• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 68
  • 20
  • 10
  • Tagged with
  • 94
  • 62
  • 31
  • 25
  • 23
  • 22
  • 18
  • 17
  • 17
  • 16
  • 13
  • 13
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Characterization of proteasome assembly in psoriatic skin and during keratinocyte differentiation in vitro - role of the proteasome maturation protein (POMP). / Caractérisation de l'assemblage du protéasome dans la peau psoriasique et au cours de la différenciation kératinocytaire in vitro - rôle de la protéine de maturation du protéasome (POMP).

Zieba, Barbara Agnieszka 19 December 2016 (has links)
Les protéasomes jouent un rôle majeur dans la protéolyse intracellulaire non-lysosomale et interviennent de ce fait dans la régulation de toutes les voies biologiques intracellulaires ainsi que dans la production des peptides antigéniques présentés au système immunitaire. La biosynthèse du protéasome 20S (le cœur protéolytique) est un processus complexe qui met en œuvre plusieurs protéines chaperonnes qui facilitent l'assemblage des sous-unités entre elles pour former d’abord des « hémi-protéasomes ». Ces hémi-protéasomes s'unissent ensuite deux à deux pour créer le protéasome 20S. La Protéine de Maturation du Protéasome (POMP) est une chaperonne « clé » de l’assemblage du protéasome: son hyperexpression induit une augmentation des activités protéolytiques du protéasome et une augmentation d’expression de plusieurs de ses sous-unités. Cette surexpression augmente également la longévité de la levure Saccharomyces cerevisiae, et augmente ses capacités de résistance au stress oxydant. L’activité protéolytique et l’expression des sous-unités des protéasomes sont augmentées dans l’épiderme psoriasique. Nos précédents résultats étaient en faveur d’une régulation post-transcriptionnelle de cette expression. Nous avons émis l’hypothèse que POMP était impliquée dans la biosynthèse accrue du protéasome dans la peau psoriasique. L'objectif de cette thèse a donc été d’étudier l’assemblage du protéasome et l’expression de POMP dans la peau psoriasique et au cours de la différenciation kératinocytaire. L'expression des protéasomes et de POMP a été évaluée au niveau protéique et au niveau des ARN messagers par Immuno-Histochimie, Western-blots et RT-PCR. L’assemblage du protéasome a été étudié par électrophorèse en conditions non dénaturantes, à partir de lysats de peaux psoriasiques ou de kératinocytes. L’expression de POMP a été modulée avec des ARN interférents dans des lignées HaCaT. Nous avons observé que les protéasomes 26S et 20S (et leur activité protéolytique) étaient augmentés dans la peau psoriasique lésée, de même que les régulateurs PA28β, PA28γ, PA200 et la sous-unité RPT4 du 19S. Ces résultats suggèrent que toutes les formes majeures des protéasomes sont augmentées dans la peau psoriasique. POMP est surexprimée dans l’épiderme psoriasique et associée à des précurseurs du protéasome. Au cours de la différenciation des cellules HaCaT, l’assemblage des protéasomes 20S et 26S et l’expression de POMP augmentent aux temps précoces (3 premiers jours) alors qu’aux temps plus tardifs les protéasomes 26S se désassemblent. Ce profil de désassemblage (marqué par la diminution du protéasome 26S, l’augmentation du protéasome 20S et l'accumulation du complexe régulateur 19S) est très similaire à celui observé au cours du stress oxydatif. L’inhibition forte de l'expression de POMP a un effet anti-proliferatif et pro-apoptotique via l’inhibition de l’assemblage du protéasome dans les lignées kératinocytaires. Une inhibition plus modérée diminue l’expression des marqueurs de différenciation kératine 10 et involucrine au cours de la différenciation calcium-induite des HaCaT. L’ensemble de ces résultats suggère que l’augmentation de l’assemblage, de l’activité et de la quantité des protéasomes dans l’épiderme psoriasique est liée (au moins en partie) à la surexpression de POMP et que la dérégulation de POMP pourrait altérer la prolifération et la différenciation kératinocytaires. Nos travaux sont donc en faveur de l’implication de POMP et de l’assemblage du protéasome dans la pathogénie du psoriasis. Le ciblage thérapeutique de POMP pourrait potentiellement avoir une action anti-proliférative et anti-inflammatoire (via notamment l’inhibition de NF-κB) et représente donc une perspective thérapeutique intéressante dans le psoriasis. / Proteasomes play a major role in non-lysosomal intracellular proteolysis and thereby are involved in the regulation of all intracellular biological pathways as well as in the production of antigenic peptides presented to the immune system. The biosynthesis of the 20S proteasome (proteolytic core) is a complex process that requires several chaperone proteins that facilitate the assembly of the subunits to form "hemi-proteasomes" that then combine in pairs to create the 20S proteasome. Proteasome Maturation Protein (POMP) is a key chaperone for proteasome assembly: its overexpression induces an increase in proteolytic activities of the proteasome and an increase in expression of several of its subunits. This overexpression also increases the longevity of the yeast Saccharomyces cerevisiae and increases its capabilities of resistance against oxidative stress. The proteolytic activity and expression of the proteasome subunits are increased in psoriatic epidermis. Our previous findings suggested a post-transcriptional regulation of this expression. We hypothesized that POMP was involved in the increased biosynthesis of proteasome in psoriatic skin. The objective of the thesis project was to study proteasome assembly and POMP expression in psoriatic skin and during keratinocyte differentiation. The expression of proteasomes and POMP has been evaluated at the protein and mRNA levels by immunohistochemistry, Western blots and RT-PCR. Proteasome assembly was studied by electrophoresis under non-denaturing conditions, from lysates of psoriatic skin or keratinocytes. POMP expression was modulated by RNA interference in HaCaT cell lines. We observed that proteasomes 26S and 20S (and their proteolytic activity) were increased in the lesional psoriatic skin, as well as the proteasome regulators PA28β, PA28γ, PA200 and the 19S subunit RPT4. These results suggest that all the major proteasomal forms are increased in psoriatic skin. POMP is overexpressed in psoriatic epidermis and associated with precursors of the proteasome. During the differentiation of HaCaT cells, the assembly of 20S and 26S proteasomes and POMP expression increases at early time (first 3 days), while in later times 26S proteasomes disassemble. This disassembly profile (marked by the decrease of the 26S proteasome, the increase of the 20S proteasome complex and the accumulation of its 19S regulator) is very similar to that observed during oxidative stress. The strong inhibition of POMP expression has an anti-proliferative and pro-apoptotic effect via inhibition of proteasome assembly in the HaCaT keratinocyte cell line. However a moderate inhibition decreases the expression of differentiation markers keratin 10 and involucrin during calcium-induced differentiation of these cells. All these results suggest that the increase of the assembly, the activity and amount of proteasomes in psoriatic epidermis are linked (at least partially) to the overexpression of POMP and that deregulation of POMP could alter keratinocyte proliferation and differentiation. Our work is therefore in favor of the involvement of POMP and assembly of the proteasome in the pathogenesis of psoriasis. Therapeutic targeting of POMP could potentially have anti-proliferative and anti-inflammatory effects (particularly through the inhibition of NF-κB) and therefore represents an interesting therapeutic perspective in psoriasis.
12

Caractérisation de la dégradation du récepteur des hormones thyroïdiennes TRB[bêta]1 et effet de RanBPM sur ce processus

Brunelle, Mylène January 2009 (has links)
Les hormones thyroïdiennes (T[indice inférieur 3], T[indice inférieur 4]) sont cruciales pour le développement, la croissance et plusieurs fonctions homéostatiques. Leurs actions s'exercent via leurs récepteurs (TRs), facteurs de transcription membres de la famille des récepteurs nucléaires. La régulation de la transcription par les TRs est complexe et dynamique et demande l'intervention d'une multitude de co-régulateurs. Récemment, nous avons identifié un nouveau co-activateur des TRs, RanBPM, dont le mécanisme d'action est inconnu. Plusieurs évidences suggèrent que RanBPM pourrait être relié à la voie de l'ubiquitine et du protéasome (Ub-Pr): RanBPM modifie l'ubiquitination et la stabilité de p73 et RanBPM interagit avec USP11, une ubiquitine protéase. Par ailleurs, bien qu'il ait été démontré que la T[indice inférieur 3] induit une diminution rapide des TRs par la voie Ub-Pr, les mécanismes précis impliqués dans leur dégradation sont inconnus, même s'ils font sans doute partie du processus normal de régulation de la transcription. Notre hypothèse stipule que RanBPM pourrait moduler l'activité transcriptionnelle des TRs en influençant leur stabilité. Nos objectifs étaient de caractériser la dégradation de TR[bêta]1, puis d'étudier l'effet de RanBPM sur ce processus. Nos analyses pulse chase confirment que TR[bêta]1 est dégradé par la voie Ub-Pr et mettent en évidence une dégradation atypique de TR[bêta]1. En effet, en absence de T[indice inférieur 3], la dégradation de TR[bêta]1 débute plus de 30 minutes après le début de la période de chase, 44% des récepteurs restent non dégradés après 180 minutes de chase et la demi-vie estimée est de 134 min, alors qu'en présence de T[indice inférieur 3], la dégradation débute immédiatement, 28% des récepteurs restent non dégradés après 180 minutes de chase et la demi-vie estimée est de 104 min. Nos analyses de fractionnement cellulaire, en trois fractions (cytoplasmique, nucléaire soluble et nucléaire insoluble), démontrent la présence prédominante de TR[bêta]1 dans la fraction nucléaire insoluble correspondant aux protéines associées à la chromatine et/ou la matrice nucléaire. De plus, nos expériences d'immunobuvardages de type Western en présence de cycloheximide révèlent des différences dans la cinétique de disparition de TR[bêta]1 selon la fraction dans laquelle il a été isolé: (i) dans le cytoplasme, TR[bêta]1 est relativement stable en absence d'HTs et diminue rapidement en présence d'HTs, (ii) dans la fraction soluble du noyau TR[bêta]1 disparaît plus rapidement en présence qu'en absence d'HTs et (iii) dans la partie insoluble du noyau TR[bêta]1 apparaît stable en présence et en absence d'HTs et un traitement de 20 minutes avec la T[indice inférieur 3] augmente transitoirement la quantité de TR[bêta]1 dans cette fraction suggérant un déplacement des populations cytoplasmique et nucléaire soluble vers la population associée à la chromatine et/ou à la matrice nucléaire. Ces résultats témoignent donc de la co-existence dans la cellule de formes stables et instables de TR[bêta]1 qui pourraient avoir des fonctions distinctes. Par ailleurs, nos résultats d'immunobuvardages de type Western indiquent que RanBPM pourrait a priori avoir un effet protecteur sur la dégradation de TR[bêta]1 puisque sa sur-expression augmente la quantité de TR[bêta]1, alors que la diminution de son expression, par l'utilisation de shRNAs spécifiques, réduit la quantité de TR[bêta]1 détectés dans les extraits cellulaires. Toutefois, nos analyses pulse chase révèlent que RanBPM n'influence pas la cinétique de dégradation de TR[bêta]1, suggérant que l'effet de RanBPM sur la quantité de TR[bêta]1 ne résulte pas d'un effet sur la stabilité protéique. En conclusion, nos résultats mettent en évidence une dégradation atypique de TR[bêta]1 due à la co-existence de différentes populations de TR[bêta]1 possédant des cinétiques de dégradation différentes. De plus, notre étude révèle que RanBPM augmente la quantité protéique de TR[bêta]1, mais n'influence pas la stabilité de TR[bêta]1.
13

Structural bioinformatics analysis of the family of human ubiquitin-specific proteases

Zhu, Xiao January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
14

Etude de la cycline A2 : interactions, dégradation et mise en évidence du rôle de l'autophagie / Study of cyclin A2 : interactions, degradation and a new the role of autophagy

Loukil, Abdelhalim 03 December 2012 (has links)
Le cycle cellulaire est finement régulé dans le temps et l'espace. Nous avons abordé les aspects dynamiques des interactions que la cycline A2 entretient avec ses partenaires Cdk1, Cdk2 et l'ubiquitine au cours du cycle cellulaire, dans des lignées cellulaires humaines. A cette fin, nous avons eu recours aux approches de FRET (Förster/fluorescence resonance energy transfer) et de FLIM (fluorescence lifetime imaging microscopy). Ceci nous a permis de montrer que les formes ubiquitinylées de la cycline A2 apparaissent principalement sous forme de foyers en prométaphase et se propagent ensuite à l'ensemble de la cellule. En outre, nous avons découvert que l'autophagie participe à la dégradation de cette cycline en mitose. Nous discutons les implications de ces observations quant à un rôle éventuel de la cycline A2 au moment de la formation de l'anneau de constriction, ainsi que de la participation de l'autophagie via cette cycline, dans la réponse aux dommages à l'ADN en mitose. / The cell cycle is finely regulated in time and space. We have studied the dynamical aspect of the interactions between cyclin A2 and its partners Cdk1, Cdk2 and ubiquitin during the cell cycle, in human cell lines. To this aim, we have used FRET (Förster/fluorescence resonance energy transfer) and FLIM (fluorescence lifetime imaging microscopy) techniques. We have thus shown that ubiquitylated forms of cyclin A2 are detected predominantly in foci in prometaphase, before spreading throughout the cell. Moreover, we have shown that autophagy contributes to cyclin A2 degradation in mitosis. We discuss the implications of these observations regarding a possible role of cyclin A2 when the cleavage furrow forms, and the participation of autophagy in DNA damage response in mitosis.
15

Neuroprotection antiinflammatoire et antiischémique par modulation du protéasome

Hosseini, Hassan 14 December 2010 (has links)
L'inhibition du protéasome a un effet anti-inflammatoire en bloquant l'activation de NF-êB. Dans ce travail, nous avons étudié cette propriété anti-inflammatoire dans deux modèles animaux de maladies neurologiques: la sclérose en plaques et l'AVC. Nous avons utilisé le ritonavir, un antiprotéase du VIH et qui a des effets de modulation sur le protéasome. Ainsi l'administration du ritonavir a permis d'inhiber l'EAE modèle animal de SEP. D'autre part, un effet anti-ischémique cérébral a été obtenu ches les animaux ayant subi une occlusion de l'artère cérébrale moyenne, modèle animal d'AVC. Ces effets neuroprotecteurs ont été corrélés à une inhibition de la réponse inflammatoire chez les animaux traités. Ces résultats ouvrent des nouvelles perspectives thérapeutiques dans les maladies inflammatoires basées sur la modulation du protéasome / The inhibition of the proteasome has an anti-inflammatory effect by blocking the activation of NF-êB. In this work, we studied this anti-inflammatory property in two animal models of neurological diseases: the multiple sclerosis and stroke. We used the ritonavir, an antiprotease of the HIV and which has effects of modulation on the proteasome. So the administration of the ritonavir allowed to inhibit the animal model EAE of MS. On the other hand, an anti-ischemic effect was obtained in animal model of stroke. These neuroprotective effects were correlated with an inhibition of the inflammatory response. These results open new therapeutic perspectives in the inflammatory diseases based on the modulation of the proteasome.
16

Le protéasome et le fer : rôles et/ou régulations dans le nucléole d’Arabidopsis thaliana / Proteasome and iron : roles and/or regulations in Arabidopsis thaliana nucleolus

Montacié, Charlotte 26 February 2019 (has links)
Dans cette thèse, j’ai cherché à étudier l’impact du contenu et de la structure du nucléole sur les fonctions nucléolaires chez A. thaliana. Pour cela je me suis appuyée sur deux cas concrets : 1- J’ai réalisé le protéome du nucléole et caractérisé une de ces activités non-ribosomales / 2- J’ai étudié l’impact du fer nucléolaire dans la biogenèse des ribosomes.D’une part, le protéome nucléolaire d’A. thaliana m’a permis d’identifier des protéines nucléolaires dont les fonctions connues sont extra-ribosomales. Ainsi j’ai démontré que l’activité du protéasome 26S peut être régulée par le nucléole. Plus précisément l’activité du protéasome diminue lors d’une déstructuration du nucléole. De plus, j’ai constaté que le protéasome 26S, conjointement avec la protéine Nucléoline, pourrait avoir un rôle dans la transcription et/ou la maturation des ARNr.D’autre part, j’ai démontré que l’absence de fer nucléolaire (chez des plantes mutantes nas1,2,4) provoque une augmentation des structures nucléolaires propices à la transcription (les centres fibrillaires). Cette observation est corrélée à la transcription de l’ADNr du NOR2, normalement réprimé. Et, de manière inattendue, est liée avec l’hyperméthylation des promoteurs des ADNr en contexte CHH. Il se peut alors que le fer régule des facteurs impliqués dans les mécanismes épigénétiques responsables de la répression ou de l’activation des ADNr. / The aim of this thesis work is to highlight the impact of both nucleolus content and structure on nucleolar functions in A. thaliana. For this I followed two approaches: 1- I performed nucleolus proteome and characterized one of its non-ribosomal activity / 2- I studied nucleolar iron impact on ribosomes biogenesis.Firstly, the A. thaliana nucleolar proteome allowed me to identify nucleolar proteins with non-ribosomal functions. Among these, I showed that 26S proteasome activity can be regulated by nucleolus. More precisely, proteasome activity decreases with nucleolus disorganization. Moreover, I also showed that 26S proteasome, together with Nucleolin, might play a role in ribosomal RNA transcription and/or maturation.Secondly, I proved that loss of nucleolar iron (in nas1,2,4 mutant plants) induces an increase of nucleolar transcriptional structures (fibrillar centers). This observation is correlated with the transcription of normally silenced rDNA from NOR2 and, interestingly, with hypermethylation of rDNA promoters in CHH context. And so, iron might regulate factors implicated in epigenetic pathways responsible of either rDNA transcription or repression.
17

Regulation of proteotoxicity through atypical NEDDylation / Régulation de protéotoxicité via la NEDDylation atypique

Maghames, Chantal 10 November 2016 (has links)
Les cellules sont constamment exposées à des stress « protéotoxiques » qui altèrent leurs protéines. Si les protéines endommagées ne sont pas réparées ou éliminées, elles peuvent former des agrégats toxiques pouvant conduire à l’émergence de plusieurs maladies, telle que les maladies neurodégénératives et le cancer. Pour éviter cette toxicité, les cellules ont développé plusieurs stratégies qui collaborent et communiquent afin d'assurer le contrôle de qualité des protéines et maintenir l’intégrité du protéome cellulaire. L’ensemble de ces stratégies forment le réseau de l’homéostasie protéique ou « protéostasie ». Ce réseau inclus les chaperonnes moléculaires, les systèmes protéolytiques (lysosomes, protéasomes) et des systèmes de séquestration des protéines endommagées. L’Ubiquitine et les protéines apparentées à l’Ubiquitine telle que SUMO et NEDD8, sont des effecteurs essentiels de ce réseau. Ces molécules modifient leurs substrats de façon covalente, grâce à l’action d’une cascade d’enzymes E1, E2 et E3. En principe, on considérait que chacune de ces voies employait sa propre cascade enzymatique pour la modification post-traductionnelle de ses substrats. L’Ubiquitination joue un rôle essentiel dans la réponse au stress cellulaire, surtout en assurant la dégradation protéasomique des protéines mal repliées. Récemment, notre laboratoire a trouvé que plusieurs stress protéotoxiques telle que l’inhibition du protéasome, un choc thermique et un stress oxydatif, causent une augmentation de NEDDylation. De manière remarquable, cette augmentation ne dépend pas de l’enzyme d’activation de NEDD8 NAE, mais plutôt de celle de l’Ubiquitine Ube1. De plus, elle se caractérise par la formation des chaînes poly-NEDD8 et des chaînes mixtes entre NEDD8 et Ubiquitine. Ce processus est réversible et une restauration cellulaire est obtenue une fois le stress atténué. Le but de notre projet est de caractériser la réponse de NEDD8 au stress cellulaire ou ce qu’on appelle « la NEDDylation atypique » en vue de comprendre son effet biologique pendant ces conditions. Nos résultats montrent que la NEDDylation atypique dépend des protéines de stress Hsp70/90 et qu’elle cible principalement les protéines nouvellement synthétisées et mal repliées. On montre que, suite à leur modification par NEDD8/Ubiquitin, ces protéines sont transloquées du cytosol au noyau, où elles sont dégradées par le protéasome. Cependant, des conditions de stress prolongé causent une atténuation de l’activité nucléaire des protéasomes 26S, ce qui provoque alors l’accumulation des protéines endommagées sous forme d’inclusions nucléaires. Ces dernières sont réversibles et peuvent être éliminées par le protéasome une fois le stress atténué. Afin d’identifier les cibles de NEDD8 dans des conditions de stress, nous avons développé une approche protéomique basée sur une stratégie de mutation ponctuelle (NEDD8R74K). Cette stratégie permet l’identification des sites spécifiques de NEDDylation au sein des protéines cibles. Cette approche en combinaison avec le SILAC a permis l’identification de NEDD8, Ubiquitine, SUMO-2 et les protéines ribosomiques en tant que principales cibles de NEDD8 en réponse au stress. Ce qui était plus intéressant est que, en appliquant l’étude protéomique SILAC, on a pu constater que le rôle essentiel de la NEDDylation atypique est d’induire l’agrégation/séquestration d’un ensemble spécifique de protéines au sein des inclusions nucléaires. De plus, nous avons montré que l’agrégation induite par NEDD8 protège les protéasomes nucléaires d’une sévère déficience et permet une meilleure survie cellulaire pendant le stress. Notre étude présente NEDD8 comme un nouvel effecteur dans le réseau de protéostasie, elle identifie une nouvelle inclusion nucléaire cytoprotectrice et montre que la NEDDylation atypique est essentielle pour la réponse cellulaire au stress. / Cells are continuously endangered by a variety of proteotoxic stresses that cause protein misfolding and accumulation. Defects in repair or elimination of protein damage can lead to the formation of toxic aggregates that have been associated with diseases, such as neurodegenerative disorders and cancer. To prevent this toxicity, cells have evolved multiple quality control processes that interact and cooperate to maintain protein homeostasis leading to cellular fitness. These processes form “the proteostasis network”, and include molecular chaperones, proteolytic machineries (lysosomes, proteasomes) and pathways for protein damage sequestration. One of the main effectors of this network is the Ubiquitin and the Ubiquitin-like molecules, such as SUMO and NEDD8. These molecules covalently modify proteins through the action of E1, E2 and E3 enzymes. Historically, it was believed that each pathway employed its own and unique set of enzymes to post-translationally modify its substrates. Ubiquitination is essential for the cellular response to stress, especially by targeting misfolded proteins for proteasomal degradation. However, we recently discovered that proteotoxic stresses including proteasome inhibition, heat shock and oxidative stress induce a global increase in protein NEDDylation. Surprisingly, this increase does not depend on the NEDD8 activating enzyme NAE, but rather on the Ubiquitin activating enzyme Ube1, and is characterized by the formation of poly-NEDD8 chains and mixed chains between NEDD8 and Ubiquitin. Importantly, this process is reversible and cell recovery is accomplished once stress is alleviated. In this study, we focused on characterizing the NEDD8 response to stress or “atypical NEDDylation” in order to understand its biological relevance under these conditions.Our results showed that atypical NEDDylation depends on Hsp70/90 and targets mainly newly synthesized damaged proteins. We showed that, after their NEDDylation/Ubiquitination, misfolded proteins are progressively translocated from the cytosol into the nucleus for proteasomal degradation. However, upon prolonged stress conditions, the activity of nuclear 26S proteasome is compromised, resulting in the accumulation of these conjugates into nuclear inclusions. These inclusions are reversible and eliminated by nuclear proteasomes once stress is alleviated. In order to identify NEDD8 targets upon these conditions, we developed a proteomic approach based on a point mutation strategy (NEDD8R74K) that enables a site-specific analysis of NEDDylated proteins. This approach in combination with SILAC allowed the identification of NEDD8, Ubiquitin, SUMO-2, and ribosomal proteins as the major NEDD8 targets upon stress. Interestingly, by SILAC proteomics we found that the main function of atypical NEDDylation is to induce the aggregation/sequestration of a specific subset of proteins within the nuclear inclusions. We showed that this NEDD8-induced aggregation protects nuclear proteasomes from a severe impairment and allows a better cell survival upon proteotoxic stress.Our study defines NEDD8 as a new effector in the proteostasis network, identifies a new cytoprotective nuclear inclusion and shows that atypical NEDDylation is essential for the cellular response to stress.
18

Etude de Pan A et de Pan B : deux protéines régulatrices du protéasome chez les archaea halophiles.

Chamieh, Hala 15 December 2005 (has links) (PDF)
Les protéasomes sont de larges protéases ATP-dépendante impliquées dans la dégradation des protéines régulatrices et des protéines anormales dans la cellule. Cette thèse porte sur l'étude de deux AAA-ATPases : Pans A et Pans B régulatrices du protéasome chez les archaea halophiles. Une partie de ce manuscrit est consacrée à la caractérisation du mode de régulation des deux Pans chez l'Archaea halophile extrême Halobacterium salinarium. Les expériences montrent l'existence de deux isoformes des protéines Pans dans les cellules. Les modifications portent sur la région N-ter des deux protéines et mettent probablement en jeu l'utilisation alternative de deux départs de traduction. La cartographie des régions 5' non codantes des transcrits révèle l'existence d'une hétérogénéité au niveau des ARNm des pans. Le travail s'intéresse ensuite aux états d'oligomérisation et d'association in cellulo des protéines PANs. Des études de fractionnement par ultracentrifugation sur gradient de sucrose indiquent un état de faible oligomérisation des PANs et l'absence de complexes stables avec le protéasome 20S. La dernière partie du travail porte sur la régulation de l'expression des gènes panA et panB au cours de la réponse aux stress salin et thermique. Ce travail montre que les deux protéines Pans, activatrices potentielles du protéasome, ne sont pas régulées de façon identique en réponse à un stress environnemental.
19

Facteurs cellulaires contrôlant l'agrégation des protéines à expansion de polyglutamine

Rousseau, Erwann 23 November 2007 (has links) (PDF)
Les maladies neurodégénératives telles que les maladies de Huntington, de Parkinson et d'Alzheimer ont la caractéristique commune de présenter des agrégats de protéines spécifiques dans les neurones des patients atteints par ces pathologies. Le mécanisme par lequel ces structures se forment est encore inconnu. L'objectif de ce travail a consisté en l'étude du mécanisme d'agrégation des protéines à expansion de polyglutamine. Nous avons découvert que l'environnement cellulaire joue un rôle critique dans la capacité à s'agréger des protéines à expansion de polyglutamine (Rousseau et al., 2004). Ce travail suggère l'existence de modulateurs de l'agrégation des protéines à expansion de polyglutamine. En cherchant des modulateurs d'agrégation nous avons découvert que les sous unités chaperons du protéasome 19S, Rpt6 et Rpt4, augmentent l'agrégation de la protéine Huntingtine dans les cellules, alors que la réduction du niveau de Rpt6 par ARN interférence diminue la quantité de Huntingtine agrégée. Si la Huntingtine mutante est adressée au protéasome de manière ubiquitine indépendante, elle est très facilement dégradée. L'agrégation des protéines Huntingtine mutante n'est pas la conséquence d'une inhibition de l'activité protéolytique du protéasome mais fait suite à un découplage entre l'activité de dépliement médiée par le protéasome 19S et l'activité protéolytique du protéasome 20S. Ces travaux révèlent le rôle clef de l'environnement cellulaire et particulièrement du protéasome 19S dans le mécanisme d'agrégation des protéines à expansion de polyglutamine.
20

Structural bioinformatics analysis of the family of human ubiquitin-specific proteases

Zhu, Xiao January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

Page generated in 0.0371 seconds