31 |
Initial and plasmon-enhanced optical properties of nanostructured silicon carbide / Initialisation et propriétés optiques des plasmons améliorés des carbures de silicium nanostructurésZakharko, Yuriy 30 October 2012 (has links)
Le carbure de silicium (SiC) nanostructuré est considéré aujourd'hui comme une bonne alternative aux matériaux traditionnels pour diverses applications multidisciplinaires. Dans cette thèse, des nanostructures de SiC ont été élaborées par gravure électrochimique et par ablation laser. La première partie de cette thèse décrit et explique la dépendance en taille des propriétés optiques ainsi que l'importance des effets de champ local sur les transitions électroniques photo-induites des nanostructures de SiC. Dans la seconde partie, il est démontré une amplification d’un facteur 15 de l’intensité de photoluminescence des nanoparticules de SiC par leurs interactions en champ proche avec les plasmons multipolaires localisées. En outre, un facteur 287 et un facteur 72, induits par le couplage plasmonique, sont obtenus respectivement pour les signaux de luminescence à deux photons et de génération de seconde harmonique. Les principaux mécanismes physiques responsables des effets observés ont été décrits par des simulations de type différences finies dans le domaine temporel en trois dimensions. Enfin, l'effet de couplage de nanoparticules de SiC luminescentes à des nanostructures plasmoniques en structures planes est utilisé pour améliorer le marquage de cellules biologiques. Une perspective est ouverte sur la réalisation et les premières caractérisations de suspension colloïdales de nanohybrides plasmonique (Au@SiO2)SiC. / Nanostructured silicon carbide (SiC) is considered today as a good alternative to the conventional materials for various multidisciplinary applications. In this thesis, SiC nanostructures were elaborated by means of electrochemical etching and laser ablation techniques. The first part of the thesis clarifies size-dependence of optical properties as well as importance of local-field effects onto the photoinduced electronic transitions of SiC nanostructures. In the second part of the thesis strong 15-fold photoluminescence enhancement of SiC nanoparticles is ensured by their near-field interactions with multipolar localized plasmons. Further, 287-fold and 72-fold plasmon-induced enhancement factors of two-photon excited luminescence and second harmonic generation is achieved, respectively. The main physical mechanisms responsible for the observed effects were described by three-dimensional finite-difference time domain simulations. Finally, the coupling effect of luminescent SiC nanoparticles to plasmonic nanostructures is used in the enhanced labelling of biological cells on the planar structures. As a perspective, colloidal plasmonic (Au@SiO2)SiC nanohybrids were elaborated and characterized.
|
32 |
Photoluminescence Intermittency of Semiconductor Quantum Dots in Dielectric EnvironmentsIssac, Abey 14 August 2006 (has links) (PDF)
The experimental studies presented in this thesis deal with the photoluminescence
intermittency of semiconductor quantum dots in different dielectric environments. Detailed
analysis of intermittency statistics from single capped CdSe/ZnS, uncapped CdSe and
water dispersed CdSe/ZnS QDs in different matrices provide experimental evidence for the
model of photoionization with a charge ejected into the surrounding matrix as the source of
PL intermittency phenomenon. The distribution of the dark state lifetimes can be described
by a power law over a wide range while that of bright state can be described by a power
law at shorter times followed by an exponential decay.
The lifetimes of the bright and dark states are influenced by the dielectric properties
of the surrounding environment. Our experimental results show that the lifetime of the dark
state increases with the dielectric constant of the matrix. This is very clear from the linear
correlation between αoff and f (ε). We propose a self-trapping model to explain the increase
of dark state lifetimes with the dielectric constant of the matrix. A charge will be more
stabilized in a medium with high dielectric constant. An energetically more favourable
state for an electron in a high dielectric medium decreases the return probability which
eventually increases the duration of the off-time. Moreover, the self-trapping model
establishes a general model for distribution of states in a matrix.
We like to mention, that in the case of bright states, a qualitative observation is the
cross over of the on-time power law behavior to an exponential one. The power law part of
the decay is nearly matrix independent while the exponential decay, which limits the
maximum on-time, strongly depends on dielectric properties of the environment. The
exponential part of the on-time probability decays much faster in a high dielectric medium
and there exists a linear relation between the time constant of the exponential decay
and f (ε). Theoretical background has been provided for the observed results using the
recently published DCET model which correlates PL intermittency of QDs with properties of the environment.
This supports our previous conjecture of a general model for matrix controlled blinking process.
The disagreement between experimentally observed dependence of αoff and f (ε) for
different matrices with that of the static tunnelling model proposed by Verberk is due to the fact that the tunneling model considers only an electron transfer between
a QD and spatially distributed trap states in vacuum. These states are already stabilized
states. It does not assume any medium in between. Therefore, matrix dependent blinking
kinetics can not be explained quantitatively by tunneling model even though tunneling
between a QD and spatially distributed trap states gives a power law distribution for the
blinking kinetics.
DCET is a more general (dynamic) model. The bright and dark state parabolas
contain QD, charge and the matrix. Therefore, this model could in principle explain matrix
dependent blinking kinetics in a better way, for example, the energy difference between the
minima of the bright and dark state parabolas (-ΔG0) is defined by the stabilization energy
of the system provided by the matrix. However, due to lack of the relevant intrinsic
parameters we did not compare this relationship and dependence qualitatively. / Betrachtet man die Fluoreszenz einzelner Farbstoffmoleküle oder Halbleiternanokristalle bei
kontinuierlicher Anregung, so stellt man fest, dass die im Zeitverlauf beobachtete Intensität einer
stochastischen Variation unterliegt, d. h. dass das Chromophor zwischen emittierenden und nicht
emittierenden Zuständen, auch Hell- und Dunkelzuständen genannt, hin- und herschaltet. Dieses als
Blinken bekannte Phänomen ist physikalisch wie auch technologisch herausfordernd, lässt es doch
einerseits die Realisierbarkeit einer Reihe von quantenoptischen Anwendungen, so z. B. auf dem
Gebiet der Quantenkryptographie, dem Quantum Computing oder der optischen Schaltungstechnik
auf Basis einzelner Quantenobjekte, in naher Zukunft möglich erscheinen. Andererseits setzt es
gewissen Anwendungen, die auf die permanente Sichtbarkeit des Chromophors aufbauen, Grenzen,
so zum Beispiel der Verwendung als Lumineszenzmarker in der medizinischen Diagnostik.
Weiterhin ist festzustellen, dass das Blinken kritisch von den äußeren Bedingungen und von den
Umgebungsparametern abhängt. Aus diesen und anderen Gründen ist ein fundamentales
Verständnis der physikalischen Ursachen und der Wechselwirkungsprozesse unerlässlich. Die
Forschung dazu steckt noch in den Kinderschuhen.
Basierend auf umfangreiche Messungen der Fluoreszenzzeitreihen einzelner Nanokristalle aus
CdSe und CdSe/ZnS in verschiedenen Umgebungen, zeigt diese Dissertation exemplarisch den
Einfluss der Dielektrizitätsparameter auf das Blinken. Zur Erklärung des Sachverhalts wird ein so
genanntes Self-Trapping-Modell zu Rate gezogen. Demnach kommt es zu einer Ionisation des
Quantenobjekts und anschließender Ladungstrennung, woraufhin die abgetrennte Ladung für eine
gewisse Zeit in der Umgebung lokalisiert bleibt. Die Dauer der Lokalisierung und damit der
emittierenden und nicht emittierenden Perioden hängt von der dielektrischen Funktion des
umgebenden Materials ab. Dies ist als direkter Nachweis für den photoinduzierten Ladungstransfer
als Ursache des Fluoreszenzblinkens zu deuten. Die Arbeit demonstriert, dass die experimentellen
Zeitreihen die charakteristischen Merkmale eines diffusionsgesteuerten Ladungstransferprozesses
besitzen und nimmt dabei den gegenwärtigen wissenschaftlichen Diskurs über geeignete
theoretische Modelle des Fluoreszenzblinkens auf.
|
33 |
Quantum-confined excitons in 2-dimensional materialsPalacios-Berraquero, Carmen January 2018 (has links)
The 2-dimensional semiconductor family of materials called transition metal dichalcogenides (2d-TMDs) offers many technological advantages: low power consumption, atomically-precise interfaces, lack of nuclear spins and ease of functional integration with other 2d materials are just a few. In this work we harness the potential of these materials as a platform for quantum devices: develop a method by which we can deterministically create single-photon emitting sites in 2d-TMDs, in large-scale arrays. These we call quantum dots (QDs): quantum confinement potentials within semiconductor materials which can trap single-excitons. The single excitons recombine radiatively to emit single-photons. Single-photon sources are a crucial requirement for many quantum information technology (QIT) applications such as quantum cryptography and quantum communication. The QDs are formed by placing the flakes over substrates nano-patterned with protru- sions which induce local strain and provoke the quantum confinement of excitons at low temperatures. This method has been successfully tested in several TMD materials, hence achieving quantum light at different wavelengths. We present one of the very few systems where quantum confinement sites have been shown to be deterministically engineered in a scalable way. Moreover, we have demonstrated how the 2d-based QDs can be embedded within 2d- heterostructures to form functional quantum devices: we have used TMD monolayers along with other 2d-materials - graphene and hexagonal boron nitride - to create quan- tum light-emitting diodes that produce electrically-driven single-photons. Again, very few single-photon sources can be triggered electrically, and this provides a great ad- vantage when considering on-chip quantum technologies. Finally, we present experimental steps towards using our architecture as quantum bits: capturing single-spins inside the QDs, using field-effect type 2d-heterostructures. We are able to controllably charge the QDs with single-electrons and single-holes – a key breakthrough towards the use of spin and valley pseudospin of confined carriers in 2d-materials as a new kind of optically addressable matter qubit. This work presents the successful marriage of 2d-semiconductor technology with QIT, paving the way for 2-dimensional materials as platforms for scalable, on-chip quantum photonics.
|
34 |
ZnO nanostructuré : étude expérimentale de l'auto-organisation de nanoparticules et simulations numériques du dopage dans des phases expansées / Nanostructured ZnO : experimental study of the self-organization of nanoparticles and numerical simulations of the doping in expanded phasesHapiuk, Dimitri 06 December 2013 (has links)
Cette thèse avait pour premier objectif de comprendre les mécanismes d'auto-organisation entre nanoparticules de ZnO. Synthétisées via une technique physique combinant ablation laser et détente supersonique (la LECBD), les nanoparticules obtenues sont stoechiométriques, cristallisées et sans ligand. Grâce à la DRX et HRTEM, nous avons pu identifier la nature du mécanisme régissant le collage orienté des nanoparticules. Son impact sur la luminescence de couches minces de ZnO est de première importance pour des applications opto-électroniques. La microscopie confocale nous a permis de caractériser finement les spectres optiques de films nanostructurés. Une méthode originale combinant STEM et cathodoluminescence a permis de révéler une hétérogénéité nanométrique de la luminescence issue du collage orienté. Par ailleurs, des phénomènes fondamentaux tels que le blinking, ou bleaching pour une nanoparticule unique de ZnO ne sont pas connus. La LECBD permet d'obtenir des nanoparticules isolées et triées en masse. Nous avons ainsi pu observer la luminescence d'une collection de 50 nanoparticules sous faisceau (état de l'art), donnant accès aux paramètres intrinsèques de la luminescence d'une particule unique. A ce jour, le dopage de type p par substitution reste un verrou technologique dans ZnO freinant le développement d'applications optoélectroniques. Un dernier objectif a donc été d'explorer numériquement les possibilités d'un autre type de dopage dans ZnO à savoir le dopage endohédral. Nous avons montré que le dopage de type p était possible dans la sodalite, une structure cage hypothétique pour ZnO, ce qui ouvre la voie à de nouveaux champs d'investigation dans ce domaine / The understanding of the self-organization mechanisms between ZnO nanoparticles was a first objective of this thesis. Synthesized via a physical technique combining a laser ablation and a supersonic expansion (LECBD), nanoparticles are stoichiometric, crystallized and ligand-free. Thanks to XRD and HRTEM, we could identify the nature of the mechanism governing the oriented attachment between nanoparticles, still under debate in the literature. Its impact on the luminescence of ZnO thin films is of primary importance for opto-electronic applications. Confocal microscopy allowed us to characterize accurately the optical spectra of nanostructured films. A novel method combining STEM and cathodoluminescence revealed a nanometer scaled heterogeneity of luminescence from oriented attached structures. Moreover, fundamental phenomena such as blinking or bleaching for a single ZnO nanoparticle are not yet known. Thanks to LECBD it is possible to synthesize isolated and weight selected nanoparticles. We were able to observe the luminescence of a collection of 50 nanoparticles under the beam (state of the art), giving us access to the intrinsic parameters of the luminescence of a single particle. On the other hand and up to date, the p-type doping by substitution remains a technological barrier in ZnO constraining the development of opto-electronic applications. Thus, as a final objective we explored numerically the possibilities of another scheme of doping in ZnO namely the endohedral doping. We have shown that the p-type doping was possible in the sodalite, a hypothetical cage structure for ZnO, which opens the way to new fields of investigation in this area
|
35 |
Estudo de primeiros princípios de nanofios em arseneto de índio e fosfeto de índio / First principles study of indium arsenide and indium phosphide nanowiresSantos, Cláudia Lange dos 29 July 2011 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / In this work we used the density functional theory to study InAs and InP nanowires
and InAs/InP nanowire heterostructures. Initially we studied the structural, electronic
and mechanical properties of InAs and InP nanowires as a function of the diameter and the
influence of external mechanical stress on the electronic properties of these systems. Our
results show that all analyzed properties change with increasing quantum confinement.
Further, the application of an external stress along the nanowire axis reveals a direct to
indirect band gap transition for compressive strain in very thin nanowires.
We have also studied the quantum confinement effects on the effective masses of
charge carriers in InAs nanowires grown in different crystallographic directions. We found
the electron and hole effective masses increase with decreasing diameter independently of
the growth direction. However, in the range of the studied diameters, the hole effective
mass is significantly smaller to the corresponding one at the bulk system.
From the study of the stability and electronic properties of the cadmium and zinc
doped InAs nanowires, we show that the Cd impurity prefers to be at the core region,
whereas Zn impurity is found to be equally distributed along the nanowire diameter. The
analysis of the electronic properties of these systems show that these impurities introduce
shallow acceptor levels in the band gap, enabling a p-type behavior of these nanowires.
Finally, we determined (i) the structural, electronic and mechanical properties of
axially and radially modulated InAs/InP nanowire heterostructures for a specific diameter
and (ii) the structural and electronic properties of radial InAs/InP nanowire heterostructures
as a function of the diameter and composition. From (i), our calculations showed
the analyzed properties have an intermediate value between those for the pure InAs and
InP nanowires with similar diameters. In particular, the presence of an InP shell covering
the InAs nanowires enhances the InAs electron mobility, as compared to the uncapped
InAs nanowires. In addition, for the radial heterostructure, the conduction and the valence
band alignments favor a type-I heterojunction, while for the axial heterostructure
a transition from a type-I to a type-II heterojunction could occur at this range of diameters.
From (ii), we observed that for nanowire heterostrutures of similar diameters,
the variation of their structural and electronic properties with the composition possesses
significant deviations from the linear behavior, which are dependent of the nanostructure
diameter. The conduction band offset is approximately zero and the valence band offset
decrease regardless of diameter and composition of the heterostructure. / Neste trabalho realizamos um estudo teórico, baseado na teoria do funcional da
densidade, em nanofios de InAs e InP e em heteroestruturas de nanofios InAs/InP. Inicialmente
estudamos a variação das propriedades estruturais, eletrônicas e mecânicas com
o diâmetro em nanofios de InAs e InP, e as possíveis alterações nas propriedades eletrônicas
destes sistemas sob a influência de uma tensão mecânica externa. Nossos resultados
mostram que todas as propriedades analisadas são alteradas com o aumento do confinamento
quântico. Além disso, a aplicação de uma tensão externa ao longo do eixo de
crescimento dos fios leva a uma transição de gap direto para indireto nos nanofios de
menores diâmetros.
A seguir, avaliamos os efeitos do confinamento quântico na massa efetiva dos portadores
de carga em nanofios de InAs crescidos em diferentes direções cristalográficas.
Encontramos que as massas efetivas dos elétrons e dos buracos aumentam com a redução
do diâmetro, independentemente da direção de crescimento dos nanofios. Contudo, no
intervalo de diâmetro estudado, a massa efetiva dos buracos nos nanofios é significativamente
menor do que a massa efetiva dos buracos no cristal.
Do estudo da estabilidade e das propriedades eletrônicas de nanofios de InAs dopados
substitucionalmente com cádmio e zinco observamos que, independentemente do
diâmetro dessas nanoestruturas, as impurezas de Cd são mais estáveis quando estão no
centro do nanofio, enquanto que as impurezas de Zn se distribuem quase que uniformemente
ao longo do diâmetro do fio. Do ponto de vista eletrônico, observamos que
estas impurezas introduzem níveis aceitadores rasos no gap de energia desses materiais
possibitando um comportamento tipo-p desses nanofios.
Por fim, determinamos: (i) as propriedades estruturais, eletrônicas e mecânicas de
heteroestruturas axiais e radiais de nanofios InAs/InP para um determinado diâmetro; e
(ii) as propriedades estruturais e eletrônicas de heteroestruturas radiais InAs/InP como
uma função do diâmetro e da composição. Em (i), nossos resultados mostram que as propriedades
analisadas possuem valores intermediários entre aqueles dos nanofios de InAs e
InP de mesmo diâmetro. Em particular, observamos que a presença de uma camada de
InP sobre nanofios de InAs aumenta significativamente sua mobilidade eletrônica quando
comparada com a de um nanofio de InAs puro. Além disso, na heteroestrutura radial, o alinhamento
das bandas de condução e das bandas de valência favorece uma heteroestrutura
do tipo I, enquanto que na heteroestrutura axial, uma transição de uma heteroestrutura
do tipo I para uma heteroestrutura do tipo II poderá ocorrer neste intervalo de diâmetros.
Em (ii), para as heteroestruturas com diâmetros similares, observamos que a variação de
suas propriedades estruturais e eletrônicas com a composição possui desvios significativos
do comportamento linear, sendo estes dependentes do diâmetro dessas nanoestruturas.
O descasamento da banda de condução é aproximadamente nulo enquanto que o descasamento
da banda de valência diminui independente do diâmetro e da composição da
heteroestrutura.
|
36 |
Influence of Size and Interface Effects of Silicon Nanowire and Nanosheet for Ultra-Scaled Next Generation TransistorsOrthi Sikder (9167615) 28 July 2020 (has links)
<div>In this work, we investigate the trade-off between scalability and reliability for next generation logic-transistors i.e. Gate-All-Around (GAA)-FET, Multi-Bridge-Channel (MBC)-FET. First, we analyze the electronic properties (i.e. bandgap and</div><div>quantum conductance) of ultra-thin silicon (Si) channel i.e. nano-wire and nano-sheet based on first principle simulation. In addition, we study the influence of interface</div><div>states (or dangling bonds) at Si-SiO<sub>2</sub> interface. Second, we investigate the impact of bandgap change and interface states on GAA-FETs and MBC-FETs characteristics by</div><div>employing Non-equilibrium Green's Function based device simulation. In addition to that, we calculate the activation energy of Si-H bond dissociation at Si-SiO<sub>2</sub> interface for different Si nano-wire/sheet thickness and different oxide electric-field. Utilizing these thickness dependent activation energies for corresponding oxide electric-field, in conjunction with reaction-diffusion model, we compute the characteristics shift and analyze the negative bias temperature instability in GAA-FET and MBC-FET. Based on our analysis, we estimate the operational voltage of these transistors for a life-time of 10 years and the ON current of the device at iso-OFF-current condition. For example, for channel length of 5 nm and thickness < 5 nm the safe operating voltage needs to be < 0.55V. Furthermore, our analysis suggests that the benefit of Si thickness scaling can potentially be suppressed for obtaining a desired life-time of GAA-FET and MBC-FET.</div>
|
37 |
Photoluminescence Intermittency of Semiconductor Quantum Dots in Dielectric EnvironmentsIssac, Abey 11 August 2006 (has links)
The experimental studies presented in this thesis deal with the photoluminescence
intermittency of semiconductor quantum dots in different dielectric environments. Detailed
analysis of intermittency statistics from single capped CdSe/ZnS, uncapped CdSe and
water dispersed CdSe/ZnS QDs in different matrices provide experimental evidence for the
model of photoionization with a charge ejected into the surrounding matrix as the source of
PL intermittency phenomenon. The distribution of the dark state lifetimes can be described
by a power law over a wide range while that of bright state can be described by a power
law at shorter times followed by an exponential decay.
The lifetimes of the bright and dark states are influenced by the dielectric properties
of the surrounding environment. Our experimental results show that the lifetime of the dark
state increases with the dielectric constant of the matrix. This is very clear from the linear
correlation between αoff and f (ε). We propose a self-trapping model to explain the increase
of dark state lifetimes with the dielectric constant of the matrix. A charge will be more
stabilized in a medium with high dielectric constant. An energetically more favourable
state for an electron in a high dielectric medium decreases the return probability which
eventually increases the duration of the off-time. Moreover, the self-trapping model
establishes a general model for distribution of states in a matrix.
We like to mention, that in the case of bright states, a qualitative observation is the
cross over of the on-time power law behavior to an exponential one. The power law part of
the decay is nearly matrix independent while the exponential decay, which limits the
maximum on-time, strongly depends on dielectric properties of the environment. The
exponential part of the on-time probability decays much faster in a high dielectric medium
and there exists a linear relation between the time constant of the exponential decay
and f (ε). Theoretical background has been provided for the observed results using the
recently published DCET model which correlates PL intermittency of QDs with properties of the environment.
This supports our previous conjecture of a general model for matrix controlled blinking process.
The disagreement between experimentally observed dependence of αoff and f (ε) for
different matrices with that of the static tunnelling model proposed by Verberk is due to the fact that the tunneling model considers only an electron transfer between
a QD and spatially distributed trap states in vacuum. These states are already stabilized
states. It does not assume any medium in between. Therefore, matrix dependent blinking
kinetics can not be explained quantitatively by tunneling model even though tunneling
between a QD and spatially distributed trap states gives a power law distribution for the
blinking kinetics.
DCET is a more general (dynamic) model. The bright and dark state parabolas
contain QD, charge and the matrix. Therefore, this model could in principle explain matrix
dependent blinking kinetics in a better way, for example, the energy difference between the
minima of the bright and dark state parabolas (-ΔG0) is defined by the stabilization energy
of the system provided by the matrix. However, due to lack of the relevant intrinsic
parameters we did not compare this relationship and dependence qualitatively. / Betrachtet man die Fluoreszenz einzelner Farbstoffmoleküle oder Halbleiternanokristalle bei
kontinuierlicher Anregung, so stellt man fest, dass die im Zeitverlauf beobachtete Intensität einer
stochastischen Variation unterliegt, d. h. dass das Chromophor zwischen emittierenden und nicht
emittierenden Zuständen, auch Hell- und Dunkelzuständen genannt, hin- und herschaltet. Dieses als
Blinken bekannte Phänomen ist physikalisch wie auch technologisch herausfordernd, lässt es doch
einerseits die Realisierbarkeit einer Reihe von quantenoptischen Anwendungen, so z. B. auf dem
Gebiet der Quantenkryptographie, dem Quantum Computing oder der optischen Schaltungstechnik
auf Basis einzelner Quantenobjekte, in naher Zukunft möglich erscheinen. Andererseits setzt es
gewissen Anwendungen, die auf die permanente Sichtbarkeit des Chromophors aufbauen, Grenzen,
so zum Beispiel der Verwendung als Lumineszenzmarker in der medizinischen Diagnostik.
Weiterhin ist festzustellen, dass das Blinken kritisch von den äußeren Bedingungen und von den
Umgebungsparametern abhängt. Aus diesen und anderen Gründen ist ein fundamentales
Verständnis der physikalischen Ursachen und der Wechselwirkungsprozesse unerlässlich. Die
Forschung dazu steckt noch in den Kinderschuhen.
Basierend auf umfangreiche Messungen der Fluoreszenzzeitreihen einzelner Nanokristalle aus
CdSe und CdSe/ZnS in verschiedenen Umgebungen, zeigt diese Dissertation exemplarisch den
Einfluss der Dielektrizitätsparameter auf das Blinken. Zur Erklärung des Sachverhalts wird ein so
genanntes Self-Trapping-Modell zu Rate gezogen. Demnach kommt es zu einer Ionisation des
Quantenobjekts und anschließender Ladungstrennung, woraufhin die abgetrennte Ladung für eine
gewisse Zeit in der Umgebung lokalisiert bleibt. Die Dauer der Lokalisierung und damit der
emittierenden und nicht emittierenden Perioden hängt von der dielektrischen Funktion des
umgebenden Materials ab. Dies ist als direkter Nachweis für den photoinduzierten Ladungstransfer
als Ursache des Fluoreszenzblinkens zu deuten. Die Arbeit demonstriert, dass die experimentellen
Zeitreihen die charakteristischen Merkmale eines diffusionsgesteuerten Ladungstransferprozesses
besitzen und nimmt dabei den gegenwärtigen wissenschaftlichen Diskurs über geeignete
theoretische Modelle des Fluoreszenzblinkens auf.
|
38 |
Orts- und zeitaufgelöste optische Spektroskopie an Silizium-NanokristallenMartin, Jörg 01 December 2004 (has links)
Gegenstand der Dissertation sind Untersuchungen zur Photolumineszenz von Silizium-Nanokristallen. Den Schwerpunkt bilden dabei die Messungen an isolierten Partikeln mittels konfokaler Mikroskopie und optischer Spektroskopie. Von einzelnen Silizium-Partikeln konnten relativ schmale, strukturierte Photolumineszenzbanden detektiert werden, die die Aussagen des Quantum-Confinement-Modells bestätigen. Ein weiteres Merkmal der Photolumineszenz von einzelnen Halbleiter-Nanopartikeln ist das so genannte Blinken. Die Erstellung von Blinkstatistiken unter verschiedenen Anregungsbedingungen ermöglichte es, die zum Blinken führenden photophysikalischen Prozesse genauer zu charakterisieren. Es wird unter anderem gezeigt, dass das reversible Bleichen der Lumineszenz von Silizium-Nanokristall-Ensemblen und porösem Silizium auf ein instationäres Blinkverhalten zurückzuführen ist. Abschließend werden Bezüge zu den astrophysikalischen Beobachtungen von der Extended Red Emission hergestellt und verschiedene Tunnel- und Random-Walk-Modelle zur Beschreibung der photophysikalischen Prozesse diskutiert.
|
39 |
Study of luminescent and energy properties of CsPbBr3 and CsPbI3 nanoplateletsSalique, Taddeo January 2022 (has links)
Halide perovskite semiconductor nanocrystals have been studied a lot recently because they allow a precise control over the entire visible emission spectrum and as a result, the possibility of a variety of light-emitting applications. In this study, cesium lead bromide CsPbBr3 and cesium lead iodide CsPbI3 nanoplatelets of 3, 4 and 5 monolayers (ML) have been synthesized. The absorbance and emission of each solutions and monolayer are measured and analyzed in terms of the change in excitonic nature. The results show that the exciton peak decreases with the number of monolayers with a stronger excitonic behavior in the Bromide system in comparison to the Iodine perovskite with nearly no excitonic feature for the 5 ML system. An analysis of the apparent Stokes-shift show that it increases with the number of monolayer for CsPbBr3 in comparison with the Iodide system where it decreases. The vibrational properties were quantified with Raman spectroscopy and showed that a second signifying peak of the perovskite vibration change upon quantum confinement.
|
40 |
Electronic excited states in quasi- one- dimensional organic solids with strong coupling of Frenkel and charge-transfer excitonsSchmidt, Karin 03 March 2003 (has links)
This work offers a concept to predict and comprehend the electronic excited states in regular aggregates formed of quasi-one-dimensional organic materials. The tight face-to-face stacking of the molecules justifies the idealization of the crystals and clusters as weakly interacting stacks with leading effects taking place within the columnar sub-structures. Thus, the concept of the small radius exciton theory in linear molecular chains was adopted to examine the excitonic states. The excited states are composed of molecular excitations and nearest neighbor charge transfer (CT) excitations. We analyzed the structure and properties of the excited states which result from the coupling of Frenkel and CT excitons of arbitrary strength in finite chains with idealized free ends. With the help of a partially analytical approach to determine the excitonic states of mixed Frenkel CT character by introducing a complex wave vector, two main types of states can be distinguished. The majority of states are bulk states with purely imaginary wavevector. The dispersion relation of these state matches exactly the dispersion relation known from the infinite chain. The internal structure of the excitons in infinite chains is directly transferred to the bulk states in finite chains. TAMM-like surface states belong to the second class of states. Owing to the damping mediated by a a non-vanishing real part of the wavevector, the wave function of the surface states is localized at the outermost molecules. The corresponding decay length is exclusively determined by the parameterization of the coupling and is independent of the system size. It can therefore be assigned as a characteristic quantum length which plays a vital role for the understanding of system-dependent behavior of the states. The number and type of surface states occurring is predicted for any arbitrary coupling situation. The different nature of bulk and surface states leads to distinct quantum confinement effects. Two regimes are distinguished. The first regime, the case of weak confinement, is realized if the chain length is larger than the intrinsic length. Both kinds of states arrange with the system size according to their nature. Derived from the excitonic states of the infinite chain, the bulk states preserve their quasi-particle character in these large systems. Considered as a quasi-particle confined in box, they change their energy with the system size according to the particle-in-a-box picture. The surface states do not react to a change of the chain length at all, since effectively only the outermost molecules contribute to the wavefunction. The second regime holds if the states are strongly confined, i.e., the system is smaller than the intrinsic length. Both types of states give up their typical behavior and adopt similar properties. / Diese Arbeit unterbreitet ein Konzept, um elektronische Anregungszustände in Aggregaten quasi-eindimensionaler organischer Materialien vorherzusagen und zu verstehen. Die dichte Packung der Moleküle rechtfertigt die Idealisierung der Kristalle bzw. Cluster als schwach wechselwirkende Stapel, wobei die führenden Effekte innerhalb der Molekülstapel zu erwarten sind. Zur Beschreibung der exzitonischen Zustände wurde das Konzept der 'small radius'-Exzitonen in linearen Molekülketten angewandt. Die elektronischen Zustände sind dabei aus molekularen (Frenkel) und nächsten Nachbarn 'charge-transfer' (CT) Anregungen zusammengesetzt. Die Struktur und Eigenschaften der Zustände wurden für beliebige Kopplungsstärken zwischen Frenkel- und CT Anregungen in Ketten mit idealisierten freien Enden für beliebiger Längen analysiert. Der entwickelte, überwiegend analytische Zugang, welcher auf der Einführung eines komplexen Wellenvektors beruht, ermöglicht die Unterscheidung zweier grundsätzlicher Zustandstypen. Die Mehrheit der Zustände sind Volumenzustände mit rein imaginärem Wellenvektor. Die zugehörige Dispersionsrelation entspricht exakt der Dispersionsrelation der unendlichen Kette mit äquivalenten Kopplungsverhältnissen. Die interne Struktur der Exzitonen der unendlichen Kette wird auf die Volumenzustände der endlichen Kette direkt übertragen. Der zweite grundlegende Zustandstyp umfaßt Tamm-artige Oberflächenzustände. Aufgrund der durch einen nichtverschwindenden reellen Anteil des Wellenvektors hervorgerufenen Dämpfung sind die Wellenfunktionen der Oberflächenzustände an den Randmolekülen lokalisiert. Die entsprechende Dämpfungslänge ist ausschließlich durch die Parametrisierung der Kopplungen bestimmt und ist somit unabhängig von der Kettenlänge. Sie kann daher als intrinische Quantenlänge interpretiert werden, welche von essentieller Bedeutung für das Verständnis systemgrößenabhängigen Verhaltens ist. Sowohl die Anzahl als auch die Art der Oberflächenzustände kann für jede Kopplungssituation vorhergesagt werden. Die unterschiedliche Natur der Volumen- und Oberflächenzustände führt auf ausgeprägte 'Quantum confinement' Effekte. Zwei Regime sind zu unterscheiden. Im Falle des ersten Regimes, dem schwachen 'Confinement', ist die Kettenlänge größer als die intrinsische Länge. Beide Zustandarten reagieren auf eine Veränderung der Kettenlänge gemäß ihrer Natur. Aufgrund ihrer Verwandschaft mit den Bandzuständen der unendlichen Kette bewahren die Volumenzustände ihren Quasiteilchen-Charakter. Aufgefaßt als Quasiteilchen, erfahren sie in endlichen Systemen eine energetische Verschiebung gemäß dem Potentialtopf-Modell. Oberflächenzustände zeigen keine Reaktion auf veränderte Kettenlängen, da effektiv nur die Randmoleküle zur Wellenfunktion beitragen. Es findet ein Übergang zum zweiten Regime (starkes 'Confinement') statt, sobald die Kettenlänge kleiner als intrinsische Quantenlänge wird. Beide Zustandsarten geben ihr typisches Verhalten auf und werden mit abnehmender Kettenlänge zunehmend ähnlicher.
|
Page generated in 0.0996 seconds