• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 127
  • 53
  • 34
  • 28
  • 12
  • 6
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 320
  • 320
  • 67
  • 59
  • 43
  • 38
  • 36
  • 34
  • 33
  • 31
  • 27
  • 25
  • 24
  • 22
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Interação não canônica entre septinas: a análise da interação na interface G entre SEPT3 e septinas do grupo II / Non-canonical septins interactions: analysis of the interaction via G interface of SEPT3 and group II septins

Lanzoni, Paola 26 May 2017 (has links)
As septinas compõem o quarto componente do citoesqueleto das células eucarióticas, atrás da actina, miosina e filamentos intermediários. São proteínas filamentosas que se arranjam em forma de fibras e anéis, desempenhando um papel estrutural na célula. Os seres humanos expressam 13 septinas, que são divididas em 4 grupos diferentes de acordo com sua estrutura primária: grupo I (SEPT3, SEPT9, SEPT12); grupo II (SEPT6, SEPT8, SEPT10, SEPT11, SEPT14); grupo III (SEPT1, SEPT2, SEPT4, SEPT5) e grupo IV (SEPT7), sendo que SEPT13 foi caracterizada como um pseudogene de SEPT7. O filamento fisiológico mais bem estudado é composto por SEPT2-SEPT6-SEPT7-SEPT9 (nesta exata sequência), e é usado como a base para a descrição da formação canônica, onde se acredita que septinas do mesmo grupo ocupam o mesmo lugar no filamento. Entretanto, ensaios de duplo-híbrido identificaram muitas interações não canônicas inesperadas entre septinas como SEPT9-SEPT6 e SEPT9-SEPT8, sugerindo estes também possam existir in vivo. Além destes, estudos mostraram a existência de interações entre septinas do grupo I e grupo II, e especialmente no caso SEPT11-SEPT12, a interação deixa de existir ao inserir uma mutação sítio-dirigida na interface G destas proteínas. O presente trabalho investiga a interação entre SEPT3, uma septina do grupo I, com todas aquelas do grupo II. Esta interação foi estudada por análises de coexpressão e copurificação em resina de afinidade ao cobalto, onde apenas a SEPT3 possuía uma extensão de seis histidinas em seu N-terminal. Esta primeira análise mostrou que SEPT3 não foi copurificada com todos os membros do grupo II dando uma clara evidência de variação de afinidade dentro do grupo. Usando esta abordagem, SEPT6, SEPT10 e SEPT14 não mostraram interação com SEPT3, enquanto SEPT8 e SEPT11 copurificaram com SEPT3, mas não em concentrações estequiométricas. Para os complexos SEPT3-SEPT8 e SEPT3-SEPT11, uma segunda etapa de purificação foi realizada por meio de cromatografia de exclusão molecular, onde um pico de grande variância em relação à média indicou um valor de massa molecular entre monômeros e dímeros. Os mesmos, quando avaliados por espalhamento de luz a múltiplos ângulos mostraram variação na massa molecular ao longo do pico de eluição conforme ele era eluído. Tal variação era compatível com a eluição de dímeros no início até monômeros no final. Os estudos da interação entre SEPT3-SEPT8 por ultracentrifugação analítica indicou uma tendência de associação em altas concentrações das proteínas, compatível com a constante de dissociação determinada por termoforese em microescala, na ordem de dezenas de micromolar. Tais resultados levantaram questões acerca da relevância fisiológica destes complexos e reforçam a importância de um estudo mais aprofundado na formação dos complexos não canônicos de septinas para o desenvolvimento celular. / The septins are accepted to be the fourth cytoskeleton component of the eukaryotic cells, after actin, myosin and intermediate filaments. They are filament forming proteins that are organized in fibers and rings, having a structural role in the cell. Humans express 13 septins, which are divided into 4 different groups according to their primary structure: group I (SEPT3, SEPT9, SEPT12); group II (SEPT6, SEPT8, SEPT10, SEPT11, SEPT14); group III (SEPT1, SEPT2, SEPT4, SEPT5) e group IV (SEPT7). SEPT13 was later characterized as a SEPT7 pseudogene. The best characterized filament is built up from SEPT2-SEPT6-SEPT7-SEPT9 (in this exact sequence), and is used as a basis for the description of the so-called canonical arrangement, which accepts that septins from the same group can occupy the same position within the filament. However yeast two-hybrid assays identified several unexpected interactions such as SEPT9-SEPT6 and SEPT9-SEPT8, raising the possibility that these could also exist in vivo. Furthermore, studies have shown the existence of interactions between group I and group II, and especially in the SEPT11-SEPT12, the interaction dissolves when a mutation in the G interface is inserted. The present work investigates the interaction between SEPT3, a group I septin, with all of those from group II. This interaction was studied through co-expression and co-purification methods using metal affinity chromatography, where only the SEPT3 contained the six histidines extention. This initial analysis showed that SEPT3 did not co-purify with all group II members, clearly pointing to variability in the affinity within group. Using this approach SEPT6, SEPT10 e SEPT14 showed no interaction with SEPT3, whilst SEPT8 and SEPT11 co-purified with SEPT3, but not in stoichiometric concentrations. For the SEPT3-SEPT8 and SEPT3-SEPT11 complexes, a second purification stage was performed using size exclusion chromatography, where a broad peak was observed corresponding to a molecular mass value which was intermediate between a dimer and a monomer. The same complexes, when evaluated by multiple angle light scattering revealed a variation in the molecular mass across the peak as it eluted. Such variation was compatible with elution of dimers at the beginning and monomers at the end. Studies for the SEPT3-SEPT8 interaction via analytical ultracentrifugation suggested a trend to associate in high protein concentration, consistent with the dissociation constant found by microscale thermophoresis, which was of the order of ten micromolar. The results raise questions concerning the physiological relevance of these complexes and reinforce the importance of further studies on the non-canonical assembly of septin complexes for cellular development.
52

Estudo da via de incorporação de selenocisteínas: compreensão dos mecanismos de interações macromoleculares / Study of the selenocysteine incorporation pathway: understanding the macromolecular interaction mechanism

Scortecci, Jéssica Fernandes 04 February 2019 (has links)
A existência de aminoácidos co-traducionalmente codificados pelo código genético tem estimulado estudos sobre os mecanismos de síntese, reconhecimento e incorporação nas cadeias polipeptídicas nascentes. Como exemplo, pode-se destacar a via específica de biossíntese do aminoácido selenocisteína, presente em eucariotos e procariotos, cuja incorporação ocorre juntamente ao códon de parada UGA. Em bactérias, a via de biossíntese de Sec é composta pelas proteínas Selenocisteína sintase (SelA), Fator de Elongação Específico (SelB), Selenofosfato sintetase (SelD), Seril-tRNA sintetase (SerRS) e Selenocisteína liase (CsdB). A via de síntese e incorporação de Sec depende também de dois RNAs; um tRNA específico (tRNASec) e uma sequência no mRNA (Sequência de Inserção de Selenocisteínas - SECIS), sinalizadora para correta incorporação de Sec junto ao códon UGA. Em eucariotos, essa via difere pela presença das proteínas O-fosfoseril-tRNASec Quinase (PSTK) e Selenocisteil-tRNASec sintase (SepSecS), em substituição a SelA, e pela presença de proteínas ligadoras ao elemento SECIS (SBP2). Pelo fato do selênio ter uma citotoxicidade elevada, é fundamental a compreensão do mecanismo catalítico e formação dos complexos da via na etapa de incorporação junto ao tRNASec. Em 2009, foi proposta a interação entre CsdB e SelD, porém não sendo demonstradaexperimentalmente até o momento. Dessa forma, esse estudo traz pela primeira vez, a caracterização biofísica e estrutural da interação macromolecular entre CsdB e SelD bacterianas, indicando uma elevada afinidade de interação entre elas sob diferentes condições experimentais. Estudos biofísicos mostraram que a interação aumenta a estabilidade térmica e os estudos estruturais resultaram em um modelo em baixa resolução do complexo, indicando uma assimetria para o complexo formado. Além disso, em 2013 nosso grupo anotou uma sequência putativa para uma SBP2 em N. gruberi, ameba não patogênica empregada como modelo para estudos de N. fowleri, conhecida a infectar humanos, resultando na patologia conhecida como Meningoencefalite Amebiana Primária. Deste modo, esse estudo também traz, pela primeira vez, a demonstração experimental da presença de uma SBP2 em N. gruberi Ademais, a interação desta proteína como o elemento SECIS também foi caracterizada através de diversos estudos biofísicos. Demonstrou-se que a NgSBP2 possui alto percentual de regiões de desordem e que ao interagir com o elemento SECIS apresenta enovelamento devido à interação. Dessa forma, este estudo trouxe um avanço no conhecimento das interações moleculares presentes na via de incorporação de selenocisteínas, sendo de grande relevância no entendimento dos determinantes moleculares de interação entre proteína-proteína e proteína-RNA. / The existence of co-translationally encoded amino acids by the genetic code has stimulated studies on the mechanisms of synthesis, recognition, and incorporation into new polypeptide chains. As an example, the selenocysteine (Sec) biosynthesis pathway, present in eukaryotes and prokaryotes, where the amino acid incorporation occurs at the canonical UGA stop-codon. In Bacteria, the Sec biosynthesis pathway is formed by Selenocysteine synthase (SelA), Specific Elongation Factor (SelB), Selenophosphate synthetase (SelD), Seryl-tRNA synthetase (SerRS) and Selenocysteine lyase (CsdB). The synthesis route also needs two RNAs; a specific tRNA (tRNASec) and a sequence in the mRNA (SelenoCysteine Insertion Sequence - SECIS) that encodes for the in-frame UGA Sec incorporation. In eukaryotes, the pathway is distinguished through the presence of O-phosphoseryl-tRNASec kinase (PSTK) and Selenocysteinyl-tRNASec synthase (SepSecS), replacing SelA, also the presence of SECIS binding proteins (SBP2). Once selenium presents high cell toxicity, it is crucial to fully understand the catalytic metabolism and complex formation for the tRNASec incorporation. In 2009, CsdB and SelD interaction was proposed, however, it has not been experimentally demonstrated until now. Thus, this project reports at the first time the biophysical and structural characterization of bacterial CsdB and SelD macromolecular interaction, indicating to a high-affinity interaction between these enzymes for the complex formation. Biophysical assays showed that the complex increased the thermal stability and structural studies showed a low-resolution model also indicating the macromolecule asymmetry. In addition, our research group reported in 2013 the putative SBP2 sequence in N. gruberi, the non-pathogenic amoeba used as a model for studies of N. fowleri, known as human infective, responsible for the pathology known as the Primary Amebic Meningoencephalitis. Moreover, this project also reports, at the first time, the experimental presence of N. gruberi SBP2. The SBP2.SECIS was also characterized by several biophysical methods. NgSBP2 has a high percentage of regions of disorder and access to each element SECIS presents due to interaction. Thus, this study was promoted in advance on the molecular interactions present in the incorporation of selenocysteines, being important for the understanding of the molecular determinants of the interaction between protein-protein and RNA-protein.
53

Caracterização das interações macromoleculares das proteínas envolvidas na síntese de selenocisteínas em Escherichia coli / Characterization of the macromolecular interactions of proteins involved in the synthesis of selenocysteines in Escherichia coli

Serrão, Vitor Hugo Balasco 03 March 2017 (has links)
O estudo de processos de tradução do código genético em proteínas desperta o interesse pelo seu papel central no metabolismo celular, em particular, o estudo da via de síntese de novos aminoácidos, como a selenocisteína e a pirrolisina, que resultam na expansão do código genético dos 20 aminoácidos canônicos para um total de 22 aminoácidos. A selenocisteína (Sec, U) é um aminoácido que representa a principal forma biológica do elemento selênio e sua incorporação ocorre através de um processo cotraducional em selenoproteínas como resposta ao códon UGA em fase, usualmente interpretado como códon de parada. Essa incorporação requer uma complexa maquinaria molecular distinta entre os três domínios da vida em que as selenoproteínas estão presentes: Bactéria, Arquéia e Eucária. Em Escherichia coli, a via se inicia com a aminoacilação do tRNA específico para a incorporação de selenocisteínas (SelC, tRNASec) com um resíduo de L-serina pela seril-tRNA sintetase (SerRS) formando o tRNA carregado Ser-tRNA[Ser]Sec que é entregue ao complexo homodecamérico selenocisteína sintase (SelA) responsável pela conversão Ser-Sec utilizando a forma biológica de selênio entregue pela enzima selenofosfato sintetase (SelD). Uma vez carregado com L-selenocisteína, o Sec-tRNASec é então carreado pelo fator de elongação específico para selenocisteínas (SelB) para a sua incorporação na cadeia polipeptídica nascente na posição UGA adjunta ao elemento SECIS (SElenoCysteine Insertion Sequence), uma estrutura em grampo presente no RNA mensageiro que indica o códon de inserção de selenocisteínas. Uma vez que elementos contendo selênio são tóxicos para o ambiente celular, interações entre as enzimas da via se fazem necessárias, onde as enzimas participantes em procariotos são conhecidas e caracterizadas individualmente, no entanto, suas interações macromoleculares nas diferentes etapas ainda não foram caracterizadas. Este projeto visa à caracterização macromolecular e estrutural das interações entre as enzimas SelA e SelB com os RNAs participantes tRNASec e SECIS além do ribossomo de E. coli. Para isso, amostras de SelA, SelB, tRNASec, SECIS e ribossomo foram obtidas através de diferentes metodologias. Para SelA e tRNASec foram utilizados protocolos já estabelecidos enquanto que, para SelB, fez-se necessário a otimização do protocolo previamente publicado e, consequentemente, nova caracterização biofísica através de metodologias como dicroísmo dircular (CD) e fluorescência intrínseca (IFS). Para análise das interações, medidas de espectroscopia de anisotropia de fluorescência (FAS), ultracentrifugação analítica (AUC) e calorimetria de varredura diferencial (DSC) foram utilizadas para determinação dos parâmetros de interação dos diferentes complexos estudados. Somado a isso, experimentos de cinética GTPásica foram realizados na formação dos complexos e, além disso, foram gerados modelos estruturais utilizando diferentes metodologias como espalhamento de raios-X a baixo ângulo (SAXS) além de estudos por microscopia eletrônica de transmissão (TEM). Os estudos propostos irão auxiliar no entendimento do mecanismo de incorporação deste aminoácido em bactérias bem como nos demais domínios da vida além de elucidar o mecanismo sequencial de eventos, provendo conhecimento e desenvolvendo metodologias para sistemas complexos de interação proteína-proteína e proteína-RNA. / The study of genetic code processes in proteins is a central role in cell metabolism, in particular the study of the synthesis pathway of new amino acids, such as selenocysteine and pyrrolisine, which resulted in the expansion of the genetic code of the 20 canonical amino acids for 22 amino acids. Selenocysteine (Sec, U) is an amino acid that represents a major biological form of selenium element and its incorporation through a co-translational process in selenoproteins in response to the in-phase UGA-codon, usually interpreted as stop-codon. This incorporation requires a complex molecular machinery distinct between the three domains of life in which, as selenoprotein has present: Bacteria, Archaea and Eukaria. In Escherichia coli, an initiation pathway with an aminoacylation of the tRNA specific for the incorporation of selenocysteines (SelC, tRNASec) with an L-serine residue by seril-tRNA synthetase (SerRS) resulting in the charged tRNA Ser-tRNA[Ser] Sec that is delivered to the homodecameric complex selenocysteine synthase (SelA), responsible for Ser-Sec conversion using the biological form of selenium delivered by the enzyme selenophosphate synthetase (SelD). Once loaded with L-selenocysteine, Sec-tRNASec is then carried by the selenocysteine-specific elongation factor (SelB) for incorporation into the nascent polypeptide chain at the UGA position attached to the SECIS (SElenoCysteine Insertion Sequence) element, staple structure that indicates the insertion codon of selenocysteines. Since elements containing selenium are toxic to the cell, interactions between how pathway enzymes are made, where the enzymes participating in concepts are known and characterized individually, however, their macromolecular interactions in the different steps have not yet been characterized. This project aims at the macromolecular and structural characterization of the interactions between SelA and SelB enzymes with the RNAS tRNASec and SECIS participants in addition to the E. coli ribosome. For this, as samples of SelA, SelB, tRNASec, SECIS and ribosome were obtained through different methodologies. For SelA and tRNASec, protocols were used to determine parameters for SelB, it was necessary to optimize a previously published protocol and, consequently, a new biophysical characterization through methodologies such as circular dichroism (CD) and intrinsic fluorescence spectroscopy (IFS). To analyze the interactions, measurements of fluorescence anisotropy spectroscopy (FAS), analytical ultracentrifugation (AUC) and differential scanning calorimetry (DSC) were used to determine the interaction parameters of different complexes studied. In addition, GTPases activity experiments were carried out in the formation of the complexesand, in addition, we have generated models that characterize different methodologies such as small angles X-ray scattering (SAXS) and transmission electron microscopy (TEM). The proposed studies will aid in understanding the mechanism of incorporation of this amino acid into bacteria as well as the other domains of life besides elucidating the sequential mechanism of events, providing knowledge and development of methodologies for complex protein-protein and RNA-protein interaction systems.
54

Strain-promoted stapled peptides for inhibiting protein-protein interactions

Sharma, Krishna January 2019 (has links)
Protein-protein interactions (PPIs) are responsible for the regulation of a variety of important functions within living organisms. Compounds which can selectively modulate aberrant PPIs are novel therapeutic candidates for treating human diseases. Whilst PPIs have traditionally been considered as "undruggable", research in this area has led to the emergence of several effective methodologies for targeting PPIs. One such methodology is peptide stapling, which involves constraining a short peptide into its native alpha-helical form by forming a covalent link between two of its amino acid side-chains. The Sondheimer dialkyne reagent has previously been used in strain-promoted double-click cycloadditions with diazidopeptides to generate stapled peptides that are capable of inhibiting PPIs. However, the Sondheimer dialkyne suffers from poor water-solubility; it decomposes rapidly in aqueous solutions which limits its application in biological systems. This dissertation describes the design and synthesis of new substituted variants of the Sondheimer dialkyne with increased solubility and stability, that are suitable for application in strain promoted double click peptide stapling. In total, ten different derivatives were generated; of these, a meta-trimethylammonium substituted variant was found to have particularly high water-solubility and aqueous stability, as well as high azide reactivity. The substituted Sondheimer dialkynes were applied to the strain promoted double click stapling of p53-based diazido peptides in an effort to generate stapled peptide-based inhibitors of the oncogenic p53 MDM2 PPI, a validated target for anticancer therapeutics. Three stapled peptides were found to have inhibitory activity, thus demonstrating the utility of the novel dialkynes in the preparation of PPI inhibitors. The functionalised stapled peptide formed from a meta-fluoro substituted Sondheimer dialkyne was found to be the most potent inhibitor. All ortho-substituted Sondheimer dialkynes were found to be unreactive, whereas those with a meta-trimethylammonium substituent were highly reactive when compared to other meta-substituted dialkynes. These patterns in azide reactivity could be explained through X-ray crystallographic studies and density functional theory calculations.
55

Implementação de uma abordagem híbrida utilizando modelagem comparativa e ab initio para predição de estruturas tridimensionais de proteínas contendo múltiplos domínios com conectores flexíveis / Implementation of a hybrid approach using comparative and ab initio modelling to predict the three dimensional structure of proteins containing multiple domains and flexible connectors

Honorato, Rodrigo Vargas 17 November 2015 (has links)
Domínio proteico é uma sequência de aminoácidos evolutivamente conservada e funcionalmente independente. Um dos aspectos mais importantes do estudo de uma proteína que contem múltiplos domínios é o entendimento da comunicação, entre os diferentes domínios, e seu papel biológico. Essa comunicação em maior parte é feita pela interação direta entre domínios. A interação poderia ser tratada como uma clássica interação proteína-proteína. Entretanto, proteínas multidomínio possuem restrições determinadas por suas regiões conectoras. Os conectores interdomínio impõem restrições e limitam espaço conformacional dos domínios. Apresentamos aqui o MAD, uma rotina capaz de obter modelos tridimensionais de alta resolução para proteínas, contendo qualquer número de domínios, a partir de sua sequencia primária. Os domínios conservados são identificados utilizando a base de domínios conservados (CDD) e seus limites são utilizados para definir as regiões conectoras. É criado um ensamble de possíveis dobramentos dos conectores e sua distribuição de distâncias C/N-terminais são utilizadas como restrição espacial na busca pela interação entre os domínios.Os modelos dos domínios são obtidos por uma modelagem comparativa. Foi implementada uma heurística, capaz de lidar com a natureza combinatorial dos múltiplos domínios e com a necessidade imposta pela limitação computacional de realizar o docking dos domínios em forma de pares. Todas combinações de domínios são submetidas as rotinas de docking. Aplica-se filtro de distância e energético, excluindo as conformações que apresentam distância C/N-terminal entre domínios maior do que o valor máximo observado no ensamble de conectores e seleciona as conformações energeticamente mais favoráveis. As conformações são submetidas a uma rotina de agrupamento hierárquico baseada em sua similaridade estrutural. Para a segunda fase as conformações selecionadas são pareadas com seu domínio complementar e ressubmetidas a rotina de docking até que todas as fases tenham sido completadas. Foi criado um conjunto de testes a partir do Protein Data Bank contendo 54 proteínas multidomínio para que a rotina de docking do MAD fosse comparada com outros softwares utilizados pela comunidade cientifica, mostrou-se superior ou equivalente aos métodos testados. A capacidade de utilizar dados experimentais foi demostrada através da proposição de um modelo da forma ativa da enzima tirosina fosfatase 2, nunca observado experimentalmente. A rotina de docking foi expandida paralelamente em uma aplicação standalone e utilizada na resolução de diversos problemas biológicos. Concluímos que a inovação metodológica proposta pelo MAD é de grande valia para a modelagem molecular e tem potencial de gerar uma nova perspectiva a respeito da interação de proteína multidomínio, visto que é possível analisar essas proteínas em sua plenitude e não como domínios separados. / Protein domain is an evolutionary conserved and functionally independent amino acid sequence. One of the most important aspects of the study of a protein that contains multiple domains is the understanding of communication between the different areas, and their biological role. This communication is made mostly by direct interaction between domains. The interaction could be treated as a classical protein-protein interaction. However, multidomain proteins have certain restrictions for its connector regions. The intra connectors impose restrictions and limit conformational space of the domains. We present the MAD, a routine able to get three-dimensional models of high-resolution protein, containing any number of domains, from its primary sequence. The conserved domains are identified using the basic conserved domains database (CDD) and its boundaries are used to define the connector regions. This creates a ensemble of possible folding of the connectors and distribution of distances C/N-terminals are used as spatial restriction in the search for interaction between domains.Os models of the domains are obtained by comparative modelling. A heuristic able to handle the combinatorial nature of the multiple areas and the need imposed by the computer to perform the limitation of the docking areas as pairs was implemented. All combinations of domains are referred to the docking routines. Distance and energy filters are applied, excluding conformations that have C/N-terminal domains distances larger than the maximum value observed in the connectors ensemble and selects the most favourable energy conformations. Conformations are subjected to hierarchical clustering routine based on their structural similarity. For the second phase, the selected conformations are paired with its complementary domain and resubmitted to the docking routine until all phases have been completed. A test set has been created from the Protein Data Bank containing 54 multidomain proteins so that the docking routine of MAD could be compared with other software used by the scientific community, it has been shown to be superior or equivalent to the tested methods. The ability to use experimental data was demonstrated by proposing a model of the active form of tyrosine phosphatase enzyme 2, never observed experimentally. The docking routine was expanded in a standalone application and used in solving various biological problems. We conclude that the methodological innovation proposed by the MAD is very useful for molecular modelling and has the potential to generate a new perspective on multidomain protein interaction as you can analyse these proteins in its entirety and not as separate domains.
56

Protein Surface Recognition with Urea-based foldamers : application to the design of ligands targeting histone chaperone proteins / Reconnaissance de surfaces de protéines avec des foldamères à base d’urées : application au design de ligands ciblant une protéine chaperon d’histone

Mbianda, Johanne 08 October 2018 (has links)
Avec 8,8 millions de décès dénombrés en 2015, le cancer est l’une des plus grandes causes de mortalité dans le monde. De nouvelles stratégies thérapeutiques ont émergé et l’identification de nouvelles cibles biologiques comme notamment la protéine Asf1, un chaperon d’histone H3-H4 surexprimée dans les cellules cancéreuses et en particulier le cancer du sein. Cette protéine possède différentes fonctions dans la cellule et agit à plusieurs endroits par des interactions protéine-protéines. Au cours de cette thèse de doctorat, nous avons développé une stratégie originale de design d’inhibiteurs d’interactions protéine-protéine avec des foldamères peptidomimes à base d’urées. Ces foldamères ont 1) la capacité de se replier en hélice 2,5, rappelant les hélices α des peptides et 2) d’être hautement tolérés et initiateurs d’hélicité lorsqu’ils sont conjugués à des fragments peptidiques. Nous avons développé des oligomères mixtes comprenant une alternance de segment(s) peptidique(s) et multi-urée, appelées chimères, ayant l’avantage de combiner la reconnaissance naturelle de peptides et la forte propension des oligourées à former des hélices stables. Après une étude structurale montrant qu’avec l’insertion d’un court segment à base d’urées dans un peptide hydrosoluble adoptant une conformation en hélice  la conformation hélicoïdale pour une majorité des chimères est conservée, des composés mimant la partie hélicoïdale C-terminale de l’histone H3 ont été élaborés. Une interaction de l’ordre du micromolaire avec Asf1 a été observée en solution puis validée à l’état solide par cristallographie aux rayons X. En vue d’optimiser la reconnaissance de ces chimères avec la surface d’Asf1 et leur sélectivité, un panel de modifications a été réalisée (i.e. séquence primaire, longueur du segment urée). Nous avons ainsi conçu des chimères α/urée possédant des affinités de liaison pour Asf1 comprises entre le nano- et micromolaire. Le composé le plus prometteur a été internalisé avec succès dans des cellules cancéreuses après conjugaison bioreductible avec un peptide vecteur et pourrait conduire à la mort cellulaire de la lignée tumorale étudiée. / In 2015, 8.8 million of death were due to cancer making it an important cause of death in the world. The necessity to develop new anticancer treatments led to the search and discovery of new biological targets, such as Asf1, a histone chaperone protein of H3-H4 which is overexpressed in cancer cells, in particular in breast cancer. This protein plays a role in different biological processes in cells through protein-protein interactions (PPIs). During this thesis, we developed an original strategy to design inhibitors of PPIs with urea-based peptidomimetics. These foldamers are able to fold into stable 2.5-helix reminiscent to the natural α-helix. Designed urea-based foldamers have been synthesized as hybrid oligomers consisting of α-peptide and oligourea segments. With a combination of the two backbones, these compounds named “chimeras” presents advantages of both species with the natural recognition of α-peptides and the innate helical stability of oligourea. First, a model study was performed to evaluate the impact of the introduction of short urea segments into a long water-soluble peptide. Circular dichroism experiments confirmed that the helical conformation was conserved. New series of compounds that mimic a helical part of H3 were synthesized and their interaction with Asf1 was studied in solution and in solid state using a range of biophysical methods. Several modifications into the sequence were performed (side chain substitution, size of the urea segment or compound) in order to improve the recognition of Asf1 surface as well as their selectivity. We conceived oligourea-peptide chimeras with affinity for Asf1 in the micromolar range. Our best compound linked to a cell penetrating peptide was shown to enter into cells and to induce cell death.
57

Evolução convergente da protease FtsH5 de Arabidopsis thaliana e seu regulador negativo putativo FIP (FtsH5 interacting protein) / Convergent evolution of Arabidopsis thaliana FtsH5 protease and its putative negative regulator FIP (FtsH5 interacting protein)

Silva, Marcos Araújo Castro e 02 March 2015 (has links)
As metaloproteases AAA/FtsH são componentes chave do controle da qualidade das proteínas inseridas nas membranas de mitocôndrias e cloroplastos. Em Arabidopsis thaliana, as proteases FtsH presentes nas membranas dos tilacóides formam um complexo heterohexamérico composto pelas subunidades FtsH1/FtsH5 (tipo A) e FtsH2/FtsH8 (tipo B). Este complexo está envolvido na reciclagem de proteínas foto-danificadas, especialmente da proteína D1, centro de reação do PSII. Algumas linhas de evidências indicam ainda que existe um limiar de concentração das proteases FtsH, necessário para a correta formação e desenvolvimento dos cloroplastos. Apesar da extensiva caracterização genética e molecular das proteases FtsH, o mecanismo regulatório do complexo FtsH dos cloroplastos não foi totalmente elucidado até o momento, contudo existem evidências de que a sua ativação pode estar relacionada a alta incidência luminosa e a outras condições de estresse. A presença de fatores proteicos auxiliares, foi testada como hipótese alternativa por nosso grupo, através do uso da protease FtsH5 como isca em um ensaio de duplo híbrido de leveduras. Este ensaio identificou uma proteína interagente putativa, nomeada FIP (FtsH5 Interacting Protein), a qual comprovadamente interage com FtsH5 e está localizada nas membranas dos tilacóides. De modo a investigar o papel regulatório putativo de FIP sobre a atividade do complexo FtsH, nós analisamos os padrões de expressão em uma ampla gama de condições de estresse a partir de dados públicos de microarranjos de DNA. Os perfis de expressão indicam que FIP pode ser um regulador negativo da atividade do complexo. Os resultados também sugerem que o complexo pode estar envolvido na resposta do cloroplasto a diferentes tipos de condições de estresse. O estudo da história evolutiva das proteínas interagentes FtsH5 e FIP evidenciou que as sequências homólogas a FIP são encontradas exclusivamente em musgos e plantas superiores, sugerindo assim que a origem de FIP pode estar relacionada a colonização terrestre. Todos os genes codificantes das proteases FtsH do complexo foram usados como \"query\" na busca por sequências homólogas, permitindo a classificação das proteases FtsH nos tipos A e B por inferência filogenética Bayesiana. Análises filogenéticas Bayesianas também foram feitas para FIP e as proteases FtsH tipos A e B, independentemente. A análise Mirrortree suportou a existência de coevolução entre FIP e as proteases FtsH tipo A. Por outro lado, nenhuma correlação foi encontrada entre FIP e as proteases FtsH tipo B, o que corrobora nossas observações experimentais anteriores. Além disso, o agrupamento portador de homólogos FIP pôde ser recuperado em uma filogenia mais completa das proteases FtsH do tipo A. Análises subsequentes mostraram que ambas as proteínas interagentes estão extensivamente sobre seleção negativa e que proteases FtsH tipo A são bastante conservadas, principalmente nos seus domínios internos. / Eukaryotic AAA/FtsH metalloproteases display a key role in the protein quality control of membrane-inserted proteins in mitochondria and chloroplasts. In Arabidopsis thaliana, chloroplast thylakoidal membranes FtsH proteases form a heterohexameric complex made by FtsH1/FtsH5 (type A) and FtsH2/FtsH8 (type B) subunits. This complex is involved in protein turnover of photo-damaged proteins, in particular the D1 protein at the PSII reaction center. Several lines of evidence also indicate that a FtsH threshold level is necessary for the proper formation and development of chloroplasts. Despite extensive genetic and molecular characterization of the FtsH proteases, the regulatory mechanism of the FtsH complex in chloroplasts has not yet been fully elucidated, however, there are evidences that its activation might be related to high light incidence and other stress conditions. The presence of auxiliary protein factors, as an alternative hypothesis, was tested by our group, through the use of the protease FtsH5 as bait in a yeast two-hybrid assay. This essay identified a putative interacting protein named FIP (FtsH5 Interacting Protein), which has been proved to interact with FtsH5 and be located at the thylakoid membranes. In order to investigate a putative regulatory role of FIP on FtsH complex activity, we analyzed gene expression patterns in a wide range of stress conditions from public DNA microarray data. The expression profiles indicate that FIP could be a negative regulator of the FtsH complex activity. The results also suggest that the complex may be involved in the chloroplast response to different types of stress conditions. In order to shed some light on the evolutionary history of FtsH5 and FIP interacting proteins, we have shown that FIP\'s homologous sequences were exclusively found in mosses and higher plants, suggesting that FIP origin might be related to the plant terrestrial colonization. All Arabidopsis FtsH complex-encoding genes were used as \"query\" sequences in search for homologous sequences, allowing us to classify the FtsH proteases in type A and B by Bayesian phylogenetic inference. Bayesian phylogenetic analyses were also run for FIP and FtsH types A and B proteases, independently. Mirrortree analysis supported coevolution between FIP and type A FtsH proteases. On the other hand, no correlation was found between FIP and type B FtsH homologues, which support our previous experimental observations. In addition, the FIP bearing cluster could be recovered in a more complete type A FtsH phylogeny. Subsequent analyzes have shown that both interacting proteins are extensively under negative selection and that type A FtsH are very conserved, mainly in its inner domains.
58

Engineering PDZ domain specificity

Sun, Young Joo 01 May 2019 (has links)
PSD-95/Dlg/ZO-1 (PDZ) domain - PDZ binding motif (PBM) interactions have been one of the most well studied protein-protein interaction systems through biochemical, biophysical and high-throughput screening (HTS) strategies. This has allowed us to understand the mechanism of individual PDZ-PBM interactions and the re-engineering of PBMs to bind tighter or to gain or lose certain specificity. However, there are several thousand native PDZ domains whose biological ligands remain unknown. Because of the low sequence identity among PDZ domain homologues, promiscuous binding profiles (defined as a PDZ domain that can accommodate a set of PBMs or a PBM that can be recognized by many PDZ domains), and context-dependent interaction mechanism, we have an inadequate understanding of the general molecular mechanisms that determine the PDZ-PBM specificity. Therefore, predicting PDZ specificity has been elusive. In addition, no de novo PBM ligand or artificial non-native PDZ domain have been successfully designed. This reflects the general challenges in understanding the general principles of PDZ-ligand interactions, namely that they are context-dependent, exhibit weak binding affinity, narrow binding energy range, and larger interaction surface than other protein-ligand interactions. Together, PDZ domains make good model systems to investigate the fundamental principles of protein-protein interactions with a wide spectrum of biomedical implications. My studies suggest that understanding PBM specificity with the set of structural positions forming the binding pocket can connect sequence, structure and function of a PDZ domain in a general context. They also suggest that this way of understanding the specificity will shed light on prediction and engineering of specificity rationally. Structural analysis on most of the available PDZ domain structures was established to support the principle (Chapter I). The principle was tested against two different types of PBM; C-terminal PBM (Chapter II) and internal PBM (Chapter III), and shown to support better understanding and design of PDZ domain specificity. We further applied the principle to design de novo PDZ domains, and the preliminary data hints that it is optimistic to engineer PDZ domain specificity (Appendix A and B).
59

THE ROLE OF ALTERNATIVE POLYADENYLATION MEDIATED BY CPSF30 IN <em>ARABIDOPSIS THALIANA</em>

Hao, Guijie 01 January 2017 (has links)
Drought stress is considered one of the most devastating abiotic stress factors that limit crop productivity for modern agriculture worldwide. There is a large range of physiological and biochemical responses induced by drought stress. The responses range from physiological and biochemical to regulation at transcription and posttranscriptional levels. Post-transcription, the products encoded by eukaryotic genes must undergo a series of modifications to become a mature mRNA. Polyadenylation is an important one in terms of regulation. Polyadenylation impacts gene expression through determining the coding and regulation potential of the mRNA, especially when different mRNAs from the same gene may be polyadenylated at more than one position. This alternative polyadenylation (APA) has numerous potential effects on gene regulation and function. I have studied the impact of drought stress on APA, testing the hypothesis that drought stress may give rise to changes in the usage of poly(A) sites generating different mRNA isoforms. The results showed that usage of poly(A) sites that lie within 5’-UTRs and coding sequence (CDS) changes more than usage of sites in other regions due to drought stress. Alternative polyadenylation is meditated by the polyadenylation complex of proteins that are conserved in eukaryotic cells. The Arabidopsis CPSF30 protein (AtCPSF30), which is an RNA-binding endonuclease subunit of the polyadenylation complex, plays an important role in controlling APA. Previous study showed that poly(A) site choice changes on a large scale in oxidative stress tolerant 6 (oxt6), a mutant lacking AtCPSF30. Within the mutant/WT genotypes, there are three classes of poly(A) site, wild type specific, oxt6 specific, and common (both in wild type and mutant). The wild type specific and oxt6 specific mRNAs make up around 70% of the total of all mRNA species. I hypothesize that the stability of these various mRNA isoforms should be different, and that this is a possible way that AtCPSF30 regulates gene expression. I tested this by assessing the influence poly(A) sites can have on the mRNA isoform’s stability in the wild type and oxt6 mutant. My results show that most mRNA isoforms show similar stability profiles in the wild-type and mutant plants. However, the mRNA isoforms derived from polyadenylation within CDS are much more stable in the mutant than the wild-type. These results implicate AtCPSF30 in the process of non-stop mRNA decay. Messenger RNA polyadenylation occurs in the nucleus, and the subunits of the polyadenylation complex that meditate this process are expected to reside within the nucleus. However, AtCPSF30 by itself localizes not only to the nucleus, but also to the cytoplasm. AtCPSF30 protein contains three predicted CCCH-type zinc finger motifs. The first CCCH motif is the primary motif that is responsible for the bulk of its RNA-binding activity. It can bind with calmodulin, but the RNA-binding activity of AtCPSF30 is inhibited by calmodulin in a calcium-dependent manner. The third CCCH motif is associated with endonuclease activity. Previous studies demonstrated that the endonuclease activity of AtCPSF30 can be inhibited by disulfide reducing agents. These published results suggest that there are proteins that interact with AtCPSF30 and act through calmodulin binding or disulfide remodeling. To test this hypothesis, I screened for proteins that interact with AtCPSF30. For this, different approaches were performed. These screens led me to two proteins-one protein that is tyrosine-phosphorylated and whose phosphorylation state is modulated in response to ABA, which well-known ABA regulates guard cell turgor via a calcium-dependent pathway, and the other is ribosome protein L35(RPL35), which plays an important role in nuclear entry, translation activity, and endoplasmic reticulum(ER) docking. These results suggest that multiple calcium-dependent signaling mechanisms may converge on AtCPSF30, and AtCPSF30 might be directly interact with ribosome protein.
60

Biochemical techniques for the study of voltage-gated sodium channel auxiliary subunits

Molinarolo, Steven 01 May 2018 (has links)
Voltage-gated sodium channels auxiliary subunits evolutionary emerged nearly 500 million years ago during the Cambrian explosion. These subunits alter one the most important ion channels to electrical signaling, the voltage-gated sodium channels support the propagation of electric impulses in animals. The mechanism for the auxiliary subunits effects on the channels is poorly understand, as is the stoichiometry between the auxiliary subunit and the channel. The focus of my thesis is to generate assays and to use these approaches to understand the interactions different types of voltage-gated channels and their auxiliary subunits. A biochemical approach was taken to identify novel interactions between the eukaryotic sodium channel auxiliary subunits and a prokaryotic voltage-gated sodium channel, a protein that diverged from the eukaryotic voltage-gated sodium channels billions of years ago. These interactions between the auxiliary subunits and channels were probed with chemical and photochemical crosslinkers in search of interaction surfaces and similarity to explain the mechanisms of interaction. The work in this thesis identified novel interactions between the voltage-gated sodium channel auxiliary subunits and voltage-gated channels that are distantly related to the voltage-gated sodium channels principally thought to be modulated by the auxiliary subunits. From this work a rudimentary concept can be theorized that the voltage-gated sodium channel β-subunits and not only β1 have a more primary role in electrophysiology by associating with multiple different types of ion channels.

Page generated in 0.1354 seconds