• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 17
  • Tagged with
  • 35
  • 35
  • 29
  • 28
  • 19
  • 18
  • 17
  • 13
  • 12
  • 11
  • 11
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Identification de nouveaux mécanismes de régulation temporelle des origines de réplication dans les cellules humaines / Identification of new mechanisms of temporal regulation of DNA replication origins in human cells

Guitton-Sert, Laure 11 December 2015 (has links)
La duplication de l'ADN au cours de la phase S est initiée à partir de l'activation de plusieurs dizaines de milliers d'origines de réplication. La mise en place des origines a lieu au cours de la phase G1 sous la forme de complexe de pré-réplication (pré-RC) et leur activation est orchestrée par un programme spatio-temporel. La régulation spatiale détermine les origines qui seront activées et la régulation temporelle, ou timing de réplication, détermine le moment de leur activation. En effet, toutes ces origines ne sont pas activées en même temps durant la phase S : certaines origines seront activées en début de phase S, d'autre en milieu, ou d'autre à la fin. Ce programme est établi en tout début de phase G1, au " point de décision du timing ". C'est un programme très robuste qui signe l'identité d'une cellule, son état de différenciation et le type cellulaire à laquelle elle appartient. Il a aussi été montré qu'il est altéré dans des situations pathologiques, en particulier le cancer, sans qu'on ne comprenne très bien les raisons mécanistiques. De manière générale, les mécanismes moléculaires qui régulent le timing de réplication sont méconnus. Le premier volet de ma thèse a permis l'identification d'un nouveau régulateur du timing de réplication : il s'agit de l'ADN polymérase spécialisée Thêta. Recrutée à la chromatine très tôt en phase G1, elle interagit avec des composants du pré-RC, et régule le recrutement des hélicases réplicatives à la chromatine. Enfin, sa déplétion ou sa surexpression entraîne une modification du timing de réplication à l'échelle du génome. Dans la deuxième partie de ma thèse, j'ai exploré les mécanismes qui régulent ce programme temporel d'activation des origines suite à un stress réplicatif. J'ai identifié un mécanisme de régulation transgénérationnel inédit : la modification du timing de réplication de domaines chromosomiques ayant subi un stress réplicatif au cycle cellulaire précédent. Des cellules-filles issues d'une cellule ayant subi des problèmes de réplication dans des domaines fragiles (riches en AT, et donc potentiellement structurés, et pauvres en origines) présentent un timing plus précoce de l'activation des origines au niveau de ces domaines. Ce nouveau processus biologique d'adaptation est particulièrement intéressant dans un contexte tumoral de haut stress réplicatif chronique car ce pourrait être un moyen pour la cellule tumorale de survivre à son propre stress réplicatif mais aussi aux thérapies antitumorales qui sont nombreuses à cibler la réplication de l'ADN. / DNA duplication in S phase starts from thousands of initiation sites called DNA replication origins. These replication origins are set in G1 as pre-replication complexes (pre-RC) and fired in S phase following a spatio-temporal program of activation. This program determines which origins will be fired and when. Indeed, all the origins are not fired in the same time and we can distinguish early, middle and late replication origins. This temporal regulation is called "replication timing" and is determined at the "timing decision point" (TDP) in early G1. It's a robust program, which participates to the definition of cell identity, in term of differentiation state or cell type. However, the precise molecular mechanisms involved are poorly understood. Defective timing program has been evidenced in pathological contexts, in particular in cancers, but the mechanisms of this deregulation remain unclear. In the first part of my PhD, I contributed to the discovery of a new regulator of the origin timing program: the specialized DNA polymerase Theta (Pol Theta). Pol Theta is loaded onto chromatin in early G1, coimmunoprecipitates with pre-RC components and modulates the recruitment of Mcm helicases at TDP. Moreover, depletion or overexpression of Pol Theta modifies the timing of replication at a fraction of chromosomal domains. The second part of my work aimed at exploring the mechanisms that regulates replication timing after a replicative stress. I identified a totally new transgenerational adaptive mechanism of DNA replication timing regulation: the modification of the timing of origin activation at chromosomal domains that have suffered from a replicative stress during the previous cell cycle. Daughter cells from a cell that has experienced replication stress at particular domains (late replicating domains, AT rich so they can form structured DNA, and poor in origin density) shows advanced origin activation within these regions. This new biological process in response to replicative stress could be of particular interest in the context of cancer since, tumor cells are characterized by high level of intrinsic chronic replicative stress. This new mechanism may favor cancer cell survival despite replication stress, particularly upon treatments with anti-tumor agents that target DNA.
22

Plasticité du programme spatio-temporel de réplication au cours du développement et de la différenciation cellulaire / Plasticity of human replication program during differentiation in relation with change in gene expression and chromatin reorganization

Julienne, Hanna 11 December 2013 (has links)
Le séquençage du génome humain, il y a maintenant 12 ans, a mis en lumière la complexité des mécanismes des processus nucléaires tels que la transcription, la réplication ou l'organisation de la chromatine. Depuis, afin de mieux comprendre ces processus, un ensemble sans cesse croissant de données sur le noyau cellulaire a été produit et mis en ligne par un nombre important de laboratoires de par le monde. Ces données sont à la fois d'une richesse extraordinaire et d'une complexité embarrassante. Dans cette thèse, nous mettons à profit l'ensemble de ces données afin de mieux comprendre les déterminants nucléaires du programme spatio-temporel de réplication. Pour cela nous utilisons pas moins d'une centaine de profils épigénétiques ChiP-seq le long des chromosomes humains et dans diverses lignées cellulaires pour caractériser la structure primaire de la chromatine. Nous démontrons, à l'aide d'outils issus des statistiques multivariées, que l'immense complexité potentielle de ces jeux de données peut être réduite à quatre états chromatiniens principaux et ce dans toutes les lignées cellulaires somatiques étudiées. Cette classification simple, robuste et néanmoins complète est un excellent point d'appui pour l'étude de la réplication. Les quatre états principaux de chromatine sont répliqués à des moments distinct de la phase S (leur « timing » de réplication est différent) et ont un contenu en gènes drastiquement différents. Leur répartition spatiale le long du génome est structurée et est particulièrement visible dans les domaines où le « timing » de réplication dessine un U comme signature de l'existence d'un gradient de polarité des fourches de réplication. Ces U-domaines de la taille du Mpb recouvrent 50% du génome humain et les quatre états chromatiniens principaux se succèdent du bord au centre de ces U-domaines. Les mêmes techniques statistiques appliquées au cas d'une lignée embryonnaire révèlent aussi l'existence de quatre états principaux de chromatine mais de nature différente. La classification en quatre états s'avèrent alors très utile pour comparer l'épigénétique d'une lignée somatique à celle d'une lignée embryonnaire. Aussi, les spécificités du programme de réplication embryonnaire sont mises en rapport avec les spécificités de l'organisation de la chromatine dans cette lignée cellulaire. En particulier, notre étude révèle le rôle majeur de l'histone variant H2AZ dans la pluripotence. / The sequencing of the human genome, twelve years ago, revealed the complexity of the mechanisms underlying nuclear process such as transcription, replication and chromatin organization. In the past few years, to delineate better these processes, datasets on the cell nucleus were gathered and made available online by numerous laboratories around the world. These datasets are, at once, extraordinarily rich and daunting to handle. In this thesis, we take advantage of these datasets to understand better the nuclear determinants of the replication program. We analyze not less than a hundred ChiP-seq profiles along human chromosomes in several cell lines to characterize the primary structure of chromatin. We demonstrate, when using tools from multivariate statistics, that the immense potential complexity of these datasets can be reduced to four prevalent chromatin states in all studied somatic cell lines. This simple and comprehensive classification is an excellent starting point for the study of replication. The four prevalent chromatin states are replicated at different moments of the S-phase (they have a different replication “timing”) and have drasticaly different gene contents. Their spatial repartition along the genome is structured, especially in domains where the timing replication is U-shaped. These megabase sized U-domains cover 50% of the human genome and the four prevalent chromatin states succeed each other from their borders to their center. The same statistical techniques applied on an embryonic stem cell (ESC) also reduced the epigenetic complexity to four prevalent chromatin states which are qualitatively different from the ones in somatic cells. We further show that the specificities of embryonic replication program are link to the specificities of embryonic chromatin. Importantly, our study reveals that the histone variant H2AZ plays a major role in pluripotency.
23

Dynamique cellulaire des protéines de la réplication chez l'archée halophile Haloferax volcanii / Cellular dynamics of the DNA replication proteins in the halophilic archaeon Haloferax volcanii

Delpech, Floriane 17 November 2016 (has links)
Ce travail de thèse porte sur l’étude de la réplication chez les archées, qui constituent le troisième domaine du vivant avec les bactéries et les eucaryotes. L’organisme modèle que nous avons utilisé est l'archée halophile Haloferax volcanii car les outils génétiques disponibles permettent d’exprimer des protéines fusionnées à la Protéine Fluorescente Verte (GFP) dans cet organisme mésophile et aérobe et ainsi de localiser les protéines d’intérêt dans des cellules vivantes. Nous nous sommes ainsi intéressés à la localisation cellulaire de quatre protéines de la réplication qui ont été fusionnées à la GFP et exprimées sous contrôle de leur propre promoteur : (i) la protéine ‘Flap Endonuclease 1’ (FEN1), qui intervient dans la maturation des fragments d’Okazaki, (ii) la protéine ‘Origin Recognition Complex’ (ORC1) impliquée dans la reconnaissance des origines de réplication, (iii) la protéine ‘Proliferating Cellular Nuclear Antigen’ (PCNA), anneau de processivité des ADN polymérases réplicatives, et (iv) la protéine de fixation à l’ADN simple-brin ‘Replication Protein A’ (RPA2) essentielle à la réplication chez H. volcanii. Seule la protéine PCNA n’a pu être exprimée en fusion avec la GFP, suggérant que la protéine fusion n’est pas fonctionnelle. GFP::Orc1 et GFP::Fen1 ont été exprimées dans la cellule mais ne présentent pas de localisation spécifique reflétant un rôle de ces protéines dans la réplication de l’ADN. En revanche des foyers de fluorescence de la protéine fusion GFP::Rpa2 ont été observés, dont le nombre augmente significativement dans des cellules exposées à l’aphidicoline, drogue inhibant la synthèse de l’ADN et induisant ainsi un stress réplicatif. Cependant une localisation différente de la protéine GFP::Rpa2 a été observée lorsque les cellules sont exposés à la phléomycine, qui induit notamment des cassures double-brin de l‘ADN. Dans ces cellules, GFP::Rpa2 forme un foyer de fluorescence massif qui colocalise avec l’ADN compacté dans la grande majorité des cellules observées. Nos résultats suggèrent donc que la localisation spécifique observée pour GFP::Rpa2 reflète son rôle dans la réparation de l’ADN et/ou le redémarrage des fourche de réplication arrêtées. / The aim of this thesis project was to improve our understanding of DNA replication in archaea, the third domain of life with bacteria and eukarya. The model organism chosen for these studies is the halophilic archaea Haloferax volcanii, a mesophilic aerobe for which genetics tools allow studying in living cells the localization of proteins fused to the Green Fluorescent protein (GFP). Four proteins involved in DNA replication were fused to the GFP and expressed under the control of their own promoter: (i) the ‘Flap Endonuclease 1’ (FEN1), involved in Okazaki fragments maturation, (ii) the ‘Origin Recognition Complex’ (ORC1), involved in DNA replication origin recognition, (iii) the ‘Proliferating Cellular Nuclear Antigen’ (PCNA), processivity factor of replicative DNA polymerases, and (iv) the ‘Replication Protein A’ (RPA2), single-stranded DNA binding protein essential for DNA replication in H. volcanii. Only the PCNA fusion to the GFP was not successful, suggesting that the GFP hinders essential roles of PCNA in DNA replication. Fen1 and Orc1 were successfully fused to the GFP and expressed in living cells, but specific localization in cells related to growth phase, reflecting different replication dynamics, were not observed. In contrast, we could observed fluorescent foci formed by the fully functional GFP::Rpa2 protein that actively responded to DNA damage in H. volcanii cells. The number of these fluorescent foci per cell was constant during cell growth but it significantly increased in cells exposed to aphidicoline, which inhibits DNA synthesis during replication. When cells were treated with phleomycine, a DNA damaging agent mainly causing double-strand breaks, formation of a massive fluorescent focus coinciding with DNA compaction was observed. Our results suggest that the specific cellular localization of GFP::Rpa2 observed reflects Rpa2 roles in DNA repair and/or DNA replication fork restart.
24

Role of Histone H3 Lysine 56 Acetylation in the Response to Replicative stress

Nersesian, Jeanet 01 1900 (has links)
Chez la levure Saccharomyces cerevisiae, l’acétylation de l’histone H3 sur la Lysine 56 (H3K56ac) a lieu sur toutes les histones H3 nouvellement synthétisées qui sont déposées derrière les fourches de réplication. L’acétylation de H3K56 joue un rôle primordial dans l’assemblage de l’ADN lors la réplication et la réparation. L’acétylation de H3K56 joue également un rôle important dans la stabilité génomique et la stabilisation des fourches de réplication bloquée. En effet, les cellules dépourvues de H3K56ac sont sensibles au méthane sulfonate de méthyle (MMS) et à d’autres agents génotoxiques qui causent du stress réplicatif. Notre projet visait à investiguer les liens entre la protéine du réplisome Ctf4 et l’acétyltransférase d’histone Rtt109. Dans un premier lieu, la délétion de CTF4 a partiellement contré la sensibilité des cellules rtt109Δ au MMS. Notre analyse génétique a aussi montré que Ctf4, Rtt109, et le complexe Rtt101-Mms1-Mms22 agissent dans la même voie de réponse face à un stress réplicative. Nos résultats montrent que les cellules ctf4Δ et rtt109Δ présentent des foyers intenses du complexe de liaison à l'ADN simple-brin RPA en réponse au stress réplicatif, suggérant la formation excessive de régions d'ADN simple-brin aux fourches de réplication bloquées, ce qui conduit à une hyper activation des points de contrôle des dommages à l'ADN. Ces mutants présentent des ponts anaphase et des foyers persistants des protéines de recombinaison homologues Rad51 et Rad52 en réponse aux génotoxines, suggérant ainsi que la structure anormale des réplisomes bloqués peut compromettre leur récupération. Nos résultats indiquent également que la délétion des gènes de la RH (RAD51, RAD52, RAD54, RAD55 et MUS81) avec ctf4Δ et rtt109Δ respectivement, engendre une sensibilité synergique au MMS, suggérant que les cellules qui sont déficientes en H3K56 acétylation utilisent la RH pour réparer les dommages causés suite à un stress réplicatif. En conclusion, nos résultats suggèrent que les cellules déficientes en H3K56ac présentent des défauts de RH en réponse aux dommages à l’ADN induits par le MMS durant la phase S. / In Saccharomyces cerevisiae, histone H3 lysine 56 acetylation (H3K56ac) occurs on all newly synthesized histones H3 that are deposited behind DNA replication forks. H3K56ac plays critical role in chromatin assembly during DNA replication and repair. H3K56ac is also required for genome stability and stabilization of stalled replication fork. Cells lacking H3K56ac are sensitive to methyl methane sulfonate and other drugs that cause replicative stress. In this thesis, we investigated the links between the replisome protein Ctf4 and the H3K56 acetyltransferase Rtt109. Deletion of CTF4 partially rescued the sensitivity of rtt109Δ cells to methyl methane sulfonate. Genetic analyses also showed that Ctf4, Rtt109, and the Rtt101-Mms1-Mms22 complex act in the same pathway to response to replicative stress. ctf4Δ and rtt109Δ cells displayed intense foci of the single-stranded DNA binding complex RPA during replicative stress, suggesting formation of excess single-stranded DNA regions at stalled replication forks, leading to hyper activation of DNA damage checkpoints. These mutants accumulated anaphase bridges and persistent foci of the homologous recombination proteins Rad51 and Rad52 in response to genotoxins, suggesting that abnormal DNA structure formed at stalled replisome may compromise their recovery. Deletion of HR genes (RAD51, RAD52, RAD54, RAD55 and MUS81) together with ctf4Δ and rtt109Δ presents synergistic sensitivity to MMS, suggesting that H3K56ac deficient cells use HR to repair the damages caused by replicative stress. Overall our results demonstrate that H3K56ac deficient cells cannot recover MMS- induced damages because HR is compromised in these mutants.
25

Identification du rôle et des modifications post-traductionnelles modulant l’export nucléaire de l’hélicase virale E1 au cours du cycle de réplication du virus du papillome humain

Fradet-Turcotte, Amélie 04 1900 (has links)
Les virus du papillome humain (VPH) sont de petits virus à ADN double brin infectant les épithéliums de la peau et des muqueuses. La réplication nécessaire au maintien de leur génome dans les cellules infectées dépend des protéines virales E1 et E2. Au cours de la réplication, E1 est recrutée à l’origine de réplication par E2 afin d’être assemblée en doubles hexamères capables de dérouler l’ADN. E1 contient un domaine C-terminal responsable de l’activité ATPase/hélicase, un domaine central de liaison à l’origine et une région N-terminale régulant la réplication in vivo. Cette région contient des signaux de localisation et d’export nucléaire qui modulent le transport intracellulaire de E1. Chez le virus du papillome bovin (VPB), il a été proposé que ce transport est régulé par la sumoylation de E1. Finalement, la région N-terminale de E1 contient un motif de liaison aux cyclines permettant son interaction avec la cycline E/A-Cdk2. La phosphorylation de E1 par cette dernière régule différemment l’export nucléaire des protéines E1 du VPB et du VPH. Dans la première partie de cette étude, nous avons démontré que bien que la protéine E1 des VPH interagit avec Ubc9, l’enzyme de conjugaison de la voie de sumoylation, cette voie n’est pas requise pour son accumulation au noyau. Dans la seconde partie, nous avons déterminé que l’accumulation nucléaire de E1 est plutôt régulée pas sa phosphorylation. En fait, nous avons démontré que l’export nucléaire de E1 est inhibé par la phosphorylation de sérines conservées de la région N-terminale de E1 par Cdk2. Puis, nous avons établi que l’export nucléaire de E1 n’est pas nécessaire à l’amplification du génome dans les kératinocytes différenciés mais qu’il est requis pour le maintien du génome dans les kératinocytes non différenciés. En particulier, nous avons découvert que l’accumulation nucléaire de E1 inhibe la prolifération cellulaire en induisant un arrêt du cycle cellulaire en phase S et que cet effet anti-prolifératif est contrecarrée par l’export de E1 au cytoplasme. Dans la troisième partie de cette étude, nous avons démontré que l’arrêt cellulaire induit par E1 dépend de sa liaison à l’ADN et à l’ATP, et qu’il est accompagné par l’activation de la voie de réponse aux dommages à l’ADN dépendante de ATM (Ataxia Telangiectasia Mutated). Ces deux événements semblent toutefois distincts puisque la formation d’un complexe E1-E2 réduit l’activation de la voie de réponse aux dommages par E1 sans toutefois prévenir l’arrêt de cycle cellulaire. Finalement, nous avons démontré que la réplication transitoire de l’ADN viral peut avoir lieu dans des cellules arrêtées en phase S, indépendamment de l’activation de la voie de réponse aux dommages à l’ADN et de la kinase ATM. Globalement, nos résultats démontrent que l’export nucléaire de E1 est régulé par sa phosphorylation et non par sa sumoylation. Ils démontrent également que l’export nucléaire de E1 est essentiel au maintien du génome dans les kératinocytes, possiblement parce qu’il prévient l’inhibition de la prolifération cellulaire et l’activation de la voie de réponse aux dommages à l’ADN en limitant l’accumulation de E1 au noyau. / Human papillomaviruses (HPV) are small double-stranded DNA viruses that infect the differentiating epithelium of the skin and the mucosa. HPV rely on two viral proteins, E1 and E2, to replicate and maintain their genome in the nucleus of infected cells. During replication, the E1 helicase is recruited to the origin of replication by E2 and is assembled into a double-hexamer that unwinds DNA ahead of the replication fork. E1 is comprised of a C-terminal enzymatic domain with ATPase/helicase activity, a central origin-binding domain and a N-terminal regulatory region that is required for viral DNA replication in vivo. The latter region of E1 contains a nuclear localization signal and a nuclear export signal that regulate its shuttling between the nucleus and cytoplasm. For bovine papillomavirus (BPV) E1, this shuttling was suggested to be controlled by the sumoylation of E1. In addition to the NES and NLS, the N-terminal region of E1 contains a conserved cyclin-binding motif that is required for the interaction of E1 with cyclin E/A-Cdk2. Cdk2 phosphorylation of E1 has been reported to control the nuclear export of E1 from BPV and HPV, albeit differently. In the first part of this study, we showed that although HPV E1 interacts with Ubc9, the conjugating enzyme of the sumoylation pathway, this pathway is not required for its accumulation in the nucleus. In the second part, we found that the nuclear accumulation of E1 is, instead, regulated by phosphorylation. Specifically, we found that Cdk2-dependent phosphorylation of conserved serines in the E1 N-terminal region inhibits the nuclear export of HPV E1. Furthermore, we reported that nuclear export is not essential to amplify the viral genome in differentiating keratinocytes but that it is required for its long-term maintenance in undifferentiated keratinocytes. Importantly, we found that the nuclear accumulation of E1 induces a S-phase arrest that is detrimental to cellular proliferation and that this anti-proliferative effect can be counteracted by the export of E1 from the nucleus to the cytoplasm. In the last part of this study, we showed that this arrest is dependent on the DNA- and ATP-binding activities of E1. Furthermore, we found that the cell cycle arrest induced by E1 is accompanied by the activation of a DNA damage response (DDR) dependent on the ATM (Ataxia Telangiectasia Mutated) pathway. However, these two events seem to be distinct since complex formation with E2 reduces the ability of E1 to induce a DDR but does not prevent cell cycle arrest. Importantly, we demonstrated that transient viral DNA replication still occurs in S-phase arrested cells, independently of the induction of a DDR and of the ATM kinase. Collectively, these data indicate that nuclear export of E1 is regulated by phosphorylation and not by sumoylation. They also revealed that nuclear export of E1 is essential for maintenance of the viral episome in keratinocytes, at least in part to limit its nuclear accumulation and prevent its detrimental effect on cellular proliferation and induction of a DDR.
26

Identification et caractérisation de facteurs impliqués dans la réplication et la stabilité des génomes des organelles de plantes

Parent, Jean-Sébastien 11 1900 (has links)
Comparativement au génome contenu dans le noyau de la cellule de plante, nos connaissances des génomes des deux organelles de cette cellule, soit le plastide et la mitochondrie, sont encore très limitées. En effet, un nombre très restreint de facteurs impliqués dans la réplication et la réparation de l’ADN de ces compartiments ont été identifiés à ce jour. Au cours de notre étude, nous avons démontré l’implication de la famille de protéines Whirly dans le maintien de la stabilité des génomes des organelles. Des plantes mutantes pour des gènes Whirly chez Arabidopsis thaliana et Zea mays montrent en effet une augmentation du nombre de molécules d’ADN réarrangées dans les plastides. Ces nouvelles molécules sont le résultat d’une forme de recombinaison illégitime nommée microhomology-mediated break-induced replication qui, en temps normal, se produit rarement dans le plastide. Chez un mutant d’Arabidopsis ne possédant plus de protéines Whirly dans les plastides, ces molécules d’ADN peuvent même être amplifiées jusqu’à cinquante fois par rapport au niveau de l’ADN sauvage et causer un phénotype de variégation. L’étude des mutants des gènes Whirly a mené à la mise au point d’un test de sensibilité à un antibiotique, la ciprofloxacine, qui cause des bris double brin spécifiquement au niveau de l’ADN des organelles. Le mutant d’Arabidopsis ne contenant plus de protéines Whirly dans les plastides est plus sensible à ce stress que la plante sauvage. L’agent chimique induit en effet une augmentation du nombre de réarrangements dans le génome du plastide. Bien qu’un autre mutant ne possédant plus de protéines Whirly dans les mitochondries ne soit pas plus sensible à la ciprofloxacine, on retrouve néanmoins plus de réarrangements dans son ADN mitochondrial que dans celui de la plante sauvage. Ces résultats suggèrent donc une implication pour les protéines Whirly dans la réparation des bris double brin de l’ADN des organelles de plantes. Notre étude de la stabilité des génomes des organelles a ensuite conduit à la famille des protéines homologues des polymérases de l’ADN de type I bactérienne. Plusieurs groupes ont en effet suggéré que ces enzymes étaient responsables de la synthèse de l’ADN dans les plastides et les mitochondries. Nous avons apporté la preuve génétique de ce lien grâce à des mutants des deux gènes PolI d’Arabidopsis, qui encodent des protéines hautement similaires. La mutation simultanée des deux gènes est létale et les simples mutants possèdent moins d’ADN dans les organelles des plantes en bas âge, confirmant leur implication dans la réplication de l’ADN. De plus, les mutants du gène PolIB, mais non ceux de PolIA, sont hypersensibles à la ciprofloxacine, suggérant une fonction dans la réparation des bris de l’ADN. En accord avec ce résultat, la mutation combinée du gène PolIB et des gènes des protéines Whirly du plastide produit des plantes avec un phénotype très sévère. En définitive, l’identification de deux nouveaux facteurs impliqués dans le métabolisme de l’ADN des organelles nous permet de proposer un modèle simple pour le maintien de ces deux génomes. / Compared to the nuclear genome, very little is known about the genomes of the two plant cytoplasmic organelles, the plastid and the mitochondria. Indeed, very few factors involved in either the replication or the repair of these genomes have been identified. Here we show the implication of the Whirly protein family in the maintenance of organellar DNA. Indeed, mutations in Whirly genes lead to DNA rearrangements in both Arabidopsis thaliana and Zea mays plastids. These rearrangements are the product of microhomology-mediated break-induced replication that rarely occurs in wild-type plants but increases in absence of Whirly proteins. In a mutant plant devoid of plastidial Whirly proteins, these new DNA molecules can be amplified up to fifty times the normal DNA level and cause a variegated phenotype. In the course of the study of the Whirly mutant plants, we developed a strategy, based on the use of the antibiotic ciprofloxacin, to induce DNA double-strand breaks specifically in plant organelles. The Arabidopsis mutant plants without Whirly proteins in the plastids are more sensitive to the antibiotic ciprofloxacin than wild-type plants. Accordingly, there is a much larger increase in the number of rearranged DNA molecules in the plastids of the mutant plants than in the control plants. Surprisingly, while the mutant plants devoid of Whirly proteins in the mitochondria do not show increased sensitivity to the drug, they do accumulate more rearrangements in their mitochondrial DNA compared to wild-type plants. These results suggest that the Whirly proteins are involved in the repair of DNA double-strand breaks in the plant organelle genomes. Our study of the plant organelle genome stability has lead us to a family of proteins homologous to the DNA polymerase I in bacteria. This family has been proposed to be responsible for most of the DNA-synthesis activity in the plant organelles. We bring genetic proof to support this hypothesis using mutants of the two PolI genes of Arabidopsis. The combined mutation of both genes is lethal and the single mutations cause a decrease in the relative DNA levels in the organelles, thus confirming the involvement of both genes in DNA replication. Interestingly, mutants of the PolIB but not PolIA gene shows increase sensitivity to ciprofloxacin suggesting a function in DNA repair. In line with these results, a cross between a PolIB mutant and the mutant of plastid Whirly genes resulted in plants with severe growth defects and numerous rearrangements in the plastid DNA. In conclusion, we have identified two factors involved in the metabolism of organelle DNA and proposed a simple model of how these genomes are maintained in the plant cell.
27

Identification et caractérisation de facteurs impliqués dans la réplication et la stabilité des génomes des organelles de plantes

Parent, Jean-Sébastien 11 1900 (has links)
Comparativement au génome contenu dans le noyau de la cellule de plante, nos connaissances des génomes des deux organelles de cette cellule, soit le plastide et la mitochondrie, sont encore très limitées. En effet, un nombre très restreint de facteurs impliqués dans la réplication et la réparation de l’ADN de ces compartiments ont été identifiés à ce jour. Au cours de notre étude, nous avons démontré l’implication de la famille de protéines Whirly dans le maintien de la stabilité des génomes des organelles. Des plantes mutantes pour des gènes Whirly chez Arabidopsis thaliana et Zea mays montrent en effet une augmentation du nombre de molécules d’ADN réarrangées dans les plastides. Ces nouvelles molécules sont le résultat d’une forme de recombinaison illégitime nommée microhomology-mediated break-induced replication qui, en temps normal, se produit rarement dans le plastide. Chez un mutant d’Arabidopsis ne possédant plus de protéines Whirly dans les plastides, ces molécules d’ADN peuvent même être amplifiées jusqu’à cinquante fois par rapport au niveau de l’ADN sauvage et causer un phénotype de variégation. L’étude des mutants des gènes Whirly a mené à la mise au point d’un test de sensibilité à un antibiotique, la ciprofloxacine, qui cause des bris double brin spécifiquement au niveau de l’ADN des organelles. Le mutant d’Arabidopsis ne contenant plus de protéines Whirly dans les plastides est plus sensible à ce stress que la plante sauvage. L’agent chimique induit en effet une augmentation du nombre de réarrangements dans le génome du plastide. Bien qu’un autre mutant ne possédant plus de protéines Whirly dans les mitochondries ne soit pas plus sensible à la ciprofloxacine, on retrouve néanmoins plus de réarrangements dans son ADN mitochondrial que dans celui de la plante sauvage. Ces résultats suggèrent donc une implication pour les protéines Whirly dans la réparation des bris double brin de l’ADN des organelles de plantes. Notre étude de la stabilité des génomes des organelles a ensuite conduit à la famille des protéines homologues des polymérases de l’ADN de type I bactérienne. Plusieurs groupes ont en effet suggéré que ces enzymes étaient responsables de la synthèse de l’ADN dans les plastides et les mitochondries. Nous avons apporté la preuve génétique de ce lien grâce à des mutants des deux gènes PolI d’Arabidopsis, qui encodent des protéines hautement similaires. La mutation simultanée des deux gènes est létale et les simples mutants possèdent moins d’ADN dans les organelles des plantes en bas âge, confirmant leur implication dans la réplication de l’ADN. De plus, les mutants du gène PolIB, mais non ceux de PolIA, sont hypersensibles à la ciprofloxacine, suggérant une fonction dans la réparation des bris de l’ADN. En accord avec ce résultat, la mutation combinée du gène PolIB et des gènes des protéines Whirly du plastide produit des plantes avec un phénotype très sévère. En définitive, l’identification de deux nouveaux facteurs impliqués dans le métabolisme de l’ADN des organelles nous permet de proposer un modèle simple pour le maintien de ces deux génomes. / Compared to the nuclear genome, very little is known about the genomes of the two plant cytoplasmic organelles, the plastid and the mitochondria. Indeed, very few factors involved in either the replication or the repair of these genomes have been identified. Here we show the implication of the Whirly protein family in the maintenance of organellar DNA. Indeed, mutations in Whirly genes lead to DNA rearrangements in both Arabidopsis thaliana and Zea mays plastids. These rearrangements are the product of microhomology-mediated break-induced replication that rarely occurs in wild-type plants but increases in absence of Whirly proteins. In a mutant plant devoid of plastidial Whirly proteins, these new DNA molecules can be amplified up to fifty times the normal DNA level and cause a variegated phenotype. In the course of the study of the Whirly mutant plants, we developed a strategy, based on the use of the antibiotic ciprofloxacin, to induce DNA double-strand breaks specifically in plant organelles. The Arabidopsis mutant plants without Whirly proteins in the plastids are more sensitive to the antibiotic ciprofloxacin than wild-type plants. Accordingly, there is a much larger increase in the number of rearranged DNA molecules in the plastids of the mutant plants than in the control plants. Surprisingly, while the mutant plants devoid of Whirly proteins in the mitochondria do not show increased sensitivity to the drug, they do accumulate more rearrangements in their mitochondrial DNA compared to wild-type plants. These results suggest that the Whirly proteins are involved in the repair of DNA double-strand breaks in the plant organelle genomes. Our study of the plant organelle genome stability has lead us to a family of proteins homologous to the DNA polymerase I in bacteria. This family has been proposed to be responsible for most of the DNA-synthesis activity in the plant organelles. We bring genetic proof to support this hypothesis using mutants of the two PolI genes of Arabidopsis. The combined mutation of both genes is lethal and the single mutations cause a decrease in the relative DNA levels in the organelles, thus confirming the involvement of both genes in DNA replication. Interestingly, mutants of the PolIB but not PolIA gene shows increase sensitivity to ciprofloxacin suggesting a function in DNA repair. In line with these results, a cross between a PolIB mutant and the mutant of plastid Whirly genes resulted in plants with severe growth defects and numerous rearrangements in the plastid DNA. In conclusion, we have identified two factors involved in the metabolism of organelle DNA and proposed a simple model of how these genomes are maintained in the plant cell.
28

Identification du rôle et des modifications post-traductionnelles modulant l’export nucléaire de l’hélicase virale E1 au cours du cycle de réplication du virus du papillome humain

Fradet-Turcotte, Amélie 04 1900 (has links)
Les virus du papillome humain (VPH) sont de petits virus à ADN double brin infectant les épithéliums de la peau et des muqueuses. La réplication nécessaire au maintien de leur génome dans les cellules infectées dépend des protéines virales E1 et E2. Au cours de la réplication, E1 est recrutée à l’origine de réplication par E2 afin d’être assemblée en doubles hexamères capables de dérouler l’ADN. E1 contient un domaine C-terminal responsable de l’activité ATPase/hélicase, un domaine central de liaison à l’origine et une région N-terminale régulant la réplication in vivo. Cette région contient des signaux de localisation et d’export nucléaire qui modulent le transport intracellulaire de E1. Chez le virus du papillome bovin (VPB), il a été proposé que ce transport est régulé par la sumoylation de E1. Finalement, la région N-terminale de E1 contient un motif de liaison aux cyclines permettant son interaction avec la cycline E/A-Cdk2. La phosphorylation de E1 par cette dernière régule différemment l’export nucléaire des protéines E1 du VPB et du VPH. Dans la première partie de cette étude, nous avons démontré que bien que la protéine E1 des VPH interagit avec Ubc9, l’enzyme de conjugaison de la voie de sumoylation, cette voie n’est pas requise pour son accumulation au noyau. Dans la seconde partie, nous avons déterminé que l’accumulation nucléaire de E1 est plutôt régulée pas sa phosphorylation. En fait, nous avons démontré que l’export nucléaire de E1 est inhibé par la phosphorylation de sérines conservées de la région N-terminale de E1 par Cdk2. Puis, nous avons établi que l’export nucléaire de E1 n’est pas nécessaire à l’amplification du génome dans les kératinocytes différenciés mais qu’il est requis pour le maintien du génome dans les kératinocytes non différenciés. En particulier, nous avons découvert que l’accumulation nucléaire de E1 inhibe la prolifération cellulaire en induisant un arrêt du cycle cellulaire en phase S et que cet effet anti-prolifératif est contrecarrée par l’export de E1 au cytoplasme. Dans la troisième partie de cette étude, nous avons démontré que l’arrêt cellulaire induit par E1 dépend de sa liaison à l’ADN et à l’ATP, et qu’il est accompagné par l’activation de la voie de réponse aux dommages à l’ADN dépendante de ATM (Ataxia Telangiectasia Mutated). Ces deux événements semblent toutefois distincts puisque la formation d’un complexe E1-E2 réduit l’activation de la voie de réponse aux dommages par E1 sans toutefois prévenir l’arrêt de cycle cellulaire. Finalement, nous avons démontré que la réplication transitoire de l’ADN viral peut avoir lieu dans des cellules arrêtées en phase S, indépendamment de l’activation de la voie de réponse aux dommages à l’ADN et de la kinase ATM. Globalement, nos résultats démontrent que l’export nucléaire de E1 est régulé par sa phosphorylation et non par sa sumoylation. Ils démontrent également que l’export nucléaire de E1 est essentiel au maintien du génome dans les kératinocytes, possiblement parce qu’il prévient l’inhibition de la prolifération cellulaire et l’activation de la voie de réponse aux dommages à l’ADN en limitant l’accumulation de E1 au noyau. / Human papillomaviruses (HPV) are small double-stranded DNA viruses that infect the differentiating epithelium of the skin and the mucosa. HPV rely on two viral proteins, E1 and E2, to replicate and maintain their genome in the nucleus of infected cells. During replication, the E1 helicase is recruited to the origin of replication by E2 and is assembled into a double-hexamer that unwinds DNA ahead of the replication fork. E1 is comprised of a C-terminal enzymatic domain with ATPase/helicase activity, a central origin-binding domain and a N-terminal regulatory region that is required for viral DNA replication in vivo. The latter region of E1 contains a nuclear localization signal and a nuclear export signal that regulate its shuttling between the nucleus and cytoplasm. For bovine papillomavirus (BPV) E1, this shuttling was suggested to be controlled by the sumoylation of E1. In addition to the NES and NLS, the N-terminal region of E1 contains a conserved cyclin-binding motif that is required for the interaction of E1 with cyclin E/A-Cdk2. Cdk2 phosphorylation of E1 has been reported to control the nuclear export of E1 from BPV and HPV, albeit differently. In the first part of this study, we showed that although HPV E1 interacts with Ubc9, the conjugating enzyme of the sumoylation pathway, this pathway is not required for its accumulation in the nucleus. In the second part, we found that the nuclear accumulation of E1 is, instead, regulated by phosphorylation. Specifically, we found that Cdk2-dependent phosphorylation of conserved serines in the E1 N-terminal region inhibits the nuclear export of HPV E1. Furthermore, we reported that nuclear export is not essential to amplify the viral genome in differentiating keratinocytes but that it is required for its long-term maintenance in undifferentiated keratinocytes. Importantly, we found that the nuclear accumulation of E1 induces a S-phase arrest that is detrimental to cellular proliferation and that this anti-proliferative effect can be counteracted by the export of E1 from the nucleus to the cytoplasm. In the last part of this study, we showed that this arrest is dependent on the DNA- and ATP-binding activities of E1. Furthermore, we found that the cell cycle arrest induced by E1 is accompanied by the activation of a DNA damage response (DDR) dependent on the ATM (Ataxia Telangiectasia Mutated) pathway. However, these two events seem to be distinct since complex formation with E2 reduces the ability of E1 to induce a DDR but does not prevent cell cycle arrest. Importantly, we demonstrated that transient viral DNA replication still occurs in S-phase arrested cells, independently of the induction of a DDR and of the ATM kinase. Collectively, these data indicate that nuclear export of E1 is regulated by phosphorylation and not by sumoylation. They also revealed that nuclear export of E1 is essential for maintenance of the viral episome in keratinocytes, at least in part to limit its nuclear accumulation and prevent its detrimental effect on cellular proliferation and induction of a DDR.
29

R-2-hydroxyglutarate modulates DNA Replication via Integrated Stress Response

Sharma, Jyoti 06 1900 (has links)
Les gènes de l'isocitrate déshydrogénase (IDH) sont mutés dans 70 à 80 % des gliomes de bas grade. Les enzymes mutantes IDH qui en résultent présentent une activité de gain de fonction, produisant du R-2-hydroxyglutarate (R-2-HG), appelé oncométabolite en raison de son accumulation anormale dans les tumeurs et de ses activités oncogéniques potentielles. Parmi les caractéristiques du cancer telles que la reprogrammation métabolique et épigénétique, le stress réplicatif et la stabilité du génome ont été peu caractérisés dans les cancers IDH-mutants. Par conséquent, cette étude vise à étudier l'impact de l'accumulation de R-2-HG sur la réplication de l'ADN et sa contribution au stress réplicatif dans les cancers IDH-mutants. Nous avons étudié la dynamique de la fourche de réplication dans des astrocytes humains normaux et confirmé les résultats dans d'autres lignées cellulaires normales et cancéreuses. Nous avons constaté que le traitement exogène par l'octyl-R-2-HG entravait la progression de la fourche de réplication et retardait par conséquent l'achèvement de la phase S. L'évaluation des niveaux de phosphorylation des protéines RPA, CHK1 et H2AX a révélé que la réponse classique au stress réplicatif (RSR) n'était pas activée. Un état cellulaire dans lequel la réplication de l'ADN est altérée sans activation de la RSR a notamment été décrit dans la littérature comme résultant de l'activation de la réponse au stress intégré (ISR). Cependant, l'activation de la RSI dans les cancers mutants IDH n'est pas bien étudiée. En évaluant les marqueurs d'activation de la RSI, tels que la phosphorylation de l'eIF2α et les niveaux de protéines ATF4, nous avons montré que l'octyl-R-2-HG activait la RSI. De plus, le blocage de l'ISR a partiellement sauvé la fourche de réplication et la progression de la phase S. Nous avons répliqué cette étude oncométrique. Nous avons reproduit ce défaut de réplication de l'ADN lié à l'oncométabolite ainsi que l'effet de sauvetage partiel de l'ISRIB lors de l'induction de la surexpression du gène IDH mutant. Nos résultats indiquent que la production de R-2-HG associée à la mIDH peut inhiber la dynamique normale de réplication de l'ADN via la signalisation ISR. / The isocitrate dehydrogenase (IDH) genes are mutated in 70-80% of low-grade gliomas. The resulting IDH mutant enzymes exhibit gain-of-function activity, producing R-2-hydroxyglutarate (R-2-HG), which is referred to as an oncometabolite due to its abnormal accumulation in tumours and potential oncogenic activities. Among the hallmarks of cancer such as metabolic and epigenetic reprogramming, replicative stress and genome stability have been poorly characterized in IDH-mutant cancer. Therefore, this study aims to investigate the impact of R-2-HG accumulation on DNA replication and its contribution to replicative stress in IDH-mutant cancers. We investigated replication fork dynamics in normal human astrocytes and confirmed the results in other normal and cancer cell lines. We found that exogenous treatment with octyl-R-2-HG impaired replication fork progression and consequently delayed S-phase completion. Assessment of RPA, CHK1 and H2AX protein phosphorylation levels revealed that the classical Replicative Stress Response (RSR) was not activated. Among others, a cell state in which DNA replication was impaired without activation of the RSR has been described in the literature as a result of activation of the Integrated Stress Response (ISR). However, ISR activation in IDH-mutant cancers is not well studied. Hence, by assessing ISR activation markers such as eIF2α phosphorylation and ATF4 protein levels, we showed that octyl-R-2-HG activated ISR. Moreover, blocking ISR partially rescued the replication fork and S-phase progression. We replicated this oncometabolite-related DNA replication defect as well as ISRIB’s partial rescue effect upon induction of mutant IDH gene overexpression. Our results indicate that mIDH-associated R-2-HG production possibly inhibits normal DNA replication dynamics via ISR signalling.
30

Mass spectrometry as a tool to dissect the role of chromatin assembly factors in regulating nucleosome assembly

Gharib, Marlène 12 1900 (has links)
L'assemblage des nucléosomes est étroitement couplée à la synthèse des histones ainsi qu’à la réplication et la réparation de l’ADN durant la phase S. Ce processus implique un mécanisme de contrôle qui contribue soigneusement et de manière régulée à l’assemblage de l’ADN en chromatine. L'assemblage des nucléosomes durant la synthèse de l’ADN est crucial et contribue ainsi au maintien de la stabilité génomique. Cette thèse décrit la caractérisation par spectrométrie de masse(SM) des protéines jouant un rôle critique dans l’assemblage et le maintien de la structure chromatinienne. Plus précisément, la phosphorylation de deux facteurs d’assemblage des nucléosome, le facteur CAF-1, une chaperone d’histone qui participe à l'assemblage de la chromatine spécifiquement couplée à la réplication de l'ADN, ainsi que le complexe protéique Hir, jouant de plus un rôle important dans la régulation transcriptionelle des gènes d’histones lors de la progression normale du cycle cellulaire et en réponse aux dommages de l'ADN, a été examiné. La caractérisation des sites de phosphorylation par SM nécéssite la séparation des protéines par éléctrophorèse suivi d’une coloration a l’argent. Dans le chapitre 2, nous demontrons que la coloration à l’argent induit un artéfact de sulfatation. Plus précisément, cet artéfact est causé par un réactif spécifiquement utilisé lors de la coloration. La sulfatation présente de fortes similitudes avec la phosphorylation. Ainsi, l’incrément de masse observé sur les peptides sulfatés et phosphorylés (+80 Da) nécéssite des instruments offrant une haute résolution et haute précision de masse pour différencier ces deux modifications. Dans les chapitres 3 et 4, nous avons d’abord démontré par SM que Cac1, la plus grande sous-unité du facteur CAF-1, est cible de plusieurs sites de phosphorylation. Fait intéréssant, certains de ces sites contiennent des séquences consensus pour les kinases Cdc7-Dbf4 et CDKs. Ainsi, ces résultats fournissent les premières évidences que CAF-1 est potentiellement régulé par ces deux kinases in vivo. La fonction de tous les sites de phosphorylation identifiés a ensuite été évaluée. Nous avons démontré que la phosphorylation de la Ser-503, un site consensus de la DDK, est essentielle à la répréssion transcriptionelle des gènes au niveau des télomères. Cependant, cette phosphorylation ne semble pas être nécéssaire pour d’autres fonctions connues de CAF-1, indiquant que le blocage de la phsophorylation de Cac1 Ser-503 affecte spécifiquement la fonction de CAF-1 aux structures hétérochromatiques des télomères. Ensuite, nous avons identifiés une intéraction physique entre CAF-1 et Cdc7-Dbf4. Des études in vitro ont également demontré que cette kinase phosphoryle spécifiquement Cac1 Ser-503, suggérant un rôle potential pour la kinase Cdc7-Dbf4 dans l’assemblage et la stabilité de la structure hétérochromatique aux télomères. Finalement, les analyses par SM nous ont également permi de montrer que la sous-unité Hpc2 du complexe Hir est phosphorylée sur plusieurs sites consensus des CDKs et de Cdc7-Dbf4. De plus, la quantification par SM d’un site spécifique de phosphorylation de Hpc2, la Ser-330, s’est révélée être fortement induite suite à l’activation du point de contrôle de réplication (le “checkpoint”) suite au dommage a l’ADN. Nous montrons que la Ser-330 de Hpc2 est phopshorylée par les kinases de point de contrôle de manière Mec1/Tel1- et Rad53-dépendante. Nos données préliminaires suggèrent ainsi que la capacité du complex Hir de réguler la répréssion transcriptionelle des gènes d'histones lors de la progression du cycle cellulaire normal et en réponse au dommage de l'ADN est médiée par la phosphorylation de Hpc2 par ces deux kinases. Enfin, ces deux études mettent en évidence l'importance de la spectrométrie de masse dans la caractérisation des sites de phosphorylation des protéines, nous permettant ainsi de comprendre plus précisement les mécanismes de régulation de l'assemblage de la chromatine et de la synthèse des histones. / Nucleosome assembly entails a controlled mechanism that is tightly coupled to DNA and histone synthesis during DNA replication and repair in S-phase. Importantly, this contributes to the prompt and carefully orchestrated assembly of newly replicated DNA into chromatin, which is essential for the maintenance of genomic integrity. This thesis describes the mass spectrometric characterization of proteins critical in the regulation of nucleosome assembly behind the replication fork and chromatin structure. More specifically, the phosphorylation of Chromatin Assembly Factor 1 (CAF-1), a nucleosome assembly factor that uniquely functions during replication-coupled de novo nucleosome assembly in S-phase and the Hir protein complex, a second nucleosome assembly factor that also contributes to the transcriptional regulation of histone genes during normal cell cycle progression and in response to DNA damage, was examined. We first demonstrated that characterization of protein phosphorylation by mass spectrometry (MS), which often relies on the separation of proteins by gel electrophoresis followed by silver staining for visualization, should be given careful considerations. In chapter 2, we report a potential pitfall in the interpretation of phosphorylation modifications due to the artifactual sulfation of serine, threonine and tyrosine residues caused by a specific reagent used during silver staining. Sulfation and phosphorylation both impart an 80 Da addition of these residues making them distinguishable only with MS systems offering high resolution and high mass accuracy capabilities. Chapter 3 and 4 present the MS characterization of in vivo phosphorylation occurring on CAF-1 and Hir proteins, respectively. We first demonstrated that Cac1, the largest subunit of CAF-1, is phosphorylated on several novel residues containing the consensus sequences recognized by either Cdc7-Dbf4 (DDK) or cyclin-dependent kinases(CDKs). These results have provided the first evidence that CAF-1 is regulated by these two kinases in vivo. The function of all identified Cac1 phosphorylation sites was then assessed. In vivo phenotypic studies showed that the specific phosphorylation of Ser-503, a Cac1 DDK-like site identified in our study, is essential for heterochromatin-mediated telomeric silencing. Cac1-Ser-503 did not appear to be required for other known functions of CAF-1, including DNA damage resistance and mitotic chromosom segregation, indicating that blocking Cac1 phosphorylation on Ser-503 sepcifically cripples CAF-1 function at telomeres. Next, biochemical purifications identified a physical interaction between CAF-1 and Cdc7-Dbf4. Consistent with this physical interaction data, in vitro kinase assay studies showed that Cdc7-Dbf4 specifically phosphorylates Cac1 Ser-503 thereby uncovering a novel role for Cdc7-Dbf4 in heterochromatin assembly and/or stability that is potentially mediated through CAF-1. Finally, MS analysis also showed that the Hpc2 subunit of the Hir protein complex is phosphorylated on several CDK- and DDK-like consensus sites. Furthermore, MS quantification of a specific phosphorylation site,Hpc2 Ser-330, was shown to be highly induced following the activation of the DNA damage checkpoint in response to DNA damage. We show that Hpc2 Ser-330 is phopshorylated by checkpoint kinases in a Mec1/Tel1- and Rad53-dependent manner. Our preliminary data suggest that the ability of the Hir protein complex to regulate the transcriptional repression of histone genes during normal cell cycle progression and in response to DNA damage is mediated through the regulated phosphorylation of Hpc2 by these kinases. Finally, these two studies highlight the importance of mass spectrometry in characterizing protein phosphorylation events, which has yielded novel insights into the regulation of chromatin assembly by CAF-1 and histone synthesis mediated by Hir proteins.

Page generated in 0.1294 seconds