sur la conception de WPRs d’haute efficacité pour étendre la distance de fonctionnement ou de la durée de vie de ces applications portables. Dans ce contexte, les redresseurs intégrés et les antennes sont d'un intérêt particulier, car ils sont responsables pour la tâche de conversion d'énergie. Ce travail de thèse vise à faire progresser l'étatde l'art à travers de la conception et réalisation de WPRs d’haute efficacité, dès l'antenne jusqu’au stockage de la puissance DC convertie, en explorant les défis d’interconnexion avec leur pleine intégration sur PCBs. / Wireless Powered Receivers (WPR) hold a promising future for generating a small amount ofelectrical DC energy to drive full or partial circuits in wirelessly communicating electronic devices.Important applications such as RFIDs and WSNs operating at UHF and SHF bands have emerged,requiring a significant effort on the design of high efficient WPRs to extend the operating range or thelifetime of these portable applications. In this context, integrated rectifiers and antennas are of aparticular interest, since they are responsible for the energy conversion task. This thesis work aims tofurther the state-of-the-art throughout the design and realization of high efficient WPRs from the antennaup to the storage of the converted DC power, exploring the interfacing challenges with their fullyintegration into PCBs.
163

Dielectric Barrier Discharge Initiated NOx Abatement In Diesel Engine Exhaust : Towards Achieving Higher Removal Efficiency

Mohapatro, Sankarsan 07 1900 (has links) (PDF)
In the last few decades India has advanced socioeconomically due to the rapid growth of industries and automobile sector. This in turn increases the use of fossil fuel and diesel. The atmosphere gets polluted due to the harmful substances, which comes from the burning of fuel. These pollutants can be in the form of gaseous, liquid or solid particulate. Diesel engines, the major source of power in industries and automobiles, play a significant part in causing air pollution. The major pollutants in diesel exhaust are oxides of nitrogen (NOX), sulphur dioxide (SO2), carbon monoxide (CO), hydrocarbons (HC), particulate matter (PM), volatile organic compounds (VOC), aldehydes and alcohols. Due to the heavy consumption of diesel as a fuel there is an urgent need to control diesel exhaust. Diesel exhaust is a complex mixture of several gases and fine particles (commonly known as soot) that contains more than 40 toxic air contaminants. Amongst the gaseous pollutants in diesel exhaust, the major concern and a challenging task is to control oxides of nitrogen, commonly referred to as NOX as it is the major contributor for acid rain, photochemical smog etc. Successful control of emissions from diesel engines is yet to be achieved. The conventional techniques which are available to control emission now are either difficult to operate or does not satisfy the stringent emission standards. This has made the researchers throughout the world to find an alternative and effective non-conventional after treatment technique to reduce diesel engine emission. The failure of conventional techniques lead to the development of non-conventional techniques such as high voltage electric discharge based plasma which has already been proved to be economical and highly efficient in industrial electrostatic precipitators. Electric discharge plasma or non-thermal plasma produce energetic electrons which react with background molecules in flue gas leading to active species such as radicals. These radicals being chemically active selectively react with the harmful pollutants facilitating their removal/reduction. The present thesis work is an attempt to provide a technical solution to achieve higher removal efficiencies of oxides of nitrogen in the backdrop of shortcomings that exist in conventional technologies to do so. The current thesis describes the research in four stages: (i) studies on NOX removal from diesel exhaust by cross-flow DBD reactor, where design and fabrication of cross-flow DBD reactor, exhaust treatment using cross-flow DBD reactor and exhaust treatment with cascaded plasma-adsorbent technique is described (ii) studies on NOX removal from diesel exhaust by compact discharge plasma sources, where design and fabrication of high frequency high voltage AC (HVAC) using old television flyback transformer, Design and fabrication of high voltage pulse (HVPulse) using automobile ignition coil, exhaust treatment with both HVPulse and HVAC and exhaust treatment with cascaded plasma-adsorbent technique is described (iii) studies on NOX removal from diesel exhaust using solar powered discharge plasma source is described (iv) studies on the NOX removal from diesel exhaust using red mud, where exhaust treatment with red mud and Exhaust treatment cascaded plasma-red mud is covered. The results have been discussed in light of enhancing the NOX removal efficiency for stationary and automobile engine exhausts.
164

IoT systém pro zahrádkáře / IoT system for gardening

Mlčák, Petr January 2021 (has links)
The thesis deals with the design and creation of a weather station suitable for gardeners. The created device is able to measure temperature, pressure, humidity, amount of precipitation, wind speed and direction, UV index and also temperature and soil moisture at several depths. The weather station is powered by a battery with auxiliary charging from a photovoltaic panel. The thesis is divided into several parts. The theoretical part describes the individual physical principles of measurement of the considered physical quantities. Subsequently, a comparison of available sensors is made and then a final selection is made. The third part deals with the design and implementation of the hardware circuitry including the creation of the PCB. In this section, the holders of each sensor are also designed for printing on a 3D printer, which are then printed. The fourth section deals with software design issues, which is described in more detail. Finally, the whole weather station is assembled, wired and the functionality of all components is verified by sending the measured data to Thingspeak.
165

Akumulátorová sekačka na trávu / Battery supplied lawn mower

Picmaus, Jan January 2021 (has links)
The thesis deals with a concept of turning a conventional petrol powered lawn mower to a battery powered solution which is powered by lithium cells. A division to three chapters, comparison, mechanical and electrical, provides fluency of the whole design and further realization. The arrangement of chapters is performed so that the continuity of the thesis is maintained. Calculations of parameters of every motor and transmission with choosing particular devices are just a part of much interesting information which can be found in this thesis. All new components have full documentation except those which were changed during manufacturing. The electrical part explains every part of the schematics in detail. The realization contains difference between preliminary design and further production, manufacturing of the PCB and powering up the motor drives. The last part of the thesis contains temperature measurements of the device at no load.
166

Generátorové snímače / Power harvesting sensors

Arnošt, Karel January 2008 (has links)
The thesis deals with power harvesting sensors as a source of energy. As the power requirements for microelectronics decreases the environmental energy sources become more perspective. In a few last years batteries reach a higher capacity but there is still problem with their replacement. Power harvesting sensors appears as a good solution for powering microelectronics.
167

Bezdrátové pohotovostní přivolání ošetřovatelské služby / Wireless Nurse Care Calling

Bubník, Karel January 2010 (has links)
This work describes the design, construction a performance of such a complete wireless pager suitable for health care centers, rest homes, home application, for example for calling an attendant. This appliance is designed to be easy to attendance. A wireless transceiver is simplified and is attended only by one button. A wireless receiver also doesn't require a complicated manipulation. The aim is to create pager, which will be an useful assistant thanks to its price and simple construction.
168

Návrh lehkého průzkumného letounu bez lidské posádky / Design of Light Unmanned Reconnaissance Aircraft

Kadidlo, Miroslav January 2009 (has links)
The Thesis solves design of light unmanned reconnaissance aircraft carrying 3 kg payload. Based on statistical research chooses the field of long endurance flights, trying to manage problem via solar powered batteries. Difficulities and advantages of this issue are researched and optimal aircraft setup is discussed.
169

Návrh elektroniky autonomního monitorovacího systému / Design of autonomous monitoring system elektronics

Heger, Krištof January 2015 (has links)
This master’s thesis deals with the design of autonomous monitoring system electronics which will be used for diagnostics of the electromagnetic vibration generator developed at Brno University of Technology. This generator should be used in a practical application where frequent mechanical shocks are present, for example in vehicle or goods transportation. For such an application, the goal of the monitoring system is to find out whether generator is capable of producing enough electrical energy for smooth operation of wireless sensors used in similar applications. The first part of the thesis consists of the autonomous diagnostics system overview from both commercial and scientific spheres, brief description of the vibration generator used and also a summary of commercially available power management electronics. The next chapters present the detailed description of each functional element of energy harvesting system, the simulation of generator’s behaviour for optimal load in three different model applications and the most important part – design of the autonomous monitoring system. In the end, achieved results are evaluated and it is considered whether the shock-driven generator is suitable for use in a given application.
170

MULTI-OBJECTIVE DESIGN OF DYNAMIC WIRELESS CHARGING SYSTEMS FOR HEAVY – DUTY VEHICLES

Akhil Prasad (9739226) 15 December 2020 (has links)
<p>Presently, internal combustion engines provide power to move the majority of vehicles on the roadway. While battery-powered electric vehicles provide an alternative, their widespread acceptance is hindered by range anxiety and longer charging/refueling times. Dynamic wireless power transfer (DWPT) has been proposed as a means to reduce both range anxiety and charging/refueling times. In DWPT, power is provided to a vehicle in motion using electromagnetic fields transmitted by a transmitter embedded within the roadway to a receiver at the underside of the vehicle. For commercial vehicles, DWPT often requires transferring hundreds of kW through a relatively large airgap (> 20 cm). This requires a high-power DC-AC converter at the transmitting end and a DC-AC converter within the vehicle. </p> In this research, a focus is on the development of models that can be used to support the design of DWPT systems. These include finite element-based models of the transmitter/receiver that are used to predict power transfer, coil loss, and core loss in DWPT systems. The transmitter/receiver models are coupled to behavioral models of power electronic converters to predict converter efficiency, mass, and volume based upon switching frequency, transmitter/receiver currents, and source voltage. To date, these models have been used to explore alternative designs for a DWPT intended to power Class 8-9 vehicles on IN interstates. Specifically, the models have been embedded within a genetic algorithm-based multi-objective optimization in which the objectives include minimizing system mass and minimizing loss. Several designs from the optimization are evaluated to consider practicality of the proposed designs.

Page generated in 0.0369 seconds