21 |
[en] DIALOGUES BETWEEN MATHEMATICS STORIES AND EXPERIMENTAL PRACTICES IN ELEMENTARY SCHOOL / [pt] DIÁLOGOS ENTRE HISTÓRIAS DA MATEMÁTICA E PRÁTICAS EXPERIMENTAIS NA ESCOLA BÁSICAANDERSON DE OLIVEIRA MELO SILVA 13 July 2021 (has links)
[pt] O objetivo deste trabalho é propor atividades experimentais, fundamentadas
na História da Matemática, que problematizem o conteúdo ensinado no 9º ano do ensino fundamental da escola básica, com base nos seus processos históricos de
produção provocando o diálogo entre duas abordagens que fundamentam o
presente estudo: a história da matemática e o ensino por atividades experimentais.
Acreditamos que esse diálogo possibilita o alcance de objetivos específicos
importantes: humanização da matemática possibilitando que alunos deste ano
de escolaridade compreendam a matemática como produto da necessidade
humana e significação da matemática promovendo o aprendizado através do
desenvolvimento de atividades práticas que tragam sentido e motivação à
aprendizagem de novos saberes. Três conteúdos tradicionais que constam no
currículo deste segmento são apesentados com base na conjugação simultânea
destas abordagens: o teorema de Tales, o teorema de Pitágoras e a equação do segundo grau. Para cada um deles, apresentamos uma abordagem histórica, levantamos reflexões importantes sobre construções e autorias e sugerimos atividades fundamentadas no diálogo entre história e prática como propostas a serem
desenvolvidas juntos aos alunos. / [en] The objective of this work is to propose experimental activities, based on
the History of Mathematics, that problematize the content taught in the 9th grade of elementary school, based on their historical production processes, provoking a dialogue between two approaches that underlie the present study: the history of mathematics and teaching by experimental activities. We believe that this dialogue enables the achievement of important specific objectives: humanization of mathematics enabling students of this school year to understand mathematics as a product of human need and meaning of mathematics promoting learning
through the development of practical activities that bring meaning and motivation to learn new knowledge. Three traditional contents that appear in the curriculum of this segment are presented based on the simultaneous combination of these approaches: the Tales theorem, the Pythagorean theorem and the 2nd degree
equation. For each of them, we present a historical approach, raise important
reflections on constructions and authorship and suggest activities based on the dialogue between history and practice as proposals to be developed together with
the students.
|
22 |
Musiktheorie zwischen den Kulturen: Nachdenken über die westeuropäische Musiktheorie und deren Vermittlung aus einer anderen PerspektiveIckstadt, Andreas 28 October 2024 (has links)
No description available.
|
23 |
Beziehungshaltigkeit und Vernetzungen im Mathematikunterricht der Sekundarstufe INordheimer, Swetlana 05 March 2014 (has links)
Die Notwendigkeit einer Untersuchung über Beziehungshaltigkeit und Vernetzungen im Mathematikunterricht ergibt sich einerseits aus den aktuellen bildungspolitischen Forderungen, andererseits aus den reichhaltigen bildungsphilosophischen Traditionen im deutschsprachigem Raum(KMK 2012, 11). Das Ziel der vorliegenden Arbeit besteht vor allem in der Reflexion von Beziehungshaltigkeit und Vernetzungen im Mathematikunterricht. Diese Reflexion ist durch drei Fragen bestimmt: Was kann man als Lehrer über Beziehungshaltigkeit wissen? Wie kann man als Lehrer handeln, so dass die Schüler Beziehungen zwischen mathematischen Inhalten erkennen bzw. selbständig herstellen? Um handeln zu können, muss man die Wirklichkeit oder die Praxis (bzw. Empirie) kennen, in der man handelt. In diesem Sinne ist die vorliegende Arbeit aufgebaut. Dabei wird ein Versuch unternommen, die klassische Aufteilung zwischen Theorie und Empirie bzw. Praxis des Mathematikunterrichts aufzubrechen, um eine Verzahnung zwischen diesen zu verstärken. Das Herzstück der Arbeit bilden zwei ausgearbeitete und in der schulischen Arbeit erprobte Aufgabennetze (Pythagorasbaum und Rund ums Sechseck), die den Rahmen zur Reflexion bieten. / The need for a study on relations sustainability and networks in mathematics stems, on the one hand, from current education policy requirements, and, on the other, from the rich philosophical traditions of education in the German-speaking countries (KMK 2012, 11). The goal of the present work consists, above all, in reflecting on relations sustainability and networks in mathematics lessons. This reflection is guided by three questions: What can one know, as a teacher, about relations sustainability? How can one act a teacher to ensure that students recognise relationships between mathematical content, or independently produce such relations? In order to act, one must know the reality or practice (e.g. empiricism) in which one acts. The project is focused on the development and testing of worked examples of concrete task networks ("Pythagoras’ tree" and "Around the hexagon").
|
24 |
Caleidociclos / KaleidocyclesSilva, Reginaldo Alexandre da 13 January 2017 (has links)
Os caleidociclos têm sido utilizados como forma artística de apresentação de imagens, pinturas ou como parte de trabalhos artísticos, principalmente de imagens com simetrias; talvez os mais conhecidos sejam os trabalhos de M. C. Escher. As poucas publicações encontradas da teoria matemática envolvida nos caleidociclos dão base para imaginar e criar aplicações no desenvolvimento de habilidades e competências trabalhadas na escola. Para aumentar as possibilidades de aplicações de conceitos, teoremas e relações matemáticas estudadas no ensino básico, o presente trabalho apresenta algumas propostas de atividades utilizando os caleidociclos. As propostas foram elaboradas de acordo com o nível de ensino, ou seja, simetrias para o 7o ano, teorema de Pitágoras para os 8o e 9o anos do Ensino Fundamental, lei dos cossenos e relação fundamental da trigonometria para a 1a série e volume e área de superfície de sólidos geométricos para 2a série do Ensino Médio; algumas das propostas apresentam variações para se adequar ao nível de desenvolvimento em que a turma se encontra. Todos os moldes utilizados e outras possibilidades de caleidociclos, incluindo sólidos encaixantes aos caleidociclos, foram organizados ao final deste trabalho em um dos apêndices. Há também um apêndice com outros tipos de sólidos geométricos com movimentos, que podem ser usados no mesmo intuito de aplicação diferenciada da geometria espacial. / Kaleidocycles have been used asan artistic formof presentation of pictures, paintings or a part of artworks, especially images with symmetries; perhaps the best known works are M. C. Eschers. The few finded publications of the mathematical theory related to these three-dimensional rings give rise to imagine and create applications for developing skills to be worked in classroom. In order to increase the possibility of applications of concepts, theorems and mathematical relations, the present work proposes some activities dealing with kaleidocycles. The proposals were prepared in accordance with the students level of education, i.e., symmetries for the7th grade, the Pythagorean theorem for the 8th and 9th grades, law of cosines and the fundamental relation of trigonometry, volume and surface area of geometric solids for high school students; some of the proposals have variations to suit the level of development in which the class is at. All the molds used and other possibilities of kaleidocycles, including solids which fit into kaleidocycles, were organized at the end of this dissertation in one of the appendices. There is also an appendix with other types of mobile geometric solids that can be used in the same purpose in different applications of spatial geometry.
|
25 |
GeoGebra, recurso computacional a favor da aprendizagem matemática no ensino fundamental IISelli, Luis Fernando 21 March 2014 (has links)
Made available in DSpace on 2016-06-02T20:29:25Z (GMT). No. of bitstreams: 1
5860.pdf: 2193810 bytes, checksum: 8f6aaa00065dd7db0a219c6a2f7e41a9 (MD5)
Previous issue date: 2014-03-21 / Financiadora de Estudos e Projetos / This paper is related to the application of GeoGebra software in the following topics: Ratio, Proportion, Thales Theorem, Similarities, Similarity of Triangles, Pythagorean Theorem, Trigonometric Ratios in the Triangle Rectangle, Number and circumference. Initially all the contents were thought by traditional method, board and chalk. Therefore the GeoGebra software was applied. It was developed to teachers and students (9th grade) of an elementary school involved in these activities. Positive and negative results were showed but there is a perspective of improvement. All the stages are separately related to help the understanding. The object is the analyses about the importance and relevancy of using computerized mathematical tools during the learning process. / Este trabalho trata da aplicação do software GeoGebra nos seguintes temas: Razão, Proporção, Teorema de Tales, Semelhança, Semelhança de Triângulos, Teorema de Pitágoras, Razões Trigonométricas no Triângulo Retângulo, o número e a Circunferência. Cada conteúdo foi trabalhado inicialmente do modo tradicional, giz e lousa, e posteriormente com o uso do GeoGebra. Desenvolvido de modo inédito para o professor e para os alunos de 8ª série (9° ano) envolvidos nas atividades, mostra resultados positivos e negativos com perspectiva de melhoras. Todas as etapas estão relatadas separadamente e o desenvolvimento foi feito de modo a favorecer uma compreensão adequada sobre o trabalho com o objetivo de propiciar a análise sobre a importância e relevância do uso de ferramentas matemáticas informatizadas no auxílio da aprendizagem.
|
26 |
Caleidociclos / KaleidocyclesReginaldo Alexandre da Silva 13 January 2017 (has links)
Os caleidociclos têm sido utilizados como forma artística de apresentação de imagens, pinturas ou como parte de trabalhos artísticos, principalmente de imagens com simetrias; talvez os mais conhecidos sejam os trabalhos de M. C. Escher. As poucas publicações encontradas da teoria matemática envolvida nos caleidociclos dão base para imaginar e criar aplicações no desenvolvimento de habilidades e competências trabalhadas na escola. Para aumentar as possibilidades de aplicações de conceitos, teoremas e relações matemáticas estudadas no ensino básico, o presente trabalho apresenta algumas propostas de atividades utilizando os caleidociclos. As propostas foram elaboradas de acordo com o nível de ensino, ou seja, simetrias para o 7o ano, teorema de Pitágoras para os 8o e 9o anos do Ensino Fundamental, lei dos cossenos e relação fundamental da trigonometria para a 1a série e volume e área de superfície de sólidos geométricos para 2a série do Ensino Médio; algumas das propostas apresentam variações para se adequar ao nível de desenvolvimento em que a turma se encontra. Todos os moldes utilizados e outras possibilidades de caleidociclos, incluindo sólidos encaixantes aos caleidociclos, foram organizados ao final deste trabalho em um dos apêndices. Há também um apêndice com outros tipos de sólidos geométricos com movimentos, que podem ser usados no mesmo intuito de aplicação diferenciada da geometria espacial. / Kaleidocycles have been used asan artistic formof presentation of pictures, paintings or a part of artworks, especially images with symmetries; perhaps the best known works are M. C. Eschers. The few finded publications of the mathematical theory related to these three-dimensional rings give rise to imagine and create applications for developing skills to be worked in classroom. In order to increase the possibility of applications of concepts, theorems and mathematical relations, the present work proposes some activities dealing with kaleidocycles. The proposals were prepared in accordance with the students level of education, i.e., symmetries for the7th grade, the Pythagorean theorem for the 8th and 9th grades, law of cosines and the fundamental relation of trigonometry, volume and surface area of geometric solids for high school students; some of the proposals have variations to suit the level of development in which the class is at. All the molds used and other possibilities of kaleidocycles, including solids which fit into kaleidocycles, were organized at the end of this dissertation in one of the appendices. There is also an appendix with other types of mobile geometric solids that can be used in the same purpose in different applications of spatial geometry.
|
Page generated in 0.0542 seconds