Spelling suggestions: "subject:"problemas dde otimização"" "subject:"problemas dee otimização""
11 |
Documentação e testes da biblioteca genérica de álgebra linear Klein / Tests and documentation of the Klein libraryRafael Freitas Schmid 12 December 2014 (has links)
Este trabalho descreve a Klein, uma biblioteca genérica para álgebra linear em C++. A Klein facilita o uso de matrizes e vetores, permitindo que o usuário programe de modo similar ao Matlab. Com ela podemos, por exemplo, implementar um passo do método de Newton para a função f, através da expressão x = x - inv(jac(x)) * f(x), onde x é o vetor, jac a Jacobiana e inv a inversa. Além disso, por se tratar de uma biblioteca genérica, os tipos envolvidos nestas expressões podem ser escolhidos pelo programador. O trabalho também discute como a biblioteca é testada, tanto do ponto de vista de corretude quanto de desempenho. / We describe the Klein library, a generic libray for linear algebra in C++. It simplifies the use of vectors and matrices and let the user program as in Matlab. With Klein, one can for instance implement Newton\'s method as x = x - inv(jac(x)) * f(x), where x is a vector, jac is the Jacobian matrix, inv is the inverse operator and f(x) is the function of which we want to find zero. Moreover, Klein is generic in the sense that it allows the use of arbitrary types of scalars (float, double, intervals, rationals, etc). We also explain how it is tested, both for correctness and performance.
|
12 |
Transição entre os comportamentos estendido e localizado em caminhadas estocásticas parcialmente auto-repulsivas em sistemas desordenados unidimensionais / Transition between the extended and localized regimes in stochastic partially self-avoiding walks in one-dimensional disordered systemsBerbert, Juliana Militão da Silva 25 September 2009 (has links)
Considere $N$ pontos distribuídos de forma aleatória e uniforme num hipercubo $d$-dimensional. Cada ponto representa um sítio num meio desordenado. Um caminhante explora este meio saltando para os sítios mais próximos, que não tenham sido visitados nos últimos $\\mu$ (memoria) passos, inclusive o próprio sítio. A trajetória do caminhante é composta de uma parte transiente e de uma parte periódica (ciclos). Neste caso, o viajante pode ou não explorar todos espaço disponível. A partir de uma memória crítica, ocorre uma transição entre os regimes de exploração localizado e estendido. Para sistemas unidimensionais, essa transição ocorre na memória crítica $\\mu_1=\\log_2{N}$. A regra determinista pode ser suavizada, a fim de considerar situações mais realistas, com a inclusão do parâmetro estocástico $T$ (temperatura). Agora, os movimentos do caminhante são definidos por uma função densidade de probabilidade (PDF) que é parametrizada por $T$ e por uma função custo, que cresce à medida que a distância entre os sítios cresce. A PDF é escolhida de forma a favorecer saltos para sítios mais próximos. Com o aumento da temperatura, o caminhante pode sair de ciclos e estender sua exploração. Aqui, nós apresentamos os estudos analíticos e numéricos sobre a influência da temperatura e da memória crítica na exploração de um meio desordenado unidimensional. / Consider $N$ sites randomly and uniformly distributed in a $d$-dimensional hypercube. A walker explores this disordered medium going to the nearest site, which has not been visited in the last $\\mu$ (memory) steps. The walker trajectory is composed of a transient part and a periodic part (cycles). In this case, travelers can or cannot explore all available space, given rise to a crossover at critical memory, for one-dimensional systems $\\mu_1=\\log_2{N}$, between localized and extended regimes. % as function of $\\mu$. The deterministic rule can be softened to consider more realistic situations with the inclusion of a stochastic parameter $T$ (temperature). In this case, the walker movement is defined by a probability density function (PDF) that is parameterized by $T$ and a cost function, which increases as the distance among sites increases. The PDF is chosen to favor hops to nearest sites. As the temperature increases, the walker can escape from cycles and extend the exploration. Here we report the analytical and numerical studies of the influence of the temperature and the critical memory in the exploration of a one-dimensional disordered system.
|
13 |
Transição entre os comportamentos estendido e localizado em caminhadas estocásticas parcialmente auto-repulsivas em sistemas desordenados unidimensionais / Transition between the extended and localized regimes in stochastic partially self-avoiding walks in one-dimensional disordered systemsJuliana Militão da Silva Berbert 25 September 2009 (has links)
Considere $N$ pontos distribuídos de forma aleatória e uniforme num hipercubo $d$-dimensional. Cada ponto representa um sítio num meio desordenado. Um caminhante explora este meio saltando para os sítios mais próximos, que não tenham sido visitados nos últimos $\\mu$ (memoria) passos, inclusive o próprio sítio. A trajetória do caminhante é composta de uma parte transiente e de uma parte periódica (ciclos). Neste caso, o viajante pode ou não explorar todos espaço disponível. A partir de uma memória crítica, ocorre uma transição entre os regimes de exploração localizado e estendido. Para sistemas unidimensionais, essa transição ocorre na memória crítica $\\mu_1=\\log_2{N}$. A regra determinista pode ser suavizada, a fim de considerar situações mais realistas, com a inclusão do parâmetro estocástico $T$ (temperatura). Agora, os movimentos do caminhante são definidos por uma função densidade de probabilidade (PDF) que é parametrizada por $T$ e por uma função custo, que cresce à medida que a distância entre os sítios cresce. A PDF é escolhida de forma a favorecer saltos para sítios mais próximos. Com o aumento da temperatura, o caminhante pode sair de ciclos e estender sua exploração. Aqui, nós apresentamos os estudos analíticos e numéricos sobre a influência da temperatura e da memória crítica na exploração de um meio desordenado unidimensional. / Consider $N$ sites randomly and uniformly distributed in a $d$-dimensional hypercube. A walker explores this disordered medium going to the nearest site, which has not been visited in the last $\\mu$ (memory) steps. The walker trajectory is composed of a transient part and a periodic part (cycles). In this case, travelers can or cannot explore all available space, given rise to a crossover at critical memory, for one-dimensional systems $\\mu_1=\\log_2{N}$, between localized and extended regimes. % as function of $\\mu$. The deterministic rule can be softened to consider more realistic situations with the inclusion of a stochastic parameter $T$ (temperature). In this case, the walker movement is defined by a probability density function (PDF) that is parameterized by $T$ and a cost function, which increases as the distance among sites increases. The PDF is chosen to favor hops to nearest sites. As the temperature increases, the walker can escape from cycles and extend the exploration. Here we report the analytical and numerical studies of the influence of the temperature and the critical memory in the exploration of a one-dimensional disordered system.
|
14 |
Problemas de otimização : uma abordagem metodológica à luz do ensino médioEvangelista, Simone Carla Silva Souza 13 April 2015 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Optimization problems are interesting both from the theoretical and practical point of view. In this thesis we address this subject, presenting problems of analytical nature, algebraic, geometric and combinatorial that can be addressed in basic education. Our main goal is to show how much content already taught in school can
be used in attractive way for students through real-world problems can be solved with the use of mathematics. Also tried to suggest some topics that, although not part of the standard curriculum can be implemented by integrating diverse part. / Problemas de otimização são interessantes tanto do ponto de vista teórico quanto prático. Nesta dissertação abordamos este assunto, apresentando problemas de natureza analítica, algébrica, geométrica e combinatória que podem ser abordados no ensino básico. Nosso principal objetivo é evidenciar como muito dos conteúdos já ensinados na escola podem ser utilizados de forma atrativa para os alunos, através de problemas do cotidiano que podem ser resolvidos com o uso da matemática. Também experimentamos sugerir alguns temas que, embora não façam parte do currículo padrão, podem ser implementados integrando a parte diversificada.
|
15 |
Contributions in interval optimization and interval optimal control /Villanueva, Fabiola Roxana. January 2020 (has links)
Orientador: Valeriano Antunes de Oliveira / Resumo: Neste trabalho, primeiramente, serão apresentados problemas de otimização nos quais a função objetivo é de múltiplas variáveis e de valor intervalar e as restrições de desigualdade são dadas por funcionais clássicos, isto é, de valor real. Serão dadas as condições de otimalidade usando a E−diferenciabilidade e, depois, a gH−diferenciabilidade total das funções com valor intervalar de várias variáveis. As condições necessárias de otimalidade usando a gH−diferenciabilidade total são do tipo KKT e as suficientes são do tipo de convexidade generalizada. Em seguida, serão estabelecidos problemas de controle ótimo nos quais a funçãao objetivo também é com valor intervalar de múltiplas variáveis e as restrições estão na forma de desigualdades e igualdades clássicas. Serão fornecidas as condições de otimalidade usando o conceito de Lipschitz para funções intervalares de várias variáveis e, logo, a gH−diferenciabilidade total das funções com valor intervalar de várias variáveis. As condições necessárias de otimalidade, usando a gH−diferenciabilidade total, estão na forma do célebre Princípio do Máximo de Pontryagin, mas desta vez na versão intervalar. / Abstract: In this work, firstly, it will be presented optimization problems in which the objective function is interval−valued of multiple variables and the inequality constraints are given by classical functionals, that is, real−valued ones. It will be given the optimality conditions using the E−differentiability and then the total gH−differentiability of interval−valued functions of several variables. The necessary optimality conditions using the total gH−differentiability are of KKT−type and the sufficient ones are of generalized convexity type. Next, it will be established optimal control problems in which the objective function is also interval−valued of multiple variables and the constraints are in the form of classical inequalities and equalities. It will be furnished the optimality conditions using the Lipschitz concept for interval−valued functions of several variables and then the total gH−differentiability of interval−valued functions of several variables. The necessary optimality conditions using the total gH−differentiability is in the form of the celebrated local Pontryagin Maximum Principle, but this time in the intervalar version. / Doutor
|
Page generated in 0.1033 seconds