• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 66
  • 12
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 130
  • 130
  • 50
  • 49
  • 24
  • 22
  • 20
  • 19
  • 19
  • 18
  • 18
  • 18
  • 18
  • 18
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Computer-aided analysis of fetal cardiac ultrasound videos

Bridge, Christopher January 2017 (has links)
This thesis addresses the task of developing automatic algorithms for analysing the two-dimensional ultrasound video footage obtained from fetal heart screening scans. These scans are typically performed in the second trimester of pregnancy to check for congenital heart anomalies and require significant training and anatomical knowledge to perform. The aim is to develop a tool that runs at high frame rates with no user initialisation and infers the visibility, position, orientation, view classification, and cardiac phase of the heart, and additionally the locations of cardiac structures of interest (such as valves and vessels) in a manner that is robust to the various sources of variation that occur in real-world ultrasound scanning. This is the first work to attempt such a detailed automated analysis of these videos. The problem is posed as a Bayesian filtering problem, which provides a principled framework for aggregating uncertain measurements across a number of frames whilst exploiting the constraints imposed by anatomical feasibility. The resulting inference problem is solved approximately with a particle filter, whose state space is partitioned to reduce the problems associated with filtering in high-dimensional spaces. Rotation-invariant features are captured from the videos in an efficient way in order to tackle the problem of unknown orientation. These are used within random forest learning models, including a novel formulation to predict circular-valued variables. The algorithm is validated on an annotated clinical dataset, and the results are compared to estimates of inter- and intra-observer variation, which are significant in both cases due to the inherent ambiguity in the imagery. The results suggest that the algorithm's output approaches these benchmarks in several respects, and fall slightly behind in others. The work presented here is an important first step towards developing automated clinical tools for the detection of congenital heart disease.
82

Investigation of training data issues in ensemble classification based on margin concept : application to land cover mapping / Investigation des problèmes des données d'apprentissage en classification ensembliste basée sur le concept de marge : application à la cartographie d'occupation du sol

Feng, Wei 19 July 2017 (has links)
La classification a été largement étudiée en apprentissage automatique. Les méthodes d’ensemble, qui construisent un modèle de classification en intégrant des composants d’apprentissage multiples, atteignent des performances plus élevées que celles d’un classifieur individuel. La précision de classification d’un ensemble est directement influencée par la qualité des données d’apprentissage utilisées. Cependant, les données du monde réel sont souvent affectées par les problèmes de bruit d’étiquetage et de déséquilibre des données. La marge d'ensemble est un concept clé en apprentissage d'ensemble. Elle a été utilisée aussi bien pour l'analyse théorique que pour la conception d'algorithmes d'apprentissage automatique. De nombreuses études ont montré que la performance de généralisation d'un classifieur ensembliste est liée à la distribution des marges de ses exemples d'apprentissage. Ce travail se focalise sur l'exploitation du concept de marge pour améliorer la qualité de l'échantillon d'apprentissage et ainsi augmenter la précision de classification de classifieurs sensibles au bruit, et pour concevoir des ensembles de classifieurs efficaces capables de gérer des données déséquilibrées. Une nouvelle définition de la marge d'ensemble est proposée. C'est une version non supervisée d'une marge d'ensemble populaire. En effet, elle ne requière pas d'étiquettes de classe. Les données d'apprentissage mal étiquetées sont un défi majeur pour la construction d'un classifieur robuste que ce soit un ensemble ou pas. Pour gérer le problème d'étiquetage, une méthode d'identification et d'élimination du bruit d'étiquetage utilisant la marge d'ensemble est proposée. Elle est basée sur un algorithme existant d'ordonnancement d'instances erronées selon un critère de marge. Cette méthode peut atteindre un taux élevé de détection des données mal étiquetées tout en maintenant un taux de fausses détections aussi bas que possible. Elle s'appuie sur les valeurs de marge des données mal classifiées, considérant quatre différentes marges d'ensemble, incluant la nouvelle marge proposée. Elle est étendue à la gestion de la correction du bruit d'étiquetage qui est un problème plus complexe. Les instances de faible marge sont plus importantes que les instances de forte marge pour la construction d'un classifieur fiable. Un nouvel algorithme, basé sur une fonction d'évaluation de l'importance des données, qui s'appuie encore sur la marge d'ensemble, est proposé pour traiter le problème de déséquilibre des données. Cette méthode est évaluée, en utilisant encore une fois quatre différentes marges d'ensemble, vis à vis de sa capacité à traiter le problème de déséquilibre des données, en particulier dans un contexte multi-classes. En télédétection, les erreurs d'étiquetage sont inévitables car les données d'apprentissage sont typiquement issues de mesures de terrain. Le déséquilibre des données d'apprentissage est un autre problème fréquent en télédétection. Les deux méthodes d'ensemble proposées, intégrant la définition de marge la plus pertinente face à chacun de ces deux problèmes majeurs affectant les données d'apprentissage, sont appliquées à la cartographie d'occupation du sol. / Classification has been widely studied in machine learning. Ensemble methods, which build a classification model by integrating multiple component learners, achieve higher performances than a single classifier. The classification accuracy of an ensemble is directly influenced by the quality of the training data used. However, real-world data often suffers from class noise and class imbalance problems. Ensemble margin is a key concept in ensemble learning. It has been applied to both the theoretical analysis and the design of machine learning algorithms. Several studies have shown that the generalization performance of an ensemble classifier is related to the distribution of its margins on the training examples. This work focuses on exploiting the margin concept to improve the quality of the training set and therefore to increase the classification accuracy of noise sensitive classifiers, and to design effective ensemble classifiers that can handle imbalanced datasets. A novel ensemble margin definition is proposed. It is an unsupervised version of a popular ensemble margin. Indeed, it does not involve the class labels. Mislabeled training data is a challenge to face in order to build a robust classifier whether it is an ensemble or not. To handle the mislabeling problem, we propose an ensemble margin-based class noise identification and elimination method based on an existing margin-based class noise ordering. This method can achieve a high mislabeled instance detection rate while keeping the false detection rate as low as possible. It relies on the margin values of misclassified data, considering four different ensemble margins, including the novel proposed margin. This method is extended to tackle the class noise correction which is a more challenging issue. The instances with low margins are more important than safe samples, which have high margins, for building a reliable classifier. A novel bagging algorithm based on a data importance evaluation function relying again on the ensemble margin is proposed to deal with the class imbalance problem. In our algorithm, the emphasis is placed on the lowest margin samples. This method is evaluated using again four different ensemble margins in addressing the imbalance problem especially on multi-class imbalanced data. In remote sensing, where training data are typically ground-based, mislabeled training data is inevitable. Imbalanced training data is another problem frequently encountered in remote sensing. Both proposed ensemble methods involving the best margin definition for handling these two major training data issues are applied to the mapping of land covers.
83

Srovnání statistických metod pro vývoj skóringových modelů / Comparison of statistical methods for the scoring models development

Mrázková, Adéla January 2018 (has links)
The aim of this thesis is to introduce and summarize the process of scoring model development in general and then basic statistical approaches used to resolve this problem, which are in particular logistic regression, neural networks and decision trees (random forests). Application of described methods on a real dataset provided by PROFI CREDIT Czech, a.s. follows, including discussion of some implementation issues and their resolution. Obtained results are discussed and compared.
84

Modélisation et simulation de la croissance de métastases pulmonaires / Lung metastases growth modeling and simulation

Jouganous, Julien 23 September 2015 (has links)
Cette thèse présente des travaux de modélisation mathématique de la croissance tumorale appliqués aux cas de métastases pulmonaires.La première partie de cette thèse décrit un premier modèle d’équations aux dérivées partielles permettant de simuler la croissance métastatique mais aussi la réponse de la tumeur à certains types de traitements. Une méthode de calibration du modèle à partir de données cliniques issues de l’imagerie médicale est développée et testée sur plusieurs cas cliniques.La deuxième partie de ces travaux introduit une simplification du modèle et de l’algorithme de calibration. Cette méthode, plus robuste, est testée sur un panel de 36 cas test et les résultats sont présentés dans le troisième chapitre. La quatrième et dernière partie développe un algorithme d’apprentissage automatisé permettant de tenir compte de données supplémentaires à celles utilisées par le modèle afin d’affiner l’étape de calibration. / This thesis deals with mathematical modeling and simulation of lung metastases growth.We first present a partial differential equations model to simulate the growth and possibly the response to some types of treatments of metastases to the lung. This model must be personalized to be used individually on clinical cases. Consequently, we developed a calibration technic based on medical images of the tumor. Several applications on clinical cases are presented.Then we introduce a simplification of the first model and the calibration algorithm. This new method, more robust, is tested on 36 clinical cases. The results are presented in the third chapter. To finish, a machine learning algorithm
85

Approche pour la construction de modèles d'estimation réaliste de l'effort/coût de projet dans un environnement incertain : application au domaine du développement logiciel / Approach to build realistic models for estimating project effort/cost in an uncertain environment : application to the software development field

Laqrichi, Safae 17 December 2015 (has links)
L'estimation de l'effort de développement logiciel est l'une des tâches les plus importantes dans le management de projets logiciels. Elle constitue la base pour la planification, le contrôle et la prise de décision. La réalisation d'estimations fiables en phase amont des projets est une activité complexe et difficile du fait, entre autres, d'un manque d'informations sur le projet et son avenir, de changements rapides dans les méthodes et technologies liées au domaine logiciel et d'un manque d'expérience avec des projets similaires. De nombreux modèles d'estimation existent, mais il est difficile d'identifier un modèle performant pour tous les types de projets et applicable à toutes les entreprises (différents niveaux d'expérience, technologies maitrisées et pratiques de management de projet). Globalement, l'ensemble de ces modèles formule l'hypothèse forte que (1) les données collectées sont complètes et suffisantes, (2) les lois reliant les paramètres caractérisant les projets sont parfaitement identifiables et (3) que les informations sur le nouveau projet sont certaines et déterministes. Or, dans la réalité du terrain cela est difficile à assurer. Deux problématiques émergent alors de ces constats : comment sélectionner un modèle d'estimation pour une entreprise spécifique ? et comment conduire une estimation pour un nouveau projet présentant des incertitudes ? Les travaux de cette thèse s'intéressent à répondre à ces questions en proposant une approche générale d'estimation. Cette approche couvre deux phases : une phase de construction du système d'estimation et une phase d'utilisation du système pour l'estimation de nouveaux projets. La phase de construction du système d'estimation est composée de trois processus : 1) évaluation et comparaison fiable de différents modèles d'estimation, et sélection du modèle d'estimation le plus adéquat, 2) construction d'un système d'estimation réaliste à partir du modèle d'estimation sélectionné et 3) utilisation du système d'estimation dans l'estimation d'effort de nouveaux projets caractérisés par des incertitudes. Cette approche intervient comme un outil d'aide à la décision pour les chefs de projets dans l'aide à l'estimation réaliste de l'effort, des coûts et des délais de leurs projets logiciels. L'implémentation de l'ensemble des processus et pratiques développés dans le cadre de ces travaux ont donné naissance à un prototype informatique open-source. Les résultats de cette thèse s'inscrivent dans le cadre du projet ProjEstimate FUI13. / Software effort estimation is one of the most important tasks in the management of software projects. It is the basis for planning, control and decision making. Achieving reliable estimates in projects upstream phases is a complex and difficult activity because, among others, of the lack of information about the project and its future, the rapid changes in the methods and technologies related to the software field and the lack of experience with similar projects. Many estimation models exist, but it is difficult to identify a successful model for all types of projects and that is applicable to all companies (different levels of experience, mastered technologies and project management practices). Overall, all of these models form the strong assumption that (1) the data collected are complete and sufficient, (2) laws linking the parameters characterizing the projects are fully identifiable and (3) information on the new project are certain and deterministic. However, in reality on the ground, that is difficult to be ensured.Two problems then emerge from these observations: how to select an estimation model for a specific company ? and how to conduct an estimate for a new project that presents uncertainties ?The work of this thesis interested in answering these questions by proposing a general estimation framework. This framework covers two phases: the construction phase of the estimation system and system usage phase for estimating new projects. The construction phase of the rating system consists of two processes: 1) evaluation and reliable comparison of different estimation models then selection the most suitable estimation model, 2) construction of a realistic estimation system from the selected estimation model and 3) use of the estimation system in estimating effort of new projects that are characterized by uncertainties. This approach acts as an aid to decision making for project managers in supporting the realistic estimate of effort, cost and time of their software projects. The implementation of all processes and practices developed as part of this work has given rise to an open-source computer prototype. The results of this thesis fall in the context of ProjEstimate FUI13 project.
86

Improved Criteria for Estimating Calibration Factors for Highway Safety Manual (HSM) Applications

Saha, Dibakar 14 November 2014 (has links)
The Highway Safety Manual (HSM) estimates roadway safety performance based on predictive models that were calibrated using national data. Calibration factors are then used to adjust these predictive models to local conditions for local applications. The HSM recommends that local calibration factors be estimated using 30 to 50 randomly selected sites that experienced at least a total of 100 crashes per year. It also recommends that the factors be updated every two to three years, preferably on an annual basis. However, these recommendations are primarily based on expert opinions rather than data-driven research findings. Furthermore, most agencies do not have data for many of the input variables recommended in the HSM. This dissertation is aimed at determining the best way to meet three major data needs affecting the estimation of calibration factors: (1) the required minimum sample sizes for different roadway facilities, (2) the required frequency for calibration factor updates, and (3) the influential variables affecting calibration factors. In this dissertation, statewide segment and intersection data were first collected for most of the HSM recommended calibration variables using a Google Maps application. In addition, eight years (2005-2012) of traffic and crash data were retrieved from existing databases from the Florida Department of Transportation. With these data, the effect of sample size criterion on calibration factor estimates was first studied using a sensitivity analysis. The results showed that the minimum sample sizes not only vary across different roadway facilities, but they are also significantly higher than those recommended in the HSM. In addition, results from paired sample t-tests showed that calibration factors in Florida need to be updated annually. To identify influential variables affecting the calibration factors for roadway segments, the variables were prioritized by combining the results from three different methods: negative binomial regression, random forests, and boosted regression trees. Only a few variables were found to explain most of the variation in the crash data. Traffic volume was consistently found to be the most influential. In addition, roadside object density, major and minor commercial driveway densities, and minor residential driveway density were also identified as influential variables.
87

La pertinence du transport pour promouvoir l'activité physique : une prise en compte des défis liés à la mesure, à l'analyse empirique et à la simulation des changements de modes de transport / The relevance of transport to promote physical activity : addressing challenges related to the measurements and the observational analysis of transport-related physical activity, and the simulation of shifts in transportation mode

Brondeel, Ruben 16 December 2016 (has links)
L'activité physique a un impact important sur la santé populationnelle, et les comportements de transport constituent une partie substantielle de l'activité physique totale. Ce travail de thèse a pour objectif d'améliorer les mesures de l'activité physique liées au transport et d'utiliser ces nouvelles mesures dans des études de cas empirique sur l'activité physique liée au transport des adultes âgés de 35 à 83 ans résidant en Ile-de-France. Méthodes: Des données GPS et d'accéléromètre ont été collectée dans le cadre de " RECORD étude GPS " pour 236 participants. L'Enquête Globale Transport a recueilli des données sur une population de 21332 participants sur une période d'un jour. Les méthodes statistiques utilisées incluent Random Forests, des régressions binomiales négatives; et des systèmes d'information géographique. Résultats Les unités de temps plus courtes ont donné lieu à des estimations d'activité physique beaucoup plus importantes. Nous avons observé 18,9 min T-APMV par jour en moyenne dans cet échantillon représentatif de l'Ile-de -France. Les participants ayant un niveau d'éducation plus élevé ont plus de T-APMV que les participants moins instruits. Les personnes ayant un revenu du ménage plus élevé ont moins T-APMV par jour. Conclusion Ce travail renforce les recommandations de la littérature d'une harmonisation plus poussée des indicateurs de l'activité physique basés sur l'accéléromètre. Des interventions concernant les modes de transport peuvent avoir un effet important sur l'activité physique. / Background Physical activity has an important impact on various health outcomes, and transport accounts for a substantial part of total physical activity. This PhD work aimed to improve measures of transport-related physical activity and to report empirical findings on the transport-related physical activity of adults aged 35 to 83 years living in Ile-de-France. Methods The RECORD GPS Study collected GPS and accelerometer data for 236 participants over a 7-day period, resulting in the observation of 7425 trips. The Enquête Globale Transport) collected data over one day, resulting in the observation of 82084 trips for 21332 participants. The methods used include random forest prediction models, geographical information systems, and negative binomial regressions. Results Shorter epochs (time units) resulted in considerably larger estimates of moderate-to-vigorous physical activity MVPA. This finding supports calls from the literature for further harmonization of accelerometer-based indicators of physical activity. We observed an average 18.9 minutes of daily T-MVPA (95% confidence interval: 18.6; 19.2 minutes). Participants with a higher level of education did more T-MVPA than their less educated counterparts. In contrast, people with a higher household income did less T-MVPA per day. Conclusion This PhD work was the first study to combine a very detailed dataset - including GPS, accelerometer, and mobility behaviour data - and a large-scale transport survey. Transport interventions could have an important impact on physical activity for this population.
88

Inférence pour les modèles statistiques mal spécifiés, application à une étude sur les facteurs pronostiques dans le cancer du sein / Inference for statistical misspecified models, application to a prognostic factors study for breast cancer

Duroux, Roxane 21 September 2016 (has links)
Cette thèse est consacrée à l'inférence de certains modèles statistiques mal spécifiés. Chaque résultat obtenu trouve son application dans une étude sur les facteurs pronostiques dans le cancer du sein, grâce à des données collectées par l'Institut Curie. Dans un premier temps, nous nous intéressons au modèle à risques non proportionnels, et exploitons la connaissance de la survie marginale du temps de décès. Ce modèle autorise la variation dans le temps du coefficient de régression, généralisant ainsi le modèle à hasards proportionnels. Dans un deuxième temps, nous étudions un modèle à hasards non proportionnels ayant un coefficient de régression constant par morceaux. Nous proposons une méthode d'inférence pour un modèle à un unique point de rupture, et une méthode d'estimation pour un modèle à plusieurs points de rupture. Dans un troisième temps, nous étudions l'influence du sous-échantillonnage sur la performance des forêts médianes et essayons de généraliser les résultats obtenus aux forêts aléatoires de survie à travers une application. Enfin, nous présentons un travail indépendant où nous développons une nouvelle méthode de recherche de doses, dans le cadre des essais cliniques de phase I à ordre partiel. / The thesis focuses on inference of statistical misspecified models. Every result finds its application in a prognostic factors study for breast cancer, thanks to the data collection of Institut Curie. We consider first non-proportional hazards models, and make use of the marginal survival of the failure time. This model allows a time-varying regression coefficient, and therefore generalizes the proportional hazards model. On a second time, we study step regression models. We propose an inference method for the changepoint of a two-step regression model, and an estimation method for a multiple-step regression model. Then, we study the influence of the subsampling rate on the performance of median forests and try to extend the results to random survival forests through an application. Finally, we present a new dose-finding method for phase I clinical trials, in case of partial ordering.
89

Primena mašinskog učenja u problemu nedostajućih podataka pri razvoju prediktivnih modela / Application of machine learning to the problem of missing data in the development of predictive models

Vrbaški Dunja 20 July 2020 (has links)
<p>Problem nedostajućih podataka je često prisutan prilikom razvoja<br />prediktivnih modela. Umesto uklanjanja podataka koji sadrže<br />vrednosti koje nedostaju mogu se primeniti metode za njihovu<br />imputaciju. Disertacija predlaže metodologiju za pristup analizi<br />uspešnosti imputacija prilikom razvoja prediktivnih modela. Na<br />osnovu iznete metodologije prikazuju se rezultati primene algoritama<br />mašinskog učenja, kao metoda imputacije, prilikom razvoja određenih,<br />konkretnih prediktivnih modela.</p> / <p>The problem of missing data is often present when developing predictive<br />models. Instead of removing data containing missing values, methods for<br />imputation can be applied. The dissertation proposes a methodology for<br />analysis of imputation performance in the development of predictive models.<br />Based on the proposed methodology, results of the application of machine<br />learning algorithms, as an imputation method in the development of specific<br />models, are presented.</p>
90

Credit Scoring using Machine Learning Approaches

Chitambira, Bornvalue January 2022 (has links)
This project will explore machine learning approaches that are used in creditscoring. In this study we consider consumer credit scoring instead of corporatecredit scoring and our focus is on methods that are currently used in practiceby banks such as logistic regression and decision trees and also compare theirperformance against machine learning approaches such as support vector machines (SVM), neural networks and random forests. In our models we addressimportant issues such as dataset imbalance, model overfitting and calibrationof model probabilities. The six machine learning methods we study are support vector machine, logistic regression, k-nearest neighbour, artificial neuralnetworks, decision trees and random forests. We implement these models inpython and analyse their performance on credit dataset with 30000 observations from Taiwan, extracted from the University of California Irvine (UCI)machine learning repository.

Page generated in 0.0615 seconds