• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 79
  • 11
  • 6
  • 4
  • 2
  • Tagged with
  • 112
  • 112
  • 102
  • 23
  • 20
  • 18
  • 18
  • 17
  • 15
  • 15
  • 13
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Compréhension des mécanismes de cristallisation sous tension des élastomères en conditions quasi-statiques et dynamiques / Understanding the mechanisms of strain induced crystallization of natural rubber in quasi-static and dynamic conditions

Candau, Nicolas 06 June 2014 (has links)
La cristallisation sous tension (SIC) du caoutchouc naturel (NR) a fait l’objet d’un nombre considérable d’études depuis sa découverte il y a près d’un siècle. Cependant, il existe peu d’informations dans la littérature concernant le comportement du caoutchouc à des vitesses de sollicitation proches des temps caractéristiques de cristallisation. L’objectif de cette thèse est alors de contribuer à la compréhension du phénomène de cristallisation sous tension grâce à des essais dynamiques à grandes vitesses. Pour répondre à cet objectif, nous avons développé une machine de traction permettant de déformer des échantillons d’élastomères à des vitesses de sollicitation pouvant aller jusqu’à 290s-1. Les essais ont été réalisés sur quatre NR avec des taux de soufre variables, deux NR chargés comportant des taux de noir de carbone différents. Nous avons également étudié un matériau synthétique à base de polyisoprène (IR) afin de comparer ses performances à celle du NR. Les essais dynamiques étant relativement difficiles à interpréter, un travail conséquent a donc été d’abord réalisé à basse vitesse. En outre, l’approche expérimentale proposée a été couplée à une approche thermodynamique de la SIC. Les mécanismes généraux associés à la cristallisation que nous identifions sont les suivants: lors d’une traction, la cristallisation consiste en l’apparition de populations cristallines conditionnée par l’hétérogénéité de réticulation des échantillons. Cette cristallisation semble nettement accélérée dès lors que ce cycle est réalisé au-dessus de la déformation de fusion. Nous attribuons ce phénomène à un effet mémoire dû à un alignement permanent des chaînes. Enfin, l’effet de la vitesse est décrit théoriquement en intégrant un terme de diffusion des chaînes dans la cinétique de SIC. Cette approche couplée à des essais mécaniques suggère que la SIC est essentiellement gouvernée par la cinétique de nucléation. Lors des tests dynamiques, la combinaison de l’effet mémoire et d’une accélération de la fusion pendant le cycle entraine une nette diminution voire une disparition de l’hystérèse cristalline. En outre, l’auto-échauffement, qui augmente progressivement avec la fréquence du cycle, tend à supprimer l’effet mémoire en provoquant le passage du cycle en dessous de la déformation de fusion. Lors de ces essais dynamiques, la SIC semble favorisée pour le matériau le moins réticulé. Nous attribuons cet effet au blocage d’enchevêtrements jouant le rôle de sites nucléants pour la SIC. Le matériau chargé semble avoir une moins bonne aptitude à cristalliser à hautes vitesses, par rapport à l’élastomère non chargé, en raison d’un auto-échauffement important à l’interface entre charges et matrice. Enfin, nous notons une convergence des cinétiques de cristallisation du caoutchouc naturel et synthétique à grande déformation et grande vitesse de sollicitation, que nous attribuons à la prédominance du terme énergétique d’origine entropique dans la cinétique de nucléation. / Strain induced crystallization (SIC) of Natural Rubber (NR) has been the subject of a large number of studies since its discovery in 1929. However, the literature is very poor concerning the study of SIC when samples are deformed with a stretching time in the range of the SIC characteristic time (around 10msec-100msec). Thus, the aim of this thesis is to contribute to the understanding of the SIC phenomenon thanks to dynamic tensile tests at high strain rates. To meet this goal, we have developed a dynamic tensile test machine allowing stretching samples of elastomers at strain rates up to 290 s-1. The tests are carried out on four NR with different sulphur amount, two NR with different carbon black filler amounts. We also studied a synthetic rubber made of polyisoprene chains (IR) able to crystallize under strain. Dynamic tests are relatively difficult to interpret; a significant work has thus been first performed at slow strain rate. Moreover, the experiments are coupled with a thermodynamic approach. First, the general mechanisms associated to the crystallization are identified as follows: during mechanical loading or during cooling in the deformed state, SIC is the result of successive appearance of crystallite populations whose nucleation and growth depend on the local network density. Crystallization is enhanced when the cycle is performed above the melting stretching ratio. This phenomenon is attributed to a memory effect due to a permanent alignment of the chains. Finally, the effect of the strain rate is theoretically described thanks to a diffusion term. This approach, coupled with experiments suggests that SIC is mainly governed by the nucleation kinetics. For the dynamic test, the combination of the memory effect and the acceleration of the melting during the cycle lead to a reduction or even disappearance of the crystalline hysteresis. In addition, self-heating, which progressively increases with the frequency of the cycle, causes the delay of the melting stretching ratio. This well explains why the crystallinity index decreases at the minimum stretching ratio of the dynamic cycles when the frequency increases. We finally compared the ability of our different rubbers to crystallize at high strain rates. SIC is enhanced for the weakly crosslinked rubber. This might be related to the dynamics of its free entanglements, these ones acting as supplementary crosslinks at high strain rates. Then, a filled rubber is compared to the unfilled one. We found that the filled sample has a lower ability to crystallize at high strain rates as compared to the unfilled one. This is likely due to the strong self-heating at the interface between the fillers and the rubbery matrix. Finally, we observe a convergence of crystallization kinetics in natural and synthetic rubbers at high strains and high strain rates. This is attributed to the predominance of the entropic energy in the nucleation kinetics in these experimental conditions.
102

Modeling of scatter radiation during interventional X-ray procedures

Rehn, Emelie January 2015 (has links)
During catheterized x-ray interventions the patient and medical staff is exposed to scatter radiation, as a consequence of tissue interactions. Ionizing radiation for medical purpose is potentially dangerous and can cause malignancy, skin damage and more. Studies have suggested an increase in the prevalence of eye lens cataract, thyroid cancer and left sided brain tumors in doctors. Therefore, it is mandatory to reduce the radiation dose in medicine, a principle known as ALARA (as low as Reasonably Achievable). Lead aprons, collars and shieldings are safety precautions to protect the team in the operating room. The x-ray equipment and surgical techniques are constantly evolving and the interventions become more complex which may increase the x-ray dose. Although x-ray imaging is required in interventional procedures endeavors of reducing radiation exposure to staff is of high interest. There is a need to increase the awareness about scatter radiation and radiation protection efforts are gaining momentum. Initiative to train a dose reducing behavior by education and awareness are key documents within the European Union’s guidelines on Radiation protection. The aims of this thesis were to create a 3D model for representation of real-time exposure and accumulated scatter radiation to staff performing interventional x-ray procedures and identify parameters that affect the scatter radiation. Extensive measurements were made with real time dosimeters while irradiating an anthropomorphic phantom. For five lateral C-arm projections, 68 - 80 data points each were used to measure scatter dose distribution around the patient. In the typical operator position, the effect of craniocaudal projection angle, patient size, field size, image detector height and pulse rate on scatter radiation dose was also investigated. It was possible to create a 3D model from interpolated measurement data that can generate dose rate with promising results. Six out of eight modelled doses deviated +/- 26.6 % from the validation cases. A model that delivers relative dose is an intuitive approach in education for interventional x-ray radiation safety. The staff position in relation to the x-ray source and the patient size have a significant correlation to the dose rate. Additional measurements are needed to ensure the reliability of the model. This work completes the effect of scatter radiation distribution around the patient table, which is not yet evaluated as thoroughly by other authors.
103

Etude de l'effect thermoélectrique magnétique en solidification directionnelle d'alliages Al-Cu. / Study on the thermoelectric magnetic effect in directional solidification of Al-Cu alloy

Wang, Jiang 18 October 2013 (has links)
Nous étudions l'effet thermo-électrique et les phénomènes qui en résultent, forces et les courants thermoélectriques (TEC) sous l'action d'un champ magnétique externe imposé lors de la solidification d'alliages métalliques. Nous avons utilisé des simulations numériques, des observations directes et des examens de laboratoire. L'interaction entre les courants thermo-électriques et le champ magnétique externe lors de la solidification se produit des forces électromagnétiques et donc un écoulement du métal liquide. Le résultat est nommé effet magnétique thermoélectrique (TEME). Les formulations de TEC, les forces et les équations gouvernant les écoulements TEM sont donnés. Afin de mieux prouver l'existence de la TEME, des expériences par méthode d'imagerie à rayons X menées au synchrtron ont été utilisées pour observer in-situ et en temps réel l'action directe des forces et les mouvements TEM pendant la solidification directionnelle des alliages Al-Cu. Nous avons montré la cohérence raisonnable entre les calculs analytiques et des simulations numériques qui ont exécuté avec les mêmes conditions de traitement. En outre, la capacité des écoulements thermo-électriques à influer sur la microstructure lors de la solidification directionnelle sont expérimentalement évaluées dans les autres cas en réalité. La solidification directionnelle d'une seule phase de formation des alliages Al-Cu sous divers champs magnétiques montre que les écoulements TEM sont capables de modifier la forme de l'interface liquide-solide conduisant à des morphologies différentes. L'effet le plus intense se produit dans différents champs magnétiques pour différentes morphologies, en effet, le champ magnétique élevé est nécessaire pour la morphologie a une plus petite longueur typique. Ceci est en accord avec le comportement des vitesses de TEM qui varient avec les champs magnétiques imposés ainsi que les différentes échelles de longueur typique. Cette variation est confirmée par des simulations numériques 3D. Nous montrons que les dendrites primaires et à l'avant de la phase eutectique, peuvent être modifiés par les mouvements TEM et les forces de TEM dans le solide pour améliorer la croissance de la phase de Al2Cu facettes primaire pendant la solidification des Al-40wt%Cu hypereutectiques. Le mécanisme de renforcement de la croissance de la phase facettes Al2Cu est confirmé par la transmission électronique observation au microscope, et la raison de la formation de la structure de croissance de couple de Al-26wt% Cu alliages est vérifiée par le test de l'analyse thermique différentielle. Ainsi, nous pouvons affirmer que le champ magnétique élevé facilite la formation de la structure de la croissance de couple pour hypoeutectiques alliages Al-Cu, et favorise la croissance de la phase Al2Cu primaire pour hypereutectiques Al-Cu alliages. / We have investigated the thermoelectric magnetic (TEM) forces and flows resulting from the interaction between the internal thermoelectric currents (TEC) and the imposed external magnetic field during solidification. Numerical simulations, direct observations and experimental examinations were undertaken. As the natural phenomenon, TEC was discovered almost 200 years ago, therefore, our introduction begins from then on. It is shown that the interaction between TEC and external magnetic field during solidification in the cont put forth new interesting phenomena in the context of a rising field named Electromagnetic Processing of Materials. After that, it is discussed how the TEC appear and the TEM effect (TEME, referring to both TEM forces and flows) behaves at the liquid-solid interface in directional solidification under external magnetic field. Meanwhile, formulations of TEC, TEM forces and flows are given, and numerical simulations of TEME are performed to visually display the TEM forces and flows. In order to further prove the existence of TEME, in situ synchrotron X-ray imaging method was used to observe the direct resultant of TEM forces and flows during directionally solidifying the Al-Cu alloys. The observations show reasonable consistency with the analytical calculations and numerical simulations performed with the same process conditions. Except confirmation the existence of TEME, its abilities to affect the microstructure during directional solidification are experimentally investigated in the more realistic cases. The single phase forming Al-Cu alloys are directionally solidified under various magnetic fields, which shows that TEM flows are capable to modify the shape of liquid-solid interface, and the most intensive affect occurs under different magnetic fields for different interface morphologies. Indeed, the smaller the typical length of the morphology is the higher the magnetic field is needed. This agrees with the estimating regulation of the velocity of TEM flows changing with magnetic fields for different typical length scales, and is confirmed by 3D numerical simulations. Directional solidification of multiphase forming Al-Cu alloys under various magnetic fields shows that the mushy zone length (distance between the front of primary dendrites and eutectic phases) varies with the magnetic fields, which can be attributed to the redistribution of rejected solutes by TEM flows. In addition, apparent enhanced growth of the primary faceted Al2Cu phase is founded when Al-40wt%Cu alloys are solidified under sufficient high magnetic fields, this should be ascribed to the TEM forces acting on the solid because strains are able to lead the formation of defects and thus benefit to the growth of faceted phase. This is confirmed by comparison of the dislocations in samples solidified without and with a 10T magnetic field via transmission electron microscopy observation. In another aspect, an almost entire couple growth structure is achieved when Al-26wt%Cu alloys are directionally solidified under a 4T magnetic field, which can be explained by the effect of high magnetic field on changing the nucleation temperature and growth velocity of each phase. Moreover, the differential thermal analysis test on the nucleation temperature of both α-Al and eutectic phases verified this explanation. Therefore, we conclude that high magnetic field facilitates the formation of couple growth structure for hypoeutectic Al-Cu alloys, reversely, enhances the growth of primary dendrite for hypereutectic Al-Cu alloys.
104

Nonlinear approaches for phase retrieval in the Fresnel region for hard X-ray imaging / Approches non linéaire en imagerie de phase par rayons X dans le domaine de Fresnel

Ion, Valentina 26 September 2013 (has links)
Le développement de sources cohérentes de rayons X offre de nouvelles possibilités pour visualiser les structures biologiques à différentes échelles en exploitant la réfraction des rayons X. La cohérence des sources synchrotron de troisième génération permettent des implémentations efficaces des techniques de contraste de phase. Une des premières mesures des variations d’intensité dues au contraste de phase a été réalisée en 1995 à l’Installation Européenne de Rayonnement Synchrotron (ESRF). L’imagerie de phase couplée à l’acquisition tomographique permet une imagerie tridimensionnelle avec une sensibilité accrue par rapport à la tomographie standard basée sur absorption. Cette technique est particulièrement adaptée pour les échantillons faiblement absorbante ou bien présentent des faibles différences d’absorption. Le contraste de phase a ainsi une large gamme d’applications, allant de la science des matériaux, à la paléontologie, en passant par la médecine et par la biologie. Plusieurs techniques de contraste de phase aux rayons X ont été proposées au cours des dernières années. Dans la méthode de contraste de phase basée sur le phénomène de propagation l’intensité est mesurée pour différentes distances de propagation obtenues en déplaçant le détecteur. Bien que l’intensité diffractée puisse être acquise et enregistrée, les informations de phase du signal doivent être "récupérées" à partir seulement du module des données mesurées. L’estimation de la phase est donc un problème inverse non linéaire mal posé et une connaissance a priori est nécessaire pour obtenir des solutions stables. Si la plupart de méthodes d’estimation de phase reposent sur une linéarisation du problème inverse, les traitements non linéaires ont été eux très peu étudiés. Le but de ce travail était de proposer et d’évaluer des nouveaux algorithmes, prenant en particulier en compte la non linéarité du problème direct. Dans la première partie de ce travail, nous présentons un schéma de type Landweber non linéaire itératif pour résoudre le problème de la récupération de phase. Cette approche utilise l’expression analytique de la dérivée de Fréchet de la relation phase-intensité et de son adjoint. Nous étudions aussi l’effet des opérateurs de projection sur les propriétés de convergence de la méthode. Dans la deuxième partie de cette thèse, nous étudions la résolution du problème inverse linéaire avec un algorithme en coordonnées ondelettes basé sur un seuillage itératif. Par la suite, les deux algorithmes sont combinés et comparés avec une autre approche non linéaire basée sur une régularisation parcimonieuse et un algorithme de point fixe. Les performances des algorithmes sont évaluées sur des données simulées pour différents niveaux de bruit. Enfin, les algorithmes ont été adaptés pour traiter des données réelles acquises en tomographie de phase à l’ESRF à Grenoble. / The development of highly coherent X-ray sources offers new possibilities to image biological structures at different scales exploiting the refraction of X-rays. The coherence properties of the third-generation synchrotron radiation sources enables efficient implementations of phase contrast techniques. One of the first measurements of the intensity variations due to phase contrast has been reported in 1995 at the European Synchrotron Radiation Facility (ESRF). Phase imaging coupled to tomography acquisition allows threedimensional imaging with an increased sensitivity compared to absorption CT. This technique is particularly attractive to image samples with low absorption constituents. Phase contrast has many applications, ranging from material science, paleontology, bone research to medicine and biology. Several methods to achieve X-ray phase contrast have been proposed during the last years. In propagation based phase contrast, the measurements are made at different sample-to-detector distances. While the intensity data can be acquired and recorded, the phase information of the signal has to be "retrieved" from the modulus data only. Phase retrieval is thus an illposed nonlinear problem and regularization techniques including a priori knowledge are necessary to obtain stable solutions. Several phase recovery methods have been developed in recent years. These approaches generally formulate the phase retrieval problem as a linear one. Nonlinear treatments have not been much investigated. The main purpose of this work was to propose and evaluate new algorithms, in particularly taking into account the nonlinearity of the direct problem. In the first part of this work, we present a Landweber type nonlinear iterative scheme to solve the propagation based phase retrieval problem. This approach uses the analytic expression of the Fréchet derivative of the phase-intensity relationship and of its adjoint, which are presented in detail. We also study the effect of projection operators on the convergence properties of the method. In the second part of this thesis, we investigate the resolution of the linear inverse problem with an iterative thresholding algorithm in wavelet coordinates. In the following, the two former algorithms are combined and compared with another nonlinear approach based on sparsity regularization and a fixed point algorithm. The performance of theses algorithms are evaluated on simulated data for different noise levels. Finally the algorithms were adapted to process real data sets obtained in phase CT at the ESRF at Grenoble.
105

Binary tomography reconstruction of bone microstructures from a limited number of projections / Reconstruction tomographique binaire de microstructures de l'os à partir d'un nombre limité de projections

Wang, Lin 08 June 2016 (has links)
La reconstruction en tomographie discrète de la microstructure de l’os joue un role très important pour le diagnostic de l’ostéoporse, une maladie des os très fréquente. Le diagnostic clinique est basé sur l’absortiométrie duale de rayons X. Avec la tomographie de rayons X, une résolution spatiale élevée avec des images reconstruites in vivo requiert une dose d’irradiation élevée et un temps de balayage long, ce qui est dangereux pour le patient. Une des méthodes pour résoudre ce problème est de limiter le nombre de projections. Cependant, avec cette méthode le problème de reconstruction devient mal posé. Deux types de régularisation par Variation Totale minimisées avec la méthode Alternate Direction of Minimization Method (ADMM) et deux schémas basés sur les méthodes de régularisation Level-set sont appliquées à deux images d’os expérimentales acquises avec un synchrotron (pixel size: 15 μm). Des images de tailles variées et avec différents niveaux de bruit Gaussien additifs ajoutés aux projections sont utlisées pour étudier l’efficacité des méthodes de régularisation. Des minima locaux sont obtenus avec ces méthodes déterministes. Une approche globale d’optimisation est nécessaire pour améliorer les résultats. Des perturbations stochastiques peuvent être un moyen très utile pour échapper aux minima locaux. Dans une première approche, une équation différentielle stochastique basée sur la régularisation level-set est étudiée. Cette méthode améliore les résultats de reconstruction mais ne modifie que les frontières entre les régions 0 et 1. Ensuite une équation aux dérivées partielles stochastique est obtenue avec la régularisation TV pour améliorer la méthode stochastique level-set. A la fin de notre travail, nous avons étendu la méthode de régularisation à des images 3D avec des données réelles. Cette algorithme a été implémenté avec RTK. Nous avons aussi étendu l’approche level-set utilisée pour la tomographie binaire au cas multi-level. / Discrete tomography reconstruction of bone microstructure is important in diagnosis of osteoporosis. One way to reduce the radiation dose and scanning time in CT imaging is to limit the number of projections. This method makes the reconstruction problem highly ill-posed. A common solution is to reconstruct only a finite number of intensity levels. In this work, we investigate only binary tomography reconstruction problem. First, we consider variational regularization methods. Two types of Total Variation (TV) regularization approaches minimized with the Alternate Direction of Minimization Method (ADMM) and two schemes based on Level-set (LS) regularization methods are applied to two experimental bone cross-section images acquired with synchrotron micro-CT. The numerical experiments have shown that good reconstruction results were obtained with TV regularization methods and that level-set regularization outperforms the TV regularization for large bone image with complex structures. Yet, for both methods, some reconstruction errors are still located on the boundaries and some regions are lost when the projection number is low. Local minima were obtained with these deterministic methods. Stochastic perturbations is a useful way to escape the local minima. As a first approach, a stochastic differential equation based on level-set regularization was studied. This method improves the reconstruction results but only modifies the boundaries between the 0 and 1 regions. Then partial stochastic differential equation obtained with the TV regularization semi-norm were studied to improve the stochastic level-set method. The random change of the boundary are performed in a new way with the gradient or wavelet decomposition of the reconstructed image. Random topological changes are included to find the lost regions in the reconstructed images. At the end of our work, we extended the TV regularization method to 3D images with real data on RTK (Reconstruction Toolkit). And we also extended the level-set to the multi-level cases.
106

Détermination automatique de l'incidence optimale pour l'observation des lésions coronaires en imagerie rotationnelle R-X / Automatic determination of optimal viewing angle for the coronary lesion observation in rotationnal X-ray angiography

Feuillâtre, Hélène 10 June 2016 (has links)
Les travaux de cette thèse s’inscrivent dans le cadre du planning de traitements minimalement invasifs des lésions des artères coronaires. Le cardiologue réalise un examen coronarographique, puis dans la continuité, une angioplastie transluminale. L’angiographie rotationnelle à rayons X permet de visualiser sous différentes incidences 2D la lumière des artères coronaires sur plusieurs cycles cardiaques et aussi d’obtenir une reconstruction 3D+T des arbres coronaires. A partir de cette séquence, notre objectif est de déterminer automatiquement une incidence optimale 2D du segment sténosé compatible avec les angles du C-arm afin d’aider le cardiologue lors de l’intervention.Différentes étapes sont considérées pour calculer la position angulaire optimale du C-arm. Afin de suivre la zone de lésion durant le cycle cardiaque, une première méthode est proposée pour mettre en correspondance tous les arbres de la séquence 3D+T. Tout d’abord, un appariement deux à deux des arbres successifs est réalisé afin de construire un arbre d’union. Ces derniers sont ensuite fusionnés afin d’obtenir un arbre mosaïque représentant l’arbre le plus complet de la séquence. L’utilisation de mesures de similarités géométriques et hiérarchiques ainsi que l’insertion de nœuds artificiels permet de prendre en compte les différents mouvements non-rigides des artères coronaires subits au cours du cycle cardiaque et les variations topologiques dû à leurs extractions. Cet appariement nous permet de proposer une deuxième méthode afin d’obtenir une vue angiographique 2D optimale de la zone de lésion tout le long du cycle cardiaque. Cette incidence est proposée spécifiquement pour trois types de région d’intérêt (segment unique, segment multiple ou bifurcation) et est calculée à partir de quatre critères (raccourcissement, chevauchement interne et externe ou angle d’ouverture de bifurcation). Une vue 2D déployée du segment projeté avec le moins de superposition avec les structures vasculaires avoisinantes est obtenue. Nous donnons également la possibilité au cardiologue d’avoir une incidence optimale privilégiant soit le déploiement du stent ou soit le guidage d’outils de la racine de l’arbre à la zone sténosée. Nos différents algorithmes ont été évalués sur une séquence réelle de 10 phases segmentées à partir d’un CT et de 41 séquences simulées. / The thesis work deals with the planning of minimally invasive surgery of coronary artery lesions. The physician performs a coronarography following by a percutaneous transluminal angioplasty. The X-ray rotational angiography permits to visualize the lumen artery under different projection angles in several cardiac cycles. From these 2D projections, a 3D+T reconstruction of coronary arteries can be obtained. Our goal is to determine automatically from this 3D+T sequence, the optimal angiographic viewing angle of the stenotic segment. Several steps are proposed to compute the optimal angular position of the C-arm. Firstly, a mosaic-based tree matching algorithm of the 3D+T sequence is proposed to follow the stenotic lesion in the whole cardiac cycle. A pair-wise inexact tree matching is performed to build a tree union between successive trees. Next, these union trees are merged to obtain the mosaic tree which represents the most complete tree of the sequence. To take into account the non-rigid movement of coronary arteries during the cardiac cycle and their topology variations due to the 3D reconstruction or segmentation, similarity measures based on hierarchical and geometrical features are used. Artificial nodes are also inserted. With this global tree sequence matching, we propose secondly a new method to determine the optimal viewing angle of the stenotic lesion throughout the cardiac cycle. This 2D angiographic view which is proposed for three regions of interest (single segment, multiple segment or bifurcation) is computed from four criteria: the foreshortening, the external and internal overlap and the bifurcation opening angle rates. The optimal view shows the segment in its most extended and unobstructed dimension. This 2D view can be optimal either for the deployment of the stent or for the catheter guidance (from the root to the lesion). Our different algorithms are evaluated on real sequence (CT segmentation) and 41 simulated sequences.
107

Ultrafast Structural and Electron Dynamics in Soft Matter Exposed to Intense X-ray Pulses

Jönsson, Olof January 2017 (has links)
Investigations of soft matter using ultrashort high intensity pulses have been made possible through the advent of X-ray free-electrons lasers. The last decade has seen the development of a new type of protein crystallography where femtosecond dynamics can be studied, and single particle imaging with atomic resolution is on the horizon. The pulses are so intense that any sample quickly turns into a plasma. This thesis studies the ultrafast transition from soft matter to warm dense matter, and the implications for structural determination of proteins.                    We use non-thermal plasma simulations to predict ultrafast structural and electron dynamics. Changes in atomic form factors due to the electronic state, and displacement as a function of temperature, are used to predict Bragg signal intensity in protein nanocrystals. The damage processes started by the pulse will gate the diffracted signal within the pulse duration, suggesting that long pulses are useful to study protein structure. This illustrates diffraction-before-destruction in crystallography. The effect from a varying temporal photon distribution within a pulse is also investigated. A well-defined initial front determines the quality of the diffracted signal. At lower intensities, the temporal shape of the X-ray pulse will affect the overall signal strength; at high intensities the signal level will be strongly dependent on the resolution. Water is routinely used to deliver biological samples into the X-ray beam. Structural dynamics in water exposed to intense X-rays were investigated with simulations and experiments. Using pulses of different duration, we found that non-thermal heating will affect the water structure on a time scale longer than 25 fs but shorter than 75 fs. Modeling suggests that a loss of long-range coordination of the solvation shells accounts for the observed decrease in scattering signal. The feasibility of using X-ray emission from plasma as an indicator for hits in serial diffraction experiments is studied. Specific line emission from sulfur at high X-ray energies is suitable for distinguishing spectral features from proteins, compared to emission from delivery liquids. We find that plasma emission continues long after the femtosecond pulse has ended, suggesting that spectrum-during-destruction could reveal information complementary to diffraction.
108

X-ray waveguide optics: Beyond straight channels

Hoffmann-Urlaub, Sarah 18 October 2016 (has links)
No description available.
109

Nuclear methods for real-time range verification in proton therapy based on prompt gamma-ray imaging

Hueso González, Fernando 07 June 2016 (has links)
Accelerated protons are excellent candidates for treating several types of tumours. Such charged particles stop at a defined depth, where their ionisation density is maximum. As the dose deposit beyond this distal edge is very low, proton therapy minimises the damage to normal tissue compared to photon therapy. Nonetheless, inherent range uncertainties cast doubts on the irradiation of tumours close to organs at risk and lead to the application of conservative safety margins. This constrains significantly the potential benefits of proton over photon therapy and limits its ultimate aspirations. Prompt gamma rays, a by-product of the irradiation that is correlated to the dose deposition, are reliable signatures for the detection of range deviations and even for three-dimensional in vivo dosimetry. In this work, two methods for Prompt Gamma-ray Imaging (PGI) are investigated: the Compton camera (Cc) and the Prompt Gamma-ray Timing (PGT). Their applicability in a clinical scenario is discussed and compared. The first method aspires to reconstruct the prompt gamma ray emission density map based on an iterative imaging algorithm and multiple position sensitive gamma ray detectors. These are arranged in scatterer and absorber plane. The second method has been recently proposed as an alternative to collimated PGI systems and relies on timing spectroscopy with a single monolithic detector. The detection times of prompt gamma rays encode essential information about the depth-dose profile as a consequence of the measurable transit time of ions through matter. At Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and OncoRay, detector components are characterised in realistic radiation environments as a step towards a clinical Cc. Conventional block detectors deployed in commercial Positron Emission Tomography (PET) scanners, made of Cerium-doped lutetium oxyorthosilicate - Lu2SiO5:Ce (LSO) or Bismuth Germanium Oxide - Bi4Ge3O12 (BGO) scintillators, are suitable candidates for the absorber of a Cc due to their high density and absorption efficiency with respect to the prompt gamma ray energy range (several MeV). LSO and BGO block detectors are compared experimentally in clinically relevant radiation fields in terms of energy, spatial and time resolution. On a different note, two BGO block detectors (from PET scanners), arranged as the BGO block Compton camera (BbCc), are deployed for simple imaging tests with high energy prompt gamma rays produced in homogeneous Plexiglas targets by a proton pencil beam. The rationale is to maximise the detection efficiency in the scatterer plane despite a moderate energy resolution. Target shifts, increase of the target thickness and beam energy variation experiments are conducted. Concerning the PGT concept, in a collaboration among OncoRay, HZDR and IBA, the first test at a clinical proton accelerator (Westdeutsches Protonentherapiezentrum Essen) with several detectors and heterogeneous phantoms is performed. The sensitivity of the method to range shifts is investigated, the robustness against background and stability of the beam bunch time profile is explored, and the bunch time spread is characterised for different proton energies. With respect to the material choice for the absorber of the Cc, the BGO scintillator closes the gap with respect to the brighter LSO. The reason behind is the high energies of prompt gamma rays compared to the PET scenario, which increase significantly the energy, spatial and time resolution of BGO. Regarding the BbCc, shifts of a point-like radioactive source are correctly detected, line sources are reconstructed, and one centimetre proton range deviations are identified based on the evident changes of the back projection images. Concerning the PGT experiments, for clinically relevant doses, range differences of five millimetres in defined heterogeneous targets are identified by numerical comparison of the spectrum shape. For higher statistics, range shifts down to two millimetres are detectable. Experimental data are well reproduced by analytical modelling. The Cc and the PGT are ambitious approaches for range verification in proton therapy based on PGI. Intensive detector characterisation and tests in clinical facilities are mandatory for developing robust prototypes, since the energy range of prompt gamma rays spans over the MeV region, not used traditionally in medical applications. Regarding the material choice for the Cc: notwithstanding the overall superiority of LSO, BGO catches up in the field of PGI. It can be considered as a competitive alternative to LSO for the absorber plane due to its lower price, higher photoabsorption efficiency, and the lack of intrinsic radioactivity. The results concerning the BbCc, obtained with relatively simple means, highlight the potential application of Compton cameras for high energy prompt gamma ray imaging. Nevertheless, technical constraints like the low statistics collected per pencil beam spot (if clinical currents are used) question their applicability as a real-time and in vivo range verification method in proton therapy. The PGT is an alternative approach, which may have faster translation into clinical practice due to its lower price and higher efficiency. A proton bunch monitor, higher detector throughput and quantitative range retrieval are the upcoming steps towards a clinically applicable prototype, that may detect significant range deviations for the strongest beam spots. The experimental results emphasise the prospects of this straightforward verification method at a clinical pencil beam and settle this novel approach as a promising alternative in the field of in vivo dosimetry.:1 Introduction 1.1 Proton therapy 1.1.1 The beginnings 1.1.2 Essential features 1.1.3 Advantages and drawbacks 1.2 Range uncertainties and their consequences 1.3 Range verification methods 1.4 Prompt gamma-ray imaging 1.4.1 Passive collimation 1.4.2 Active collimation 1.4.3 Correlation to dose 1.5 Aim of this work 2 Compton camera 2.1 Theoretical background 2.1.1 Compton formula and Klein-Nishina cross section 2.1.2 Detection principle 2.1.3 Intersection of cone surface and plane 2.1.4 Practical considerations 2.2 Motivation 2.3 Goals 2.4 Materials 2.4.1 Scintillator properties 2.4.2 Block detector properties 2.4.3 Electronics and data acquisition 2.4.4 High efficiency Compton camera setup 2.5 Experimental setup 2.5.1 Accelerators 2.5.2 Detector setup 2.5.3 Trigger regime 2.6 Methods 2.6.1 Energy calibration 2.6.2 Spatial calibration 2.6.3 Time calibration 2.6.4 Error analysis 2.6.5 Systematic measurement program 2.7 Results – absorber choice 2.7.1 Energy resolution 2.7.2 Spatial resolution 2.7.3 Time resolution 2.8 Discussion – absorber choice 2.9 Results – BbCc setup 2.10 Discussion – BbCc setup 3 Prompt gamma-ray timing 3.1 Theoretical background 3.1.1 Detection principle 3.1.2 Kinematics 3.1.3 Detector model 3.1.4 Quantitative assessment 3.2 Goals 3.3 Materials 3.3.1 Detectors 3.3.2 Electronics 3.3.3 Accelerators 3.4 Methods 3.4.1 Detector and module settings 3.4.2 Proton bunch phase stability 3.4.3 Proton bunch time structure 3.4.4 Systematic measurement program 3.4.5 Data acquisition rate 3.4.6 Data analysis 3.4.7 Modelling of PGT spectra 3.5 Results 3.5.1 Intrinsic detector time resolution 3.5.2 Illustrative energy over time spectra 3.5.3 Proton bunch phase stability 3.5.4 Proton bunch time structure 3.5.5 Systematic measurement program 3.6 Discussion 3.7 Conclusions 4 Discussion 4.1 Detector load, event throughput and spot duration 4.2 Comparison of PGI systems 4.3 Summary 4.4 Zusammenfassung Bibliography / Beschleunigte Protonen sind ausgezeichnete Kandidaten für die Behandlung von diversen Tumorarten. Diese geladenen Teilchen stoppen in einer bestimmten Tiefe, bei der die Ionisierungsdichte maximal ist. Da die deponierte Dosis hinter der distalen Kante sehr klein ist, minimiert die Protonentherapie den Schaden an normalem Gewebe verglichen mit der Photonentherapie. Inhärente Reichweitenunsicherheiten stellen jedoch die Bestrahlung von Tumoren in der Nähe von Risikoorganen in Frage und führen zur Anwendung von konservativen Sicherheitssäumen. Dadurch werden die potentiellen Vorteile der Protonen- gegenüber der Photonentherapie sowie ihre letzten Ziele eingeschränkt. Prompte Gammastrahlung, ein Nebenprodukt der Bestrahlung, welche mit der Dosisdeposition korreliert, ist eine zuverlässige Signatur um Reichweitenunterschiede zu detektieren und könnte sogar für eine dreidimensionale in vivo Dosimetrie genutzt werden. In dieser Arbeit werden zwei Methoden für Prompt Gamma-ray Imaging (PGI) erforscht: die Compton-Kamera (CK) und das Prompt Gamma-ray Timing (PGT)-Konzept. Des Weiteren soll deren Anwendbarkeit im klinischen Szenario diskutiert und verglichen werden. Die erste Methode strebt nach der Rekonstruktion der Emissionsdichtenverteilung der prompten Gammastrahlung und basiert auf einem iterativen Bildgebungsalgorithmus sowie auf mehreren positionsempfindlichen Detektoren. Diese werden in eine Streuer- und Absorberebene eingeteilt. Die zweite Methode ist vor Kurzem als eine Alternative zu kollimierten PGI Systemen vorgeschlagen worden, und beruht auf dem Prinzip der Zeitspektroskopie mit einem einzelnen monolithischen Detektor. Die Detektionszeiten der prompten Gammastrahlen beinhalten entscheidende Informationen über das Tiefendosisprofil aufgrund der messbaren Durchgangszeit von Ionen durch Materie. Am Helmholtz-Zentrum Dresden-Rossendorf (HZDR) und OncoRay werden Detektorkomponenten in realistischen Strahlungsumgebungen als ein Schritt zur klinischen CK charakterisiert. Konventionelle Blockdetektoren, welche in kommerziellen Positronen-Emissions-Tomographie (PET)-Scannern zum Einsatz kommen und auf Cer dotiertem Lutetiumoxyorthosilikat - Lu2SiO5:Ce (LSO) oder Bismutgermanat - Bi4Ge3O12 (BGO) Szintillatoren basieren, sind geeignete Kandidaten für den Absorber einer CK wegen der hohen Dichte und Absorptionseffizienz im Energiebereich von prompten Gammastrahlen (mehrere MeV). LSO- und BGO-Blockdetektoren werden in klinisch relevanten Strahlungsfeldern in Bezug auf Energie-, Orts- und Zeitauflösung verglichen. Weiterhin werden zwei BGO-Blockdetektoren (von PET-Scannern), angeordnet als BGO Block Compton-Kamera (BBCK), benutzt, um die Bildgebung von hochenergetischen prompten Gammastrahlen zu untersuchen, die in homogenen Plexiglas-Targets durch einen Protonen-Bleistiftstrahl emittiert werden. Die Motivation hierfür ist, die Detektionseffizienz der Streuerebene zu maximieren, wobei jedoch die Energieauflösung vernachlässigt wird. Targetverschiebungen, sowie Änderungen der Targetdicke und der Teilchenenergie werden untersucht. In einer Kollaboration zwischen OncoRay, HZDR and IBA, wird der erste Test des PGT-Konzepts an einem klinischen Protonenbeschleuniger (Westdeutsches Protonentherapiezentrum Essen) mit mehreren Detektoren und heterogenen Phantomen durchgeführt. Die Sensitivität der Methode hinsichtlich Reichweitenveränderungen wird erforscht. Des Weiteren wird der Einfluss von Untergrund und Stabilität des Zeitprofils des Strahlenbündels untersucht, sowie die Zeitverschmierung des Bündels für verschiedene Protonenenergien charakterisiert. Für die Materialauswahl für den Absorber der CK ergibt sich, dass sich BGO dem lichtstärkeren LSO Szintillator angleicht. Der Grund dafür sind die höheren Energien der prompten Gammastrahlung im Vergleich zum PET Szenario, welche die Energie-, Orts- und Zeitauflösung von BGO stark verbessern. Anhand von offensichtlichen Änderungen der Rückprojektionsbilder zeigt sich, dass mit der BBCK Verschiebungen einer punktförmigen radioaktiven Quelle erfolgreich detektiert, Linienquellen rekonstruiert und Verschiebungen der Protonenreichweite um einen Zentimeter identifiziert werden. Für die PGT-Experimente können mit einem einzigen Detektor Reichweitenunterschiede von fünf Millimetern für definierte heterogene Targets bei klinisch relevanten Dosen detektiert werden. Dies wird durch den numerischen Vergleich der Spektrumform ermöglicht. Bei größerer Ereigniszahl können Reichweitenunterschiede von bis zu zwei Millimetern detektiert werden. Die experimentellen Daten werden durch analytische Modellierung wiedergegeben. Die CK und das PGT-Konzept sind ambitionierte Ansätze zur Verifizierung der Reichweite in der Protonentherapie basierend auf PGI. Intensive Detektorcharakterisierung und Tests an klinischen Einrichtungen sind Pflicht für die Entwicklung geeigneter Prototypen, da der Energiebereich prompter Gammastrahlung sich über mehrere MeV erstreckt, was nicht dem Normbereich der traditionellen medizinischen Anwendungen entspricht. Im Bezug auf die Materialauswahl der CK wird ersichtlich, dass BGO trotz der allgemeinen Überlegenheit von LSO für die Anwendung im Bereich PGI aufholt. Wegen des niedrigeren Preises, der höheren Photoabsorptionseffizienz und der nicht vorhandenen Eigenaktivität erscheint BGO als eine konkurrenzfähige Alternative für die Absorberebene der CK im Vergleich zu LSO. Die Ergebnisse der BBCK, welche mit relativ einfachen Mitteln gewonnen werden, heben die potentielle Anwendung von Compton-Kameras für die Bildgebung prompter hochenergetischer Gammastrahlen hervor. Trotzdem stellen technische Beschränkungen wie die mangelnde Anzahl von Messereignissen pro Bestrahlungspunkt (falls klinische Ströme genutzt werden) die Anwendbarkeit der CK als Echtzeit- und in vivo Reichweitenverifikationsmethode in der Protonentherapie in Frage. Die PGT-Methode ist ein alternativer Ansatz, welcher aufgrund der geringeren Kosten und der höheren Effizienz eine schnellere Umsetzung in die klinische Praxis haben könnte. Ein Protonenbunchmonitor, höherer Detektordurchsatz und eine quantitative Reichweitenrekonstruktion sind die weiteren Schritte in Richtung eines klinisch anwendbaren Prototyps, der signifikante Reichweitenunterschiede für die stärksten Bestrahlungspunkte detektieren könnte. Die experimentellen Ergebnisse unterstreichen das Potential dieser Reichweitenverifikationsmethode an einem klinischen Bleistiftstrahl und lassen diesen neuartigen Ansatz als eine vielversprechende Alternative auf dem Gebiet der in vivo Dosimetrie erscheinen.:1 Introduction 1.1 Proton therapy 1.1.1 The beginnings 1.1.2 Essential features 1.1.3 Advantages and drawbacks 1.2 Range uncertainties and their consequences 1.3 Range verification methods 1.4 Prompt gamma-ray imaging 1.4.1 Passive collimation 1.4.2 Active collimation 1.4.3 Correlation to dose 1.5 Aim of this work 2 Compton camera 2.1 Theoretical background 2.1.1 Compton formula and Klein-Nishina cross section 2.1.2 Detection principle 2.1.3 Intersection of cone surface and plane 2.1.4 Practical considerations 2.2 Motivation 2.3 Goals 2.4 Materials 2.4.1 Scintillator properties 2.4.2 Block detector properties 2.4.3 Electronics and data acquisition 2.4.4 High efficiency Compton camera setup 2.5 Experimental setup 2.5.1 Accelerators 2.5.2 Detector setup 2.5.3 Trigger regime 2.6 Methods 2.6.1 Energy calibration 2.6.2 Spatial calibration 2.6.3 Time calibration 2.6.4 Error analysis 2.6.5 Systematic measurement program 2.7 Results – absorber choice 2.7.1 Energy resolution 2.7.2 Spatial resolution 2.7.3 Time resolution 2.8 Discussion – absorber choice 2.9 Results – BbCc setup 2.10 Discussion – BbCc setup 3 Prompt gamma-ray timing 3.1 Theoretical background 3.1.1 Detection principle 3.1.2 Kinematics 3.1.3 Detector model 3.1.4 Quantitative assessment 3.2 Goals 3.3 Materials 3.3.1 Detectors 3.3.2 Electronics 3.3.3 Accelerators 3.4 Methods 3.4.1 Detector and module settings 3.4.2 Proton bunch phase stability 3.4.3 Proton bunch time structure 3.4.4 Systematic measurement program 3.4.5 Data acquisition rate 3.4.6 Data analysis 3.4.7 Modelling of PGT spectra 3.5 Results 3.5.1 Intrinsic detector time resolution 3.5.2 Illustrative energy over time spectra 3.5.3 Proton bunch phase stability 3.5.4 Proton bunch time structure 3.5.5 Systematic measurement program 3.6 Discussion 3.7 Conclusions 4 Discussion 4.1 Detector load, event throughput and spot duration 4.2 Comparison of PGI systems 4.3 Summary 4.4 Zusammenfassung Bibliography
110

Treatment verification in proton therapy based on the detection of prompt gamma-rays

Golnik, Christian 22 July 2016 (has links)
Background The finite range of a proton beam in tissue and the corresponding steep distal dose gradient near the end of the particle track open new vistas for the delivery of a highly target-conformal dose distribution in radiation therapy. Compared to a classical photon treatment, the potential therapeutic benefit of a particle treatment is a significant dose reduction in the tumor-surrounding tissue at a comparable dose level applied to the tumor. Motivation The actually applied particle range, and therefor the dose deposition in the target volume, is quite sensitive to the tissue composition in the path of the protons. Particle treatments are planned via computed tomography images, acquired prior to the treatment. The conversion from photon stopping power to proton stopping power induces an important source of range-uncertainty. Furthermore, anatomical deviations from planning situation affect the accurate dose deposition. Since there is no clinical routine measurement of the actually applied particle range, treatments are currently planned to be robust in favor of optimal regarding the dose delivery. Robust planning incorporates the application of safety margins around the tumor volume as well as the usage of (potentially) unfavorable field directions. These pretreatment safety procedures aim to secure dose conformality in the tumor volume, however at the price of additional dose to the surrounding tissue. As a result, the unverified particle range constraints the principle benefit of proton therapy. An on-line, in-vivo range-verification would therefore bring the potential of particle therapy much closer to the daily clinical routine. Materials and methods This work contributes to the field of in-vivo treatment verification by the methodical investigation of range assessment via the detection of prompt gamma-rays, a side product emitted due to proton-tissue interaction. In the first part, the concept of measuring the spatial prompt gamma-ray emission profile with a Compton camera is investigated with a prototype system consisting of a CdZnTe cross strip detector as scatter plane and three side-by-side arranged, segmented BGO block detectors as absorber planes. In the second part, the novel method of prompt gamma-ray timing (PGT) is introduced. This technique has been developed in the scope of this work and a patent has been applied for. The necessary physical considerations for PGT are outlined and the feasibility of the method is supported with first proof-of-principle experiments. Results Compton camera: Utilizing a 22-Na source, the feasibility of reconstructing the emission scene of a point source at 1.275 MeV was verified. Suitable filters on the scatter-absorber coincident timing and the respective sum energy were defined and applied to the data. The source position and corresponding source displacements could be verified in the reconstructed Compton images. In a next step, a Compton imaging test at 4.44 MeV photon energy was performed. A suitable test setup was identified at the Tandetron accelerator at the Helmholtz-Zentrum Dresden-Rossendorf, Germany. This measurement setup provided a monoenergetic, point-like source of 4.44 MeV gamma-rays, that was nearly free of background. Here, the absolute gamma-ray yield was determined. The Compton imaging prototype was tested at the Tandetron regarding (i) the energy resolution, timing resolution, and spatial resolution of the individual detectors, (ii) the imaging capabilities of the prototype at 4.44 MeV gamma-ray energy and (iii) the Compton imaging efficiency. In a Compton imaging test, the source position and the corresponding source displacements were verified in the reconstructed Compton images. Furthermore, via the quantitative gamma-ray emission yield, the Compton imaging efficiency at 4.44 MeV photon energy was determined experimentally. PGT: The concept of PGT was developed and introduced to the scientific community in the scope of this thesis. A theoretical model for PGT was developed and outlined. Based on the theoretical considerations, a Monte Carlo (MC) algorithm, capable of simulating PGT distributions was implemented. At the KVI-CART proton beam line in Groningen, The Netherlands, time-resolved prompt gamma-ray spectra were recorded with a small scale, scintillator based detection system. The recorded data were analyzed in the scope of PGT and compared to the measured data, yielding in an excellent agreement and thus verifying the developed theoretical basis. For a hypothetical PGT imaging setup at a therapeutic proton beam it was shown, that the statistical error on the range determination could be reduced to 5 mm at a 90 % confidence level for a single spot of 5x10E8 protons. Conclusion Compton imaging and PGT were investigated as candidates for treatment verification, based on the detection of prompt gamma-rays. The feasibility of Compton imaging at photon energies of several MeV was proven, which supports the approach of imaging high energetic prompt $gamma$-rays. However, the applicability of a Compton camera under therapeutic conditions was found to be questionable, due to (i) the low device detection efficiency and the corresponding limited number of valid events, that can be recorded within a single treatment and utilized for image reconstruction, and (ii) the complexity of the detector setup and attached readout electronics, which make the development of a clinical prototype expensive and time consuming. PGT is based on a simple time-spectroscopic measurement approach. The collimation-less detection principle implies a high detection efficiency compared to the Compton camera. The promising results on the applicability under treatment conditions and the simplicity of the detector setup qualify PGT as method well suited for a fast translation towards a clinical trial.:1. Particle therapy 1.1 Introduction 1.2 The problem of particle range uncertainty 1.3 Currently investigated methods for treatment verification 1.4 Methods for prompt gamma-ray based treatment verification 1.4.1 Prompt gamma-ray imaging (PGI) 1.4.2 Prompt gamma-ray timing (PGT) 2. Physical relations 2.1 Interactions of protons with matter 2.1.1 Stopping of protons 2.1.2 Multiple Coulomb scattering (MCS) 2.1.3 Nonelastic collisions 2.2 Definition of deposited dose and proton range 2.2.1 Definition of dose D 2.2.2 The dose depth Dx , the proton fluence Φ, and the Bragg peak 2.2.3 The particle range 2.3 Production and delivery of proton beams 2.3.1 Acceleration of protons in a isochronous cyclotron 2.3.2 Beam delivery 2.4 Prompt gamma-ray emission 2.4.1 The production of prompt gamma-rays via nonelastic nuclear interactions 2.5 Interactions of photons with matter 2.5.1 Photoelectric absorption 2.5.2 Compton scattering 2.5.3 Pair production 2.5.4 Mass attenuation coefficient μ/ρ 2.6 Detection of photons 2.6.1 Semiconductor detectors 2.6.2 Scintillation detectors 3 Tests of a Compton camera for PGI 3.1 Principle of operation 3.2 Status of preceding work 3.3 Modifications to the existing Compton imaging prototype 3.4 Detectors of the prototype 3.4.1 The CZT scatter plane 3.4.2 The BGO absorber plane 3.4.3 The Compton imaging prototype 3.5 Electronic readout and event generation 3.6 Detector calibration 3.6.1 Calibration of the CZT detector 3.6.2 Calibration of a BGO detector 3.7 Compton imaging at 1.275 MeV photon energy 3.7.1 Imaging setup 3.7.2 Coincident timing 3.7.3 Coincident energy deposition 3.7.4 Image reconstruction 3.8 Compton imaging at 4.44 MeV photon energy 3.8.1 Beam setup at the Tandetron accelerator 3.8.2 Beam tuning at the Tandetron accelerator 3.8.3 The gamma-ray emission yield 3.8.4 Measurement setup 3.8.5 Energy detection 3.8.6 Spatial detection 3.8.7 Coincident timing 3.8.8 Coincident energy deposition 3.8.9 Detection efficiency η 3.8.10 Imaging setup 3.8.11 Image reconstruction 3.9 Implications for a therapeutic Compton imaging scenario 3.10 Summary and discussion 4 Prompt gamma-ray timing (PGT) 4.1 Theoretical description of PGT 4.1.1 Timing of prompt gamma-ray emission 4.1.2 Kinematics of protons 4.1.3 The correlation between spatial and temporal prompt gamma-ray emission in a thick target 4.1.4 Setup for time-resolved measurements of prompt gamma-rays 4.1.5 Uncertainty of the reference time 4.1.6 Standard error of the mean and confidence intervals of statistical momenta 4.1.7 A simplified MC method for the modeling of PGT 4.2 Experimental results 4.2.1 The GAGG detector 4.2.2 Detector energy resolution 4.2.3 Detector time resolution with 60-Co 4.2.4 Energy-resolved detector time resolution - the ELBE experiment 4.2.5 The KVI-CART proton beam line 4.2.6 Time-resolved measurement of prompt gamma-rays 4.2.7 Experimental determination of the system time resolution σ 4.2.8 PGT in dependence of proton transit time 4.3 Towards treatment verification with PGT 4.3.1 MC based PGT in dependence of proton range 4.3.2 MC based PGT at inhomogeneous targets 4.4 Implications for a therapeutic PGT scenario 4.4.1 Range verification for an exemplary PGT setup 4.4.2 Practical restrictions for the therapeutic PGT scenario 4.4.3 Principal limitations of the PGT method 4.5 Summary and outlook 5 Discussion Summary Zusammenfassung Bibliography Acknowledgement / Hintergrund Strahlentherapie ist eine wichtige Modalität der therapeutischen Behandlung von Krebs. Das Ziel dieser Behandlungsform ist die Applikation einer bestimmten Strahlendosis im Tumorvolumen, wobei umliegendes, gesundes Gewebe nach Möglichkeit geschont werden soll. Bei der Bestrahlung mit einem hochenergetischen Protonenstrahl erlaubt die wohldefinierte Reichweite der Teilchen im Gewebe, in Kombination mit dem steilen, distalen Dosisgradienten, eine hohe Tumor-Konformalität der deponierten Dosis. Verglichen mit der klassisch eingesetzten Behandlung mit Photonen ergibt sich für eine optimiert geplante Behandlung mit Protonen ein deutlich reduziertes Dosisnivau im den Tumor umgebenden Gewebe. Motivation Die tatsächlich applizierte Reichweite der Protonen im Körper, und somit auch die lokal deponierte Dosis, ist stark abhängig vom Bremsvermögen der Materie im Strahlengang der Protonen. Bestrahlungspläne werden mit Hilfe eines Computertomographen (CT) erstellt, wobei die CT Bilder vor der eigentlichen Behandlung aufgenommen werden. Ein CT misst allerdings lediglich den linearen Schwächungskoeffizienten für Photonen in der Einheit Hounsfield Units (HU). Die Ungenauigkeit in der Umrechnung von HU in Protonen-Bremsvermögen ist, unter anderem, eine wesentliche Ursache für die Unsicherheit über die tatsächliche Reichweite der Protonen im Körper des Patienten. Derzeit existiert keine routinemäßige Methode, um die applizierte Dosis oder auch die Protonenreichweite in-vivo und in Echtzeit zu bestimmen. Um das geplante Dosisniveau im Tumorvolumen trotz möglicher Reichweiteunterschiede zu gewährleisten, werden die Bestrahlungspläne für Protonen auf Robustheit optimiert, was zum Einen das geplante Dosisniveau im Tumorvolumen trotz auftretender Reichweiteveränderungen sicherstellen soll, zum Anderen aber auf Kosten der möglichen Dosiseinsparung im gesunden Gewebe geht. Zusammengefasst kann der Hauptvorteil einer Therapie mit Protonen wegen der Unsicherheit über die tatsächlich applizierte Reichweite nicht wirklich realisiert. Eine Methode zur Bestimmung der Reichweite in-vivo und in Echtzeit wäre daher von großem Nutzen, um das theoretische Potential der Protonentherapie auch in der praktisch ausschöpfen zu können. Material und Methoden In dieser Arbeit werden zwei Konzepte zur Messung prompter Gamma-Strahlung behandelt, welche potentiell zur Bestimmung der Reichweite der Protonen im Körper eingesetzt werden können. Prompte Gamma-Strahlung entsteht durch Proton-Atomkern-Kollision auf einer Zeitskala unterhalb von Picosekunden entlang des Strahlweges der Protonen im Gewebe. Aufgrund der prompten Emission ist diese Form der Sekundärstrahlung ein aussichtsreicher Kandidat für eine Bestrahlungs-Verifikation in Echtzeit. Zum Einen wird die Anwendbarkeit von Compton-Kameras anhand eines Prototyps untersucht. Dabei zielt die Messung auf die Rekonstruktion des örtlichen Emissionsprofils der prompten Gammas ab. Zum Zweiten wird eine, im Rahmen dieser Arbeit neu entwickelte Messmethode, das Prompt Gamma-Ray Timing (PGT), vorgestellt und international zum Patent angemeldet. Im Gegensatz zu bereits bekannten Ansätzen, verwendet PGT die endliche Flugzeit der Protonen durch das Gewebe und bestimmt zeitliche Emissionsprofile der prompten Gammas. Ergebnisse Compton Kamera: Die örtliche Emissionsverteilung einer punktförmigen 22-Na Quelle wurde wurde bei einer Photonenenergie von 1.275 MeV nachgewiesen. Dabei konnten sowohl die absolute Quellposition als auch laterale Verschiebungen der Quelle rekonstruiert werden. Da prompte Gamma-Strahlung Emissionsenergien von einigen MeV aufweist, wurde als nächster Schritt ein Bildrekonstruktionstest bei 4.44 MeV durchgeführt. Ein geeignetes Testsetup wurde am Tandetron Beschleuniger am Helmholtz-Zentrum Dresden-Rossendorf, Deutschland, identifiziert, wo eine monoenergetische, punktförmige Emissionverteilung von 4.44 MeV Photonen erzeugt werden konnte. Für die Detektoren des Prototyps wurden zum Einen die örtliche und zeitliche Auflösung sowie die Energieauflösungen untersucht. Zum Anderen wurde die Emissionsverteilung der erzeugten 4.44 MeV Quelle rekonstruiert und die zugehörige Effizienz des Prototyps experimentell bestimmt. PGT: Für das neu vorgeschlagene Messverfahren PGT wurden im Rahmen dieser Arbeit die theoretischen Grundlagen ausgearbeitet und dargestellt. Darauf basierend, wurde ein Monte Carlo (MC) Code entwickelt, welcher die Modellierung von PGT Spektren ermöglicht. Am Protonenstrahl des Kernfysisch Verschneller Institut (KVI), Groningen, Niederlande, wurden zeitaufgelöste Spektren prompter Gammastrahlung aufgenommen und analysiert. Durch einen Vergleich von experimentellen und modellierten Daten konnte die Gültigkeit der vorgelegten theoretischen Überlegungen quantitativ bestätigt werden. Anhand eines hypothetischen Bestrahlungsszenarios wurde gezeigt, dass der statistische Fehler in der Bestimmung der Reichweite mit einer Genauigkeit von 5 mm bei einem Konfidenzniveau von 90 % für einen einzelnen starken Spot 5x10E8 Protonen mit PGT erreichbar ist. Schlussfolgerungen Für den Compton Kamera Prototyp wurde gezeigt, dass eine Bildgebung für Gamma-Energien einiger MeV, wie sie bei prompter Gammastrahlung auftreten, möglich ist. Allerdings erlaubt die prinzipielle Abbildbarkeit noch keine Nutzbarkeit unter therapeutischen Strahlbedingungen nicht. Der wesentliche und in dieser Arbeit nachgewiesene Hinderungsgrund liegt in der niedrigen (gemessenen) Nachweiseffizienz, welche die Anzahl der validen Daten, die für die Bildrekonstruktion genutzt werden können, drastisch einschränkt. PGT basiert, im Gegensatz zur Compton Kamera, auf einem einfachen zeit-spektroskopischen Messaufbau. Die kollimatorfreie Messmethode erlaubt eine gute Nachweiseffizienz und kann somit den statistischen Fehler bei der Reichweitenbestimmung auf ein klinisch relevantes Niveau reduzieren. Die guten Ergebnissen und die ausgeführten Abschätzungen für therapeutische Bedingungen lassen erwarten, dass PGT als Grundlage für eine Bestrahlungsverifiktation in-vivo und in Echtzeit zügig klinisch umgesetzt werden kann.:1. Particle therapy 1.1 Introduction 1.2 The problem of particle range uncertainty 1.3 Currently investigated methods for treatment verification 1.4 Methods for prompt gamma-ray based treatment verification 1.4.1 Prompt gamma-ray imaging (PGI) 1.4.2 Prompt gamma-ray timing (PGT) 2. Physical relations 2.1 Interactions of protons with matter 2.1.1 Stopping of protons 2.1.2 Multiple Coulomb scattering (MCS) 2.1.3 Nonelastic collisions 2.2 Definition of deposited dose and proton range 2.2.1 Definition of dose D 2.2.2 The dose depth Dx , the proton fluence Φ, and the Bragg peak 2.2.3 The particle range 2.3 Production and delivery of proton beams 2.3.1 Acceleration of protons in a isochronous cyclotron 2.3.2 Beam delivery 2.4 Prompt gamma-ray emission 2.4.1 The production of prompt gamma-rays via nonelastic nuclear interactions 2.5 Interactions of photons with matter 2.5.1 Photoelectric absorption 2.5.2 Compton scattering 2.5.3 Pair production 2.5.4 Mass attenuation coefficient μ/ρ 2.6 Detection of photons 2.6.1 Semiconductor detectors 2.6.2 Scintillation detectors 3 Tests of a Compton camera for PGI 3.1 Principle of operation 3.2 Status of preceding work 3.3 Modifications to the existing Compton imaging prototype 3.4 Detectors of the prototype 3.4.1 The CZT scatter plane 3.4.2 The BGO absorber plane 3.4.3 The Compton imaging prototype 3.5 Electronic readout and event generation 3.6 Detector calibration 3.6.1 Calibration of the CZT detector 3.6.2 Calibration of a BGO detector 3.7 Compton imaging at 1.275 MeV photon energy 3.7.1 Imaging setup 3.7.2 Coincident timing 3.7.3 Coincident energy deposition 3.7.4 Image reconstruction 3.8 Compton imaging at 4.44 MeV photon energy 3.8.1 Beam setup at the Tandetron accelerator 3.8.2 Beam tuning at the Tandetron accelerator 3.8.3 The gamma-ray emission yield 3.8.4 Measurement setup 3.8.5 Energy detection 3.8.6 Spatial detection 3.8.7 Coincident timing 3.8.8 Coincident energy deposition 3.8.9 Detection efficiency η 3.8.10 Imaging setup 3.8.11 Image reconstruction 3.9 Implications for a therapeutic Compton imaging scenario 3.10 Summary and discussion 4 Prompt gamma-ray timing (PGT) 4.1 Theoretical description of PGT 4.1.1 Timing of prompt gamma-ray emission 4.1.2 Kinematics of protons 4.1.3 The correlation between spatial and temporal prompt gamma-ray emission in a thick target 4.1.4 Setup for time-resolved measurements of prompt gamma-rays 4.1.5 Uncertainty of the reference time 4.1.6 Standard error of the mean and confidence intervals of statistical momenta 4.1.7 A simplified MC method for the modeling of PGT 4.2 Experimental results 4.2.1 The GAGG detector 4.2.2 Detector energy resolution 4.2.3 Detector time resolution with 60-Co 4.2.4 Energy-resolved detector time resolution - the ELBE experiment 4.2.5 The KVI-CART proton beam line 4.2.6 Time-resolved measurement of prompt gamma-rays 4.2.7 Experimental determination of the system time resolution σ 4.2.8 PGT in dependence of proton transit time 4.3 Towards treatment verification with PGT 4.3.1 MC based PGT in dependence of proton range 4.3.2 MC based PGT at inhomogeneous targets 4.4 Implications for a therapeutic PGT scenario 4.4.1 Range verification for an exemplary PGT setup 4.4.2 Practical restrictions for the therapeutic PGT scenario 4.4.3 Principal limitations of the PGT method 4.5 Summary and outlook 5 Discussion Summary Zusammenfassung Bibliography Acknowledgement

Page generated in 0.126 seconds