• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 55
  • 12
  • 9
  • 6
  • 5
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 182
  • 63
  • 22
  • 18
  • 18
  • 17
  • 15
  • 14
  • 12
  • 12
  • 12
  • 11
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Hepatoprotective activity of Schouwia thebica Webb

Maitland, Derek J., Awaad, A.S., Soliman, G.A. January 2006 (has links)
No
62

Protection by the flavonoids quercetin and luteolin against peroxide- or menadione-induced oxidative stress in MC3T3-E1 osteoblast cells

Fatokun, Amos A., Tome, M., Smith, R.A., Darlington, L.G., Stone, T.W. 26 November 2014 (has links)
No / Potential protective effects of the flavonoids quercetin and luteolin have been examined against the oxidative stress of MC3T3-E1 osteoblast-like cells. Although hydrogen peroxide and menadione reduced cell viability, the toxicity was prevented by desferrioxamine or catalase but not superoxide dismutase, suggesting the involvement of hydrogen peroxide in both cases. Quercetin and luteolin reduced the oxidative damage, especially that caused by hydrogen peroxide. When cultures were pre-incubated with quercetin or luteolin, protection was reduced or lost. Protection was also reduced when a 24 h pre-incubation with the flavonoids was followed by exposure to menadione alone. Pretreating cultures with luteolin impaired protection by quercetin, whereas quercetin pretreatment did not affect protection by luteolin. It is concluded that quercetin and luteolin suppress oxidative damage to MC3T3-E1 cells, especially caused by peroxide. The reduction in protection by pretreatment implies a down-regulation of part of the toxic transduction pathway.
63

Defining Quercetin-, Caffeic acid- and Rosmarinic acid- mediated life extension in C. elegans / bioassays and expression analyses

Pietsch, Kerstin 01 February 2012 (has links)
Die mittlere Lebenserwartung des Menschen ist über die letzten 200 Jahre kontinuierlich gestiegen. Da Langlebigkeit ohne Gesundheit wenig Wert besitzt, ist es ein zentrales Anliegen, das Auftreten altersbedingter Krankheiten zu mindern. Besonders pflanzliche Phytochemikalien, im speziellen Polyphenole (PPs), sollen erheblich an der Gesundheitsförderung mitwirken. Die exakten Mechanismen jedoch, welche die Wirkvielfalt erklären könnten, sind nicht im Detail bekannt. Diese Fragen können nur durch in vivo Studien an Modelorganismen beantwortet werden, die sowohl die Lebensdauer, sowie physiologische und genetische Parameter einschließen. In dieser Studie wurden drei PPs mit lebensverlängernden Eigenschaften in C. elegans identifiziert: Quercetin (Q), Kaffeesäure (CA) und Rosmarinsäure (RA). Für alle drei PPs wurden hormetische Konzentration-Wirkungs-Kurven gefunden, dennoch war die Hormetin-typische Aktivierung einer Stressantwort (gemessen als Geneexpressions-Level von Hitzeschock-Proteinen) auf Q und RA beschränkt. Eine Umverteilung von Ressourcen nach dem Prinzip der „Disposable Soma Theorie“ konnte anhand von Abweichungen in der Größe, verändertem Lipid-Metabolismus und verzögerter Reproduktion (bei gleichbleibender Anzahl der Nachkommen), für alle drei PPs gezeigt werden. Während direkte CR-Effekte ausgeschlossen wurden, ist dies nicht möglich für durch CA und RA ausgelöste indirekte CR-Effekte, da beide die Lebensspanne von sir-2.1 Mutanten nicht verlängern konnten. Alle drei PPs verlängerten die Lebensspanne von mev-1 Mutanten, jedoch wurde eine erhöhte TAC in vivo und eine reduzierte oxidative Schädigung, nur durch Q- und CA- Gabe erreicht. Die genetischen Wirkwege der PPs wurden durch Lebensdauer- und Thermotoleranztests mit in alters-relevanten Genen mutierten Nematoden definiert. Die gesundheitsfördernden Eigenschaften von CA und RA konnten so osr-1, sek-1, sir-2.1 and unc-43, sowie daf-16 im Falle von CA, zugeschrieben werden. Die Mechanismen von Q wurden in größerem Umfang, durch die Integration von durchgeführten Lebensdauertests und Microarray-Studien einerseits und einer umfassenden Meta-Analyse von veröffentlichten, alters-relevanten Genexpressions-Profilen andererseits, analysiert. Q wirkt vermutlich durch ein komplexes Zusammenspiel von konservierten genetischen Signalwegen, im Speziellen dem Insulin-ähnlichen (ILS), TGF-beta, p38 MAPK, CAMKII und möglicherweise auch über eine von der Keimbahn und somatischen Gonade ausgehenden Signalwirkung. Zusammenfassend lässt sich sagen, dass sowohl in vivo antioxidative und prooxidative Eigenschaften, die Modulation auf Genebene, sowie eine Umverteilung von Ressourcen zu gewissen Teilen (abhängig vom PP) zur Lebensverlängerung beitragen. / The mean life expectancy of humans has increased continuously over the last 200 years. Since longevity is of little value in the absence of health, it is a central request to prevent the increasing burden of age-related diseases. It is suggested that phytochemicals in plants, specifically the polyphenols (PPs), are important factors to support the overall well-being. However, the precise mechanisms that can explain, in full, the magnitude of impact remains elusive. This knowledge gap can only be plugged by in vivo model organism approaches that integrate lifespan assays with physiological, and genetic parameters following the ingestion of PPs. In this study, three PPs with life-extending properties in C. elegans were identified: Quercetin (Q), Caffeic acid (CA) and Rosmarinic acid (RA). The underlying mechanisms were systematically studied by a broad spectrum of functional and genetic investigations. For all three compounds, life extension was characterized by hormetic concentration-response curves, but stress-response induction, a hallmark of hormetin action, was restricted to Q and RA, at least when assessed at the level of gene expression of heat shock proteins. A reallocation of resources in a disposable soma-like pattern could be shown for all three PPs, because the exposure to Q, CA and RA resulted in variations in body size, altered lipid-metabolism and a tendency towards a delay in reproductive timing. However, the total number of offspring was unaltered. While direct CR effects arising from reduced food uptake could be rejected, an indirect CR effect cannot be excluded for CA and RA, as these PPs failed to provoke longevity in sir-2.1 mutants. Furthermore, the in vitro versus in vivo antioxidative properties were evaluated. While all three PPs could prolong mev-1 lifespan, only Q and CA were shown to increase the TAC in vivo and reduce oxidative damage in the nematodes. To define the genetic pathways of PP action, lifespan and thermotolerance assays were performed in mutant animals devoid of aging-relevant genetic players. These experiments revealed that the health gaining properties of CA and RA both rely on osr-1, sek-1, sir-2.1 and unc-43, plus daf-16 in the case of CA. The mechanisms of Q action are partly distinct and were analyzed in more detail by integrating own mutant lifespan assays and microarray studies with an extensive meta-analysis of published gene expression profiles obtained under aging-relevant conditions. Quercetin is proposed to act through a complex interplay of conserved genetic pathways, for example Insulin-like signaling (ILS), TGF-beta signaling, p38 MAPK, CaMKII, and possibly also due to germline and somatic gonad signaling. Taken together, hormesis, in vivo antioxidative/prooxidative properties, modulation of genetic players, as well as the re-allocation of resources all contribute (to some extent and dependent on the polyphenol) to life extension. Summary 1
64

Estrogenic Compounds Protect Rat Cardiac Myoblasts (H9c2 Cells) Against Doxorubicin-Induced Cell Death

Abbas, Hesham Magdi 01 January 2006 (has links)
The antineoplastic drug doxorubicin is widely used in the treatment of various types of cancers including breast, colon and lung cancer. However, doxorubicin has adverse effects on the heart and prolonged doxorubicin administration results in cardiomyopathy and congestive heart failure. In the present study we have established that treatment of rat cardiac myoblasts (H9c2 cells) for 24 hours with doxorubicin resulted in concentration and time dependent cell death as determined by proliferation assay. Almost 50-55% cell death was attained at 24 hours treatment of H9c2 cells with 5 μM doxorubicin. We have selected about 50% cell injury as an optimum doxorubicin-induced cell injury because once this threshold is reached, cells became irreversibly injured and are unable to respond to protective treatment. We have observed that another potent antineoplastic drug, cyclophosphamide, had no cardiotoxic effects even with exposure at 35 μM concentrations for a treatment time of up to 72 hours. Pretreatment of H9c2 cells for 24 hours with 100 nM 17β-estradiol protects about 30% cell death against subsequent treatment for 24 hours with 5 μM doxorubicin. Interestingly 500 nM quecertin and 20 μM resveratrol pretreatment provide about 30% and 40% protection, respectively, to the H9c2 cells against subsequent doxorubicin treatment. However, diethylstilbestrol (DES), bisphenol A, and estrone exhibit no protective effects. It is concluded that 17β-estradiol, resveratrol and quercetin considerably protect H9c2 cells against doxorubicin-induced cell death.
65

ROLE OF OXIDATIVE REACTIVE SPECIES AND ANTIOXIDANTS IN METABOLISM AND TRANSPORT OF THERAPEUTIC DRUGS

Verenich, Svetlana 01 January 2010 (has links)
Oxidative stress (OS) is a frequent complication of various disease conditions such as Alzheimer’s and Parkinson’s disease, atherosclerosis, preeclampsia, rheumatoid arthritis, diabetes including gestational diabetes, etc. OS is defined as an imbalance between the production of reactive species and the ability of an organism to detoxify the reactive intermediates and repair the damage. As a result of OS, the excess of reactive species such as oxygen superoxide (O2-), hydroxyl radical (OH), peroxynitrite (ONOO−), 4-hydroxynonenal (4HNE), etc., have a tendency to react with nearby proteins/nucleic acids/lipids changing their functionality or inactivating them completely. The organism has many ways to protect itself from the harmful effects of oxidants. One strategy employs antioxidants introduced to the body with food. The purpose of this thesis was to investigate the effect of reactive species on the active transport mediated by ABC efflux transporters as well as exploring the possibility of using antioxidants not as interceptors of reactive species but rather as inhibitors of metabolic enzymes and transporters. The BCRP/ABCG2 efflux transporter was selected for the investigation of the effect of reactive anion, ONOO−, generated during OS and the product of OS, 4HNE, formed after a series of chain reactions involving ROS. Experiments conducted with Sf9 membrane vesicles overexpressing BCRP/ABCG2 revealed that both species are capable of inactivating this ABC transporter with IC50 being 31 ± 2.7 μM and 92 ± 1.4 μM for ONOO− and 4HNE, respectively. In presence of 4HNE, Vmax decreased 4-fold and Km remained unchanged, suggesting a noncompetitive inhibition mechanism. However, with addition of 4HNE, positive cooperativity was also observed. With ONOO−, the situation was different: both Vmax and Km changed consistent with mixed type inhibition. Overall, OS-mediated BCRP/ABCG2 inactivation occurred at biologically relevant concentrations of the reactive species. Antioxidants are substances that are known to reduce the amount of ROS/RNS accumulated during OS, but this research considered the use of antioxidants not only as interceptors of ROS/RNS but rather as inhibitors of metabolic enzymes. The effect of the dietary antioxidant, quercetin (Qc), on the metabolism of 2-methoxyestradiol (2Me-E2), a promising potential anticancer agent was investigated. Qc possesses five hydroxyl groups, several of which are targets for UDP-glucuronosyltransferases (UGTs). Thus, the simultaneous presence of Qc and 2Me-E2 could result in decreased glucuronidation of 2Me-E2. Using the LS180 intestinal human colon adenocarcinoma cell line, glucuronidation of 2Me-E2 resulted in formation of only one major glucuronide, 2-Methoxyestradiol-3-glucuronide (2Me-E2-3G). Qc effectively reduced its formation (IC50 = 7.8 ± 0.26 μM) to a minimum level. The decrease in the activity of UGTs increased the intracellular concentration of parent 2Me-E2. Additional increase in cellular concentration of 2Me-E2 was achieved when LS180 cells were pre-incubated with Qc prior the addition of 2Me-E2. Transwell experiments with MDCKII – BCRP cells revealed that BCRP/ABCG2 did not appear to transport 2Me-E2. All in all, the present study showed that OS has a negative impact on active transport mediated by ABC transporters. This, in turn, can affect drug disposition and protection of endogenous organs and tissues. Antioxidants are one of the mechanisms that can effectively reduce the negative impact caused by oxidative species. Nevertheless, this research revealed that they can also be an effective tool to reduce the excessive metabolism of therapeutic drugs. Thus, Qc was found to be a dietary antioxidant that could reduce metabolism of 2Me-E2 and increase it intracellular concentration.
66

Měď redukující účinky metabolitů kvercetinu / Copper reducing effects of quercetin metabolites

Mísař, Jakub January 2016 (has links)
Charles University Faculty of Pharmacy in Hradec Králové Department of Pharmaceutical Botany and Ecology Candidate: Jakub Mísař Supervisor: PharmDr. Jana Karlíčková, Ph.D. Title of Thesis: Copper reducing effects of quercetin metabolites Copper is an essential trace element in particular due to its ability to easily convert between both redox forms: oxidized (Cu2+ ) and reduced (Cu+ ). Flavonoids are common components of the human diet and they can have positive influence on human health. They are converted into small phenolic acids during digestion by specific bacteria in the colon. Although effects of flavonoids have been extensively studied, the same is not true for their metabolites- phenolic acids. In this in vitro study, eight phenolic acids, which are known metabolites of commonly used flavonoid quercetin, were analyzed for their copper reducing activity at four (patho)physiologically relevant pHs. Simple spectrophotometric method based on an indicator bathocuproinedisulfonic acid disodium salt was used for the assessment reduction of copper ions. The degree of cupric reduction differed among tested compounds. All o- dihydroxycompounds were the most active and achieved 100% of cupric ion reduction in low compound to copper ratio. In conclusion, based on this study, it appears that...
67

Avaliação das propriedades antigenotóxicas e antioxidantes do flavonóide quercetina e dos carotenóides bixina e norbixina contra os danos no material genético e distúrbios do estado redox causados pelo cloreto de mercúrio e metilmercúrio, in vitro e in vivo / Evaluation of antigenotoxic and antioxidant properties of the flavonoid quercetin and of the carotenoid bixin and norbixin against DNA-damage and alterations of redox status induced by mercury chloride and methylmercury, in vitro and in vivo

Barcelos, Gustavo Rafael Mazzaron 24 January 2011 (has links)
O mercúrio (Hg) é um dos metais mais tóxicos presente no meio ambiente e o principal mecanismo relacionado à sua toxicidade é a indução do estresse oxidativo; sua forma orgânica, metilmercúrio (MeHg) é a que apresenta maior toxicidade. A exposição ao Hg ocorre principalmente através da inalação por trabalhadores ocupacionalmente expostos em diversas indústrias e/ou através do consumo de peixes e outros alimentos aquáticos contendo este metal, como por exemplo, populações amazônicas que estão expostas ao MeHg, via dieta, através do consumo de peixes contaminados. Por outro lado, é pressuposto que alimentos ricos em antioxidantes possam prevenir os efeitos adversos à saúde causados pela exposição ao Hg. O flavonóide quercetina (QC) é o principal polifenol da dieta humana, encontrado principalmente em cebola e frutas cítricas e os carotenóides bixina (BIX) e norbixina (NOR) estão presentes em grandes quantidades no urucum, o qual é amplamente utilizado como condimento no Brasil. Assim sendo, o presente trabalho teve por objetivo avaliar os possíveis efeitos protetores do flavonóide QC e dos carotenóides BIX e NOR contra os diversos efeitos adversos causados pelo cloreto de mercúrio (HgCl2) e MeHg, em modelos experimentais in vitro e in vivo. Para tal, culturas de células de hepatoma humano (HepG2) e ratos machos Wistar foram expostos a diversas concentrações do metal, dos fitoquímicos bem como à suas associações. Determinações das concentrações de glutationa, malondialdeído, proteínas carboniladas, atividades das enzimas antioxidantes catalase e glutationa-peroxidase os quais refletem o estado redox das células e monitoramento do dano no material genético pelo uso do ensaio do cometa e determinações dos níveis de 8-hidroxi-2-deoxiguanosina foram realizados no presente estudo. Os resultados obtidos indicam que o Hg causa claros efeitos genotóxicos e leva a uma serie de alterações de parâmetros bioquímicos relacionados ao estado redox das células, in vitro e in vivo. Além disso, foi evidenciado que fitoquímicos, os quais são comumente encontrados na dieta de seres humanos, denominados QC, BIX e NOR protegem contra a instabilidade genética causada pelo metal e restabelece os distúrbios do estado redox das células causados pela exposição ao Hg. / Mercury (Hg) is one of the most hazardous metals in the environment and the major process responsible for its toxicity is oxidative damage; its organic form methylmercury (MeHg) presents the highest toxicity. The main way of exposition to Hg is through inhalation by workers occupationally exposed in several industries and/or through consumption of fishes and other aquatic food with the metal, as Amazonian populations which are exposed to MeHg, via diet, by consumption of contaminated fishes. On the other hand, it is conceivable that antioxidants may play a protective role in the prevention of adverse effects of Hg. The flavonoid quercetin (QC) is the most abundant polyphenol of the human diet, found mainly in onions and citric fuits and the carotenoids bixin (BIX) and norbixin (NOR) are present in high concentrations in annatto, which is widely used as flavoring in Brazil. Therefore, the present study aims to evaluate the possible protective effects of the flavonoid QC and of the carotenoids BIX and NOR against the adverse effects caused by mercury chloride (HgCl2) and MeHg, in experimental models in vitro and in vivo. For this, human hepatoma cells (HepG2) cultures and male rats Wistar were exposed to several concentrations of the metal, of the phytochemicals as well as their associations. Determination of concentrations of glutathione, malondialdehyde, carbonil proteins, activity of the antioxidant enzymes catalase and glutathione-peroxidase, which reflect the redox status of the cells and monitoring of DNA-damage by use of comet assay and measurements of 8-hydroxi-2-deoxyguanosine levels were carried out in the present study. The results indicate that Hg cause clear genotoxic effects and lead to several alterations of biochemical parameters related to redox status of the cells, in vitro and in vivo. Moreover, it was observed that pythochemicals commonly found in the human diet, namely QC, BIX and NOR counteract the genetic instability induced by the metal and restore the disturbances of redox status of the cells caused by Hg exposition.
68

Efeito fotoquimioprotetor de quercetina incorporada em microemulsão contra os danos na pele causados pela radiação ultravioleta / Photochemoprotective effect of quercetin incorporated in microemulsion against skin damages induced by ultraviolet irradiation

Vicentini, Fabiana Testa Moura de Carvalho 31 March 2009 (has links)
A exposição à radiação ultravioleta (RUV) pode provocar desequilíbrio no balanço oxidante/antioxidante da pele, causando prejuízos à sua integridade e levando a diversas alterações, entre as quais o envelhecimento precoce e o câncer de pele. Considerando a estreita relação entre o aumento do estresse oxidativo e os efeitos danosos causados pela RUV na pele, aliado ao fato de que estudos epidemiológicos demonstram que o uso de protetores ou bloqueadores solares não é completamente efetivo na prevenção dos diversos malefícios causados pela exposição à RUV, o uso de antioxidantes aparece como importante alternativa nas terapias de fotoproteção. A administração tópica de antioxidantes, como a quercetina, poderia afetar as alterações moleculares desencadeadas pela RUV e conseqüentemente as seqüelas biológicas e clínicas resultantes das mesmas. Desta forma, na presente pesquisa, sistema microemulsionado para a liberação cutânea de quercetina foi obtido, caracterizado e avaliado quanto a sua capacidade em promover maior penetração cutânea deste ativo, estabilidade, segurança e eficácia in vivo contra os danos na pele causados pela exposição à RUV. Além disso, o efeito da quercetina contra diferentes alterações moleculares induzidas pela RUV foi também avaliado, com o objetivo de investigar os possíveis mecanismos de ação fotoprotetora deste flavonóide. Os resultados demonstram que a incorporação da quercetina em sistema microemulsionado aumentou a penetração cutânea in vitro e in vivo deste flavonóide sem causar irritação, sendo, portanto, uma importante estratégia para melhorar a liberação tópica da quercetina. O estudo de estabilidade demonstra a necessidade de armazenamento deste sistema a 4°C para manutenção de sua funcionalidade. A microemulsão contendo quercetina inibiu a depleção do antioxidante endógeno GSH, assim como o aumento da atividade/secreção de proteinases e da atividade da MPO, induzidos pela exposição à RUVB. O pré-tratamento de queratinócitos com quercetina não alterou a indução pela RUV das MAP quinases, conseqüentemente não houve inibição na elevação dos níveis de c-Jun e c-Fos, assim como no aumento da produção das MMPs 1 e 3, mas por outro lado foi efetivo contra o aumento na produção das citocinas IL-1, IL-6, IL-8 e TNF-. Finalmente, demonstrou-se que a ação fotoprotetora da quercetina contra os danos na pele causados pela RUV é mediada principalmente pela inibição da via de sinalização do NF-kB, uma vez que, enquanto o pré-tratamento de queratinócitos com quercetina diminuiu a ativação deste fator de transcrição, nenhum efeito contra a indução da via de sinalização da AP-1 foi observado. Concluindo, este trabalho sugere a incorporação da quercetina em sistema microemulsionado como estratégia relevante no combate ao aparecimento de desordens cutâneas causadas pela exposição à RUV, além de contribuir para a elucidação, pelo menos em parte, do mecanismo de ação fotoprotetora da quercetina contra alterações moleculares induzidas pela RUV. / The ultraviolet radiation (UVR) exposition may lead to the skin oxidant/antioxidant imbalance injuring its integrity and leading to several disorders, such as ageing and skin cancer. Considering the close relationship between the increase in oxidative stress and UV-induced skin damages, together with the fact that epidemiological studies indicate that the use of sunscreen and sun block are not completely effective in preventing UV-induced damages, the use of antioxidants arises as an important approach to photoprotection therapies. The topical use of antioxidants, such as quercetin, would affect the molecular changes induced by UV and subsequent biological and clinical sequela. Therefore, in the present study, microemulsion system for topical delivery of quercetin was obtained, characterized and evaluated with regards to its capability to increase skin penetration of quercetin, stability, toxicity and in vivo effectiveness against UV-induced skin damages. Moreover, quercetin effect against different UV-induced molecular changes was also assessed, in order to investigate the possible photoprotective mechanisms of action of this flavonoid. The results demonstrate that the incorporation of quercetin into microemulsion increased the in vitro and in vivo skin penetration of this flavonoid without causing skin irritation, being an important strategy to improve the topical delivery of quercetin. The stability study demonstrate the necessity to storage this system at 4°C to maintain its functionality. The microemulsion containing quercetin inhibited the depletion of the endogenous antioxidant GSH, as well as the increase in proteinases activity/secretion and MPO activity induced by UVB irradiation exposure. The pretreatment of keratinocytes with quercetin had no blocking effect on UV activation of MAP kinases, consequently, there was no inhibition in the c-Jun and c-Fos levels, as well as in the induction of MMPs 1 and 3, on the other hand, it was effective against the increase in the production of cytokines IL-1, IL-6, IL-8 e TNF-. Finally, it was demonstrated that the photoprotective action of quercetin against UV-induced skin damages is mediated mainly by suppression of NF-kB signaling pathway, once, while the pretreatment of keratinocytes with quercetin suppressed the activation of this transcription factor, no effect was observed against UV-induced AP-1 activation. In conclusion, the present study suggests the incorporation of quercetin into microemulsion system as a relevant strategy to prevent UV-induced skin disorders, and contribute, at least in part, to the elucidation of quercetin photoprotective mechanism of action against UV-induced molecular changes.
69

Desenvolvimento, avaliação da eficácia e estabilidade de formulações fotoprotetoras bioativas / Development, evaluation of the effectiveness and stability of bioactive sunscreens

Nishikawa, Deborah de Oliveira 28 September 2012 (has links)
A exposição ao sol traz benefícios à saúde, no entanto, o excesso pode ocasionar danos cutâneos agudos e crônicos, dentre os quais se destacam as neoplasias. A fotoproteção é um método para a prevenção dos efeitos danosos da radiação ultravioleta (UV) e a biodiversidade Brasileira é campo fértil para as pesquisas nesta área. Dessa forma, os objetivos da presente pesquisa envolveram o desenvolvimento de formulações fotoprotetoras bioativas contendo rutina ou quercetina (compostos bioativos) e filtros solares físicos (dióxido de titânio e óxido de zinco); a caracterização das formulações por meio de ensaios físico (viscosidade aparente) e físico-químico (valor de pH); a determinação da eficácia fotoprotetora estimada por espectrofotometria de refletância difusa com esfera de integração; e a avaliação da estabilidade das preparações por meio do Teste de Estabilidade Normal (TEN). Na etapa do Desenvolvimento, a preparação composta por Dermabase® vegetal (10,0% p/p); sistema umectante (8,0% p/p); sistema emoliente (6,0% p/p); sistema quelante/antioxidante (0,6% p/p); sistema conservante (1,0% p/p); e água destilada recém destilada (74,4% p/p), foi selecionada como a formulação-base. As preparações contendo os compostos bioativos e ativos, isolados ou em associações, possuíram valores de pH biocompatíveis com o da pele, abrangendo o intervalo de 4,28 (5,0% p/p de rutina) a 7,58 (5,0% p/p de dióxido de titânio); aspecto de creme com intervalo de viscosidade aparente entre 12400 (5,0% p/p de óxido de zinco + 5,0% p/p de dióxido de titânio + 2,5% p/p de quercetina) e 31900 cP (5,0% p/p de óxido de zinco + 5,0% p/p de dióxido de titânio + 5,0% p/p de rutina); eficácia fotoprotetora estimada na faixa de fator de proteção solar (FPS) de 2,1 (2,5% p/p de quercetina) a 45,3 (5,0% p/p de óxido de zinco + 5,0% p/p de dióxido de titânio + 5,0% p/p de quercetina); e amplo espectro de proteção com valor mínimo de comprimento de onda crítico igual a 377 nm (5,0% p/p de óxido de zinco). Por meio do TEN, as preparações contendo os compostos bioativos e ativos isolados ou a associação dos filtros solares físicos se mantiveram estáveis para os parâmetros de aspecto, FPS estimado, comprimento de onda crítico, valor de pH e viscosidade aparente, nas condições de armazenamento de 22,0 ± 2,0 °C; 5,0 ± 2,0 °C - exceto para a viscosidade aparente - e 40,0 ± 2,0 °C (120 dias). As associações dos filtros físicos com os compostos bioativos se apresentaram instáveis. Apesar das respostas favoráveis que os flavonoides apreciaram, sugerirem-se que novas pesquisas poderiam ser conduzidas com a finalidade de contornar tais problemas, inclusive, realizando a comprovação da eficácia antissolar in vivo das preparações de melhor desempenho. / Exposition to sunlight promotes health benefits, however, its excess may cause acute and chronic cutaneous damages, including neoplasias. Photoprotection is a preventive approach against ultraviolet (UV) radiation deleterious effects and Brazilian biodiversity is an interesting field to the progress of researches in this science segment. The objectives of this research were the development of bioactive sunscreens containing rutin or quercetin (bioactive compounds) and inorganic UV filters (titanium dioxide and zinc oxide); the preparations\' physical (apparent viscosity) and physicochemical (pH value) characterization; the in vitro evaluation of the formulations\' photoprotective efficacy by diffuse reflectance spectrophotometry equipped with integrated sphere; and the sunscreens\' stability analysis by Normal Stability Testing (NST). The vehicle was developed with the following components: Dermabase® vegetal (10.0% w/w); humectant system (8.0% w/w); emollient system (6.0% w/w); antioxidant/chelating system (0.6% w/w); preservatives (1.0% w/w); and distilled water/aqua (74.4% w/w). Formulations containing the bioactive and the UV filters, isolated or in association, were skin biocompatible with interval of pH values from 4.28 (rutin 5.0% w/w) to 7.58 (titanium dioxide 5.0% w/w); apparent viscosity values of 12400 (zinc oxide 5.0% w/w + titanium dioxide 5.0% w/w + quercetin 2.5% w/w) to 31900 cP (zinc oxide 5.0% w/w + titanium dioxide 5.0% w/w + rutin 5.0% w/w); in vitro photoprotection activity by sun protection factor (SPF) ranging from 2.1 (quercetin 2.5% w/w) to 45.3 (zinc oxide 5.0% w/w + titanium dioxide 5.0% w/w + quercetin 5.0% w/w); and broad spectrum property with minimum critical wavelength of 377 nm (zinc oxide 5.0% w/w). By NST, sunscreens with isolated bioactive and active compounds or the UV filters\' association were considered stable during 120 days for the following parameters: aspect, in vitro SPF, critical wavelength, pH value and apparent viscosity when samples were stored at 22.0 ± 2.0 °C; 5.0 ± 2.0 °C (excluding apparent viscosity) and 40.0 ± 2.0 °C. Associations of UV filters with bioactive compounds were instable. Although the favorable results that flavonoids have achieved, it is suggested further researches aiming at to overcome the identified inconvenient, performing the in vivo SPF determination on best performance formulations to prove the estimated in vitro data.
70

Influence of hyperthermia and antioxidant supplementation on redox balance and heat shock protein response to exercise

Mohd Sukri, Nursyuhada January 2018 (has links)
Physical activity of moderate intensity and duration leads to healthy biological adaptations in humans. However, very intense and prolonged exercise may induce disruption in redox balance, potentially increasing oxidative stress. In addition, exposure to environmental heat stress and associated hyperthermia further increases oxidative stress and may induce the expression of heat shock proteins. However, antioxidant supplementation is believed to minimise the effect of oxidative stress and may therefore help reduce or limit the heat shock response to exercise heat stress. The first study (Chapter 4) examined whether exertional heat illness (EHI) casualties among military recruits may exhibit greater disturbances in redox balance following exercise compared to non-EHI controls. Nine (n=9) recruits were identified as having suspected EHI during the Loaded March (LM) on day 1, with a peak mean (SD) body core temperature of 40.1 (0.5) °C. Fifteen (n=15) recruits were identified as having suspected EHI during the Log Race (LR) on day 2, with a peak mean (SD) body core temperature of 39.7 (0.5) °C. A further twenty-one (n=21) recruits, which successfully finished both LM and LR events, were treated as controls (CON). Interestingly, the plasma antioxidant concentration was significantly elevated from pre to post-exercise (p < 0.001) for EHI and CON groups, during both LM and LR events, with no changes on lipid peroxide protein carbonyl concentrations. These data suggest there is no increase in lipid peroxide or protein carbonyl level damage in response to intense hyperthermic military exercise, regardless of acute heat illness. It is possible that military training augments the body's defence capabilities, thus reducing oxidative stress and damage induced by free radical production. To date there is a scarcity of data examining the effects of acute intake of antioxidant supplements on oxidative stress and heat shock response during continuous exercise in a hot environment. Hence, the aims of the second study (Chapter 5) were to examine the effects of acute ingestion of Quercetin (Q), Quercetin + vitamin C (QC) or placebo (P) 14 hours before, 2 hours before and every 20 minutes during trials on oxidative stress and heat shock response. In this randomised, crossover study 10 recreationally active males (age 21±2 y, V̇ O2max 54.9±8.4 ml.kg.min-1) completed three running trials at 70% V̇ O2max for 60 minutes in the heat (33.0±0.3°C; 28.5±1.8% relative humidity). Exercise heat stress significantly elevated plasma quercetin (p=0.02), antioxidant power (FRAP) (p < 0.001),plasma heat shock protein 70 (HSP70) (p=0.009) and plasma heat shock protein 90α(HSP90α) (p < 0.001) over time, but no differences were detected between trials. Also, no changes were observed in protein carbonyl concentration. Acute intake of quercetin significantly increased the level of plasma quercetin however, this did not affect the plasma antioxidant capacity or heat shock response to exercise heat stress. The increases in plasma HSP70 and HSP90α concentrations might act as supplementary antioxidants, reducing the oxidative damage reflected in the absence of changes in protein carbonyl. Exercise heat stress is effective in inducing both intracellular HSP70 (muscle and peripheral blood mononuclear cell (PBMC)) and extracellular HSP70 (plasma) concentrations. Thus, the third study (Chapter 6) tested the hypothesis that this acute quercetin supplementation would induce similar trends in plasma HSP70 and intracellular HSP70 concentrations 2 days following exercise heat stress. In this randomised, crossover study, 9 recreationally active males (age 22±2y, V̇ O2max 50.3±3.3ml.kg.min-1) completed three running trials at 70% V̇ O2max for 60 minutes in the heat (32.9±0.3°C; 28.3±1.2% relative humidity). This study demonstrated that there is no positive relationship between both intracellular of HSP70 (muscle and PBMC) and plasma HSP70 (eHSP70) 2 days following exercise heat stress. These data suggest that the release of eHSP70 could originate from others tissue or cells. Additionally, the absence of differences between trials in the expression of muscle HSP70, PBMC HSP70 and plasma HSP70 might indicate it is implausible that quercetin might inhibit the expression of HSP70 in plasma, muscle and PBMC 2 days following the exercise heat stress stimulus. Overall, the results from this thesis emphasise that the hyperthermia experienced in response to exercise and environmental heat stress could potentially influence the human redox response and heat shock response. Besides, there is reasonable evidence that acute quercetin co-ingestion with vitamin C has the potential to improve the bioavailability and bioactive effects of quercetin, however, the effects of quercetin supplementation in reducing oxidative stress in response to exercise heat stress remains to be elucidated. In addition, the anti-oxidative ability of acute ingestion of quercetin to suppress the intracellular and extracellular heat shock response remains uncertain and worthy for further investigation.

Page generated in 0.0583 seconds