• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 79
  • 11
  • 6
  • 4
  • 2
  • Tagged with
  • 112
  • 112
  • 102
  • 23
  • 20
  • 18
  • 18
  • 17
  • 15
  • 15
  • 13
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Scanning Imaging With High Energy Photons

Emre, Eylem 01 November 2003 (has links) (PDF)
An inspection system was required in order to eliminate the difficulties which appear during the inspection of the vehicles according to specific criteria at Turkish Custom Border in a short time and effectively. In this thesis, we performed experiments on such a system to obtain the overall performance of its inspection quality. We firstly give with reasons, why the source of beam is selected as X-ray source. The subsystems of the main system are the accelerator subsystem and detector subsystem. Their structures and working principles are studied in detail by comparing them with their alternatives. Series of experiments are carried out to verify the general performance of system in terms of radiation security and quality of images produced by the system. These experiments were classified as general scan experiment, inspection performance experiment, image quality indicator experiment, radiation safety experiment and general performance experiment. The container inspection system studied and experimented in this thesis is now used effectively in Turkish Customs Boarder, Edirne Kapikule and Edirne ipsala.
62

DEVELOPMENT OF HYBRID-CONSTRUCT BIOPRINTING AND SYNCHROTRON-BASED NON-INVASIVE ASSESSMENT TECHNIQUES FOR CARTILAGE TISSUE ENGINEERING

2015 December 1900 (has links)
Cartilage tissue engineering has been emerging as a promising therapeutic approach, where engineered constructs or scaffolds are used as temporary supports to promote regeneration of functional cartilage tissue. Hybrid constructs fabricated from cells, hydrogels, and solid polymeric materials show the most potential for their enhanced biological and mechanical properties. However, fabrication of customized hybrid constructs with impregnated cells is still in its infancy and many issues related to their structural integrity and the cell functions need to be addressed by research. Meanwhile, it is noticed that nowadays monitoring the success of tissue engineered constructs must rely on animal models, which have to be sacrificed for subsequent examination based on histological techniques. This becomes a critical issue as tissue engineering advances from animal to human studies, thus raising a great need for non-invasive assessments of engineered constructs in situ. To address the aforementioned issues, this research is aimed to (1) develop novel fabrication processes to fabricate hybrid constructs incorporating living cells (hereafter referred as “construct biofabrication”) for cartilage tissue regeneration and (2) develop non-invasive monitoring methods based on synchrotron X-ray imaging techniques for examining cartilage tissue constructs in situ. Based on three-dimensional (3D) printing techniques, novel biofabrication processes were developed to create constructs from synthetic polycaprolactone (PCL) polymer framework and cell-impregnated alginate hydrogel, so as to provide both structural and biological properties as desired in cartilage tissue engineering. To ensure the structural integrity of the constructs, the influence of both PCL polymer and alginate was examined, thus forming a basis to prepare materials for subsequent construct biofabrication. To ensure the biological properties, three types of cells, i.e., two primary cell populations from embryonic chick sternum and an established chondrocyte cell line of ATDC5 were chosen to be incorporated in the construct biofabrication. The biological performance of the cells in the construct were examined along with the influence of the polymer melting temperature on them. The promising results of cell viability and proliferation as well as cartilage matrix production demonstrate that the developed processes are appropriate for fabricating hybrid constructs for cartilage tissue engineering. To develop non-invasive in situ assessment methods for cartilage and other soft tissue engineering applications, synchrotron phase-based X-ray imaging techniques of diffraction enhanced imaging (DEI), analyzer based imaging (ABI), and inline phase contrast imaging (PCI) were investigated, respectively, with samples prepared from pig knees implanted with low density scaffolds. The results from the computed-tomography (CT)-DEI, CT-ABI, and extended-distance CT-PCI showed the scaffold implanted in pig knee cartilage in situ with structural properties more clearly than conventional PCI and clinical MRI, thus providing information and means for tracking the success of scaffolds in tissue repair and remodeling. To optimize the methods for live animal and eventually for human patients, strategies with the aim to reduce the radiation dose during the imaging process were developed by reducing the number of CT projections, region of imaging, and imaging resolution. The results of the developed strategies illustrate that effective dose for CT-DEI, CT-ABI, and extended-distance CT-PCI could be reduced to 0.3-10 mSv, comparable to the dose for clinical X-ray scans, without compromising the image quality. Taken together, synchrotron X-ray imaging techniques were illustrated promising for developing non-invasive monitoring methods for examining cartilage tissue constructs in live animals and eventually in human patients.
63

Stealth nanoparticles for preclinical X-rays imaging and multimodal X-rays/MRI (magnetic resonance imaging) imaging / Nanoparticules furtives pour l'imagerie préclinique à rayons X et multimodale rayons-X/IRM (imagerie à résonance magnétique)

Wallyn, Justine 11 December 2017 (has links)
L’imagerie biomédicale est aujourd’hui un outil essentiel pour établir un diagnostic grâce à l’observation des tissus et des fluides biologiques. L’usage d’instruments à imagerie combinée avec des produits de contraste est la clé pour réussir à distinguer précisément un tissu ciblé via l’accumulation de produit de contraste dans le tissu. Les deux principaux appareils à imagerie utilisés sont le scanner à rayons X et l’imagerie à résonance magnétique (IRM). Ils sont fréquemment employés en complément de l’un et l’autre. Typiquement, de petites molécules iodées hydrophiles sont utilisées comme produit de contraste pour la radiographie à rayons X tandis que l’IRM implique des matériaux magnétiques tels que des nanoparticules d’oxyde de fer. Dans le cadre de ce projet doctoral, nous avons donc proposé deux nouveaux produits de contraste dont le premier visait à constituer une alternative aux produits iodés dont la rapide élimination et la toxicité rénale forment deux problèmes récurrents et un second produit, cette fois-ci bimodale, afin de faciliter les procédures d’imagerie bimodale. Pour le premier point, des nanoparticules de polymères iodés pour l’imagerie à rayons X ont été formulées et ce, par une technique de nanoprécipitation. Les paramètres de formulation ont été élucidés de telle sorte que les nanoparticules possédaient une distribution de taille adaptée pour l’administration par voie intraveineuse et une teneur en iode suffisante en iode pour contraster sous rayons X. Une étude in vivo a révélé le potentiel du produit de contraste à visualiser distinctement le foie et la rate et ce, tout en ne présentant pas les principaux problèmes des produits iodés commerciaux. La seconde étude a eu pour but de formuler des nano-véhicules lipidiques capables de générer un contraste pour l’imagerie à rayons X et l’IRM de par l’incorporation d’huile iodée et de nanoparticules d’oxyde de fer dans le coeur de nano-émulsions. Ceci avait pour objectif de fournir une plateforme nanoparticulaire bimodale pour réaliser efficacement et rapidement des procédures d’imagerie multimodale. Nous avons réussi à produire un efficace agent de contraste bimodal permettant d’observer distinctement le foie et les reins par IRM et le foie et la rate par imagerie à rayons X. La pharmacocinétique de la substance administrée a ainsi pu être mise en avant grâce à la bimodalité de l’agent. Employer l’IRM a permis de montrer qu’une fraction de la dose injectée était éliminée par voie rénale tandis que l’imagerie à rayons X a confirmé que les deux tissus, foie et rate,étaient passivement ciblés par l’agent de contraste. Ces deux études ont donc fournies de potentielles solutions pour répondre aux besoins en produits pour l’imagerie à rayons X et en formulations facilitant l’imagerie bimodale des tissus mous. / Biomedical imaging is nowadays an essential tool to establish a diagnosis by means of observation of tissues and biological fluids. Combination of imaging instrument with contrast enhancers is a key to obtain clear delineation of a desired tissue by accumulation of a contrast agent into this specific target. The two main imagers are the X-ray scanner and the magnetic resonance imaging (MRI).These imagers are frequently used in conjuncture. Typically, small hydrosoluble iodinated molecules are used as contrasting material for radiography whereas MRI involves magnetic materials like iron oxide nanoparticles. In this work, we proposed two novel contrast agents, the first one was aiming to form an alternative to iodinated contrast agents suffering from fast excretion and causing renal toxicity whereas the second one was aiming at providing bimodal contrasting ability to facilitate access to bimodal imaging procedure in clinics. In the first case, iodinated polymeric nanoparticles, serving for preclinical X-ray imaging were formulated by nanoprecipitation technique. Parameters of formulation were elucidated to provide nanoparticles with size distribution suitable for in vivo administration and high iodine content for contrast enhancement. In vivo study revealed the efficacy of our nanoparticles to clearly visualize liver and spleen and limiting current issues associated with marketed radiopaque contrast agents. The second work achieved was aiming at formulating bimodal lipids-based nanocarriers capable of yielding contrast enhancement for X-ray imaging and MRI by combining iodinated oil and iron oxide nanoparticles within a nano-emulsion core. This would provide bimodal nanoparticulate platform to carry out fast and efficient dual modal imaging procedures. In this context we succeeded to generate efficient dual modal contrast agent yielding clear visualization of liver and kidney by MRI and liver and spleen by X-ray imaging. Pharmacokinetic profile was so determined thanks to bimodal imaging. Using MRI allowed to show that kidneys eliminated a fraction of the dose whereas X-ray imaging confirmed that both tissues, liver and spleen, were passively targeted. These two studies proposed solutions limiting current issues of radiopaque contrast agents and novel formulations to facilitate bimodal imaging for soft tissues imaging.
64

X-Ray Near-Field Holography: Beyond Idealized Assumptions of the Probe

Hagemann, Johannes 16 August 2017 (has links)
No description available.
65

EFFECTS OF EMBEDDED INERT AND REACTIVE WIRES AND THEIR TESTING METHODS ON THE DEFLAGRATION DYNAMICS OF AN AMMONIUM PERCHLORATE COMPOSITE PROPELLANT

Usman Ashraf Bajwa (13171308) 28 July 2022 (has links)
<p> Embedding thermally conductive wires in a propellant has been known as an alternative means of increasing the burning rate of the propellant. The wires conduct heat into the propellant, preheating the material surrounding the wire and locally increasing the burning rate around the wire. As the propellant burns, a cone forms around the wire, exposing more burning surface area, which in turn increases the chamber pressure and consequently the bulk burning rate of the propellant. Likewise, embedded reactive wires have been considered in solid propellants for decades. Typically, these wires have been metal-metal reactive materials (intermetalics), but more recently metal-fluoropolymer materials have been considered. These reactive wires are consumable energetic materials that burn faster than the propellant, which allows them to expose more burning surface area by igniting the propellant faster than the burning front can proceed. Some of these reactive wire materials have also been shown to be additively manufacturable, allowing them to be printed in complex geometries, which further increases the tailorability of the burning surface profile. Previous studies on inert wires have largely focused on double base formulations, but few have considered composite propellants. These studies cast the wires against a window in order to visualize the burning that may affect the results. A few studies have also been performed with embedded reactive wires at elevated pressures, again cast against a window, which may have affected the burning dynamics by acting as an additional path for heat loss. This work studied whether the window affected the deflagration dynamics of embedded wire samples by comparing the combustion of windowed samples to full strand samples with propellant surround all sides of the wire and visualized with dynamic X-rays. High purity copper and silver wire were embedded in diameters of 0.405, 0.644, and 0.812 mm (26, 22, and 20 AWG) as inert, thermally conductive wires. A 20 wt. % active nanoscale aluminum and polyvinylidene fluoride reactive wire extruded using a 1.6 mm nozzle was also embedded for comparison to the inert wires. The windowed samples were tested in open air and in a Crawford strand burner at elevated pressures, using a high speed camera to view how the deflagration progressed along the wire against the window. The full strand samples were tested in open air using X-ray radiography to view the cone forming around the embedded wire. A burning rate enhancement was able to be measured from the burning profile around the wire. No statistically significant differences between the average measurements of windowed samples and full strand samples were found except in the case of 20 AWG Ag wire. The burning rate enhancement of the reactive wire was found to increase with increasing pressure, whereas the inert wires showed a decrease in burning rate enhancement. This effect is due to the reaction rate of the reactive wire increasing with pressure, whereas heat conduction along a metal wire is not dependent on pressure. </p>
66

Optimisation du procédé de tomographie X appliqué à la détection des défauts dans les matériaux composites. / Optimization of the X-ray computed tomography applied to the detection of the defects in the composites materials.

Uhry, Cyril 19 September 2016 (has links)
Les matériaux composites à renfort carbone dans une matrice époxy présentent des propriétés remarquables au regard de leur poids. Cependant, ces matériaux peuvent présenter des défauts qui peuvent significativement altérer leurs propriétés. Il est donc nécessaire de disposer d'un moyen de contrôle non destructif performant, afin de vérifier la structure interne de ces matériaux. Dans ce document, la tomographie X est utilisée. La distinction des défauts dans ces matériaux est cependant compliquée à cause de la proximité chimique entre le carbone et la résine. Dans le but d'améliorer la détection de ces défauts, ce document propose l'étude des différents phénomènes physiques entrant en jeu lors du procédé de tomographie X dont l'étude des paramètres d'acquisition et les phénomènes physiques dégradant la qualité de l'image. Afin d'aider à la compréhension des différents phénomènes physiques, l'outil de la simulation est utilisé, celle-ci permettant d'étudier de manière indépendante tous ces phénomènes. Après avoir présenté dans la première section les matériaux composites et la tomographie X, la deuxième section décrit les caractéristiques du système d'acquisition tomographique utilisé. Ensuite, les caractéristiques de la simulation du système d'acquisition sont également présentées. La troisième section propose une étude des différents phénomènes physiques contribuant à l'image. En effet, la comparaison des résultats entre la simulation et l'expérimental a permis de mettre en évidence qu'un phénomène de rétrodiffusion se produit à l'intérieur du détecteur. Un protocole est présenté afin de le déterminer expérimentalement et de l'ajouter aux projections simulées. De plus, la simulation ne prenant pas en compte le bruit sur les projections, un protocole est présenté afin de le déterminer expérimentalement. La quatrième section présente l'étude de l'optimisation de la qualité de l'image par simulation. Le choix de la tension accélératrice est étudié, ainsi que l'influence du rayonnement diffusé objet. La cinquième section propose une validation expérimentale des résultats, notamment en appliquant la correction du rayonnement rétrodiffusé aux pièces composites d'intérêt. / The carbon-fiber-reinforced-polymer (CFRP) materials display excellent properties considering their weight. However, they also can display defects that can significantly decrease their properties. In order to verify the internal structure of the composite materials, non destructive control is required. In this document, the X-ray computed tomography is used. Nevertheless, the distinction of the defects is difficult because of the chemical proximity between the carbon and the resin. In order to improve the detection of the defects, this document proposes to study the different physical phenomena happening during the tomography process such as the study of the acquisition parameters and the phenomena that decrease the image quality. In order to help to understand the different phenomena, the simulation tool is used. It allows to study the different phenomena independently to the others. After the presentation of the composite materials and the x-ray computed tomography in the first part, the features of the used acquisition system are presented in the second part. The features of the simulation of the acquisition system are also presented. The third part propose a study of the different phenomena contributing to the image. The comparison of the results between the simulation and the experimental allows to highlight a backscattering phenomenon happening inside the detector. A protocol allowing to determine these phenomena experimentally and to add it on the computed projections is presented. Furthermore, the simulation does not take the noise on the projection into account. Another protocol is presented, allowing to determine it experimentally. The fourth part displays the study of the optimization of the image quality using the simulation. The choice of the accelerating voltage is studied as well as the influence of the object scatter radiation. The fifth part proposes an experimental validation of the results. Especially, a correction of the backscattering is presented and applied to the composites objects.
67

Traitements numériques pour l’amélioration de la stabilité des détecteurs spectrométriques à fort flux pour l'imagerie X / FPGA-based algorithms for the stability improvement of high-flux X-ray spectrometric imaging detectors.

De cesare, Cinzia 17 October 2018 (has links)
L'apparition des détecteurs à comptage de photons X à base de CdTe avec des capacités de discrimination de l'énergie des photons ouvre de nouvelles perspectives pour l'imagerie radiographique. Les applications médicales et en contrôle de bagages X sont caractérisées par un flux de photons X très élevé, et exigent par conséquent une mise en forme très rapide du photo-courant mesuré pour limiter les empilements. Cependant, si cette mise en forme est plus courte que le temps de transit des électrons dans le semi-conducteur, la charge mesurée devient inférieure à la charge déposée : c’est le déficit balistique. Par ailleurs, la variation dans le temps du profil du champ électrique dans le volume du détecteur entraîne une augmentation du temps de transit des électrons. En conséquence, la charge mesurée diminue dans le temps, faussant la mesure de l’énergie des photons X. L’objectif de ce travail est de caractériser cette instabilité et de développer une méthode de correction de son effet sur les spectres en énergie. Nous avons proposé un algorithme de correction basé sur l'utilisation de deux Lignes à Retard (LAR). Une LAR rapide (50ns ?) permet de mesurer les spectres X à très fort flux sans compromis sur le taux de comptage. Une LAR lente (200ns ?) est utilisée pour mesurer intégralement la charge déposée sans déficit balistique. Un facteur de correction est évalué et utilisé pour stabiliser la mesure de l’énergie des X avec la LAR rapide. Une étape importante de cet algorithme consiste à trier les impulsions traitées pour rejeter celles qui peuvent dégrader la mesure de ce facteur de correction, notamment les empilements. La méthode proposée a été implémentée dans un FPGA pour fonctionner en temps réel et a été testée avec un détecteur CdTe de 3mm d'épaisseur avec 4×4 pixels au pas de 800 microns, capable de mesurer des spectres X dans la gamme d'énergie 20-160 keV avec 256 canaux d'énergie. La méthode développée a été initialement testée à faible taux de comptage avec des sources gamma Co-57 et Am-241, puis à fort taux de comptage jusqu'à ~2 Mc/s avec un tube à rayons X. Cet algorithme innovant a montré sa capacité de fournir une réponse stable du détecteur dans le temps sans affecter la résolution d'énergie (7 % à 122 keV) et le temps mort (~70 ns). / The emergence of CdTe Photon Counting Detectors (PCD) with energy discrimination capabilities, opens up new perspectives in X-ray imaging. Medical and security applications are characterized by very high X-ray fluxes and consequently require a very fast shaper in order to limit dead time losses due to pile-up. However, if the shaper is faster than the collection of the charges in the semiconductor, there is a loss of charge called ballistic deficit. Moreover, variations of the electric field profile in the detector over time cause a change in the collection time of the charges. As a result, the conversion gain of the detector will be affected by these variations. The instability of the response is visible over time as a channel shift of the spectra, resulting in a false information of the photon energy. The aim of this work is to characterize this instability in order to understand the mechanisms behind them and to develop a method to correct its effect. We proposed a correction algorithm based on the use of two Single Delay Line (SDL) shaping amplifiers. A fast SDL is used to measure the X-ray spectra at high count rates with limited count rate losses. A slow SDL is used to measure the full collected charge in order estimate a correction factor for the compensation of the ballistic deficit fluctuations of the fast SDL. An important step is to sort the processed pulses in order to reject pile-up and other undesirable effects that may degrade the measurement of the correction factor. The proposed method was implemented in an FPGA in order to correct the ballistic deficit in real-time and to give a stable response of the detector at very high fluxes. The method was tested with a 4x4 pixels detector (CdTe) of 3 mm thickness and 800 micron pitch, which is able to measure transmitted X-ray spectra in the energy range of 20-160 kV on 256 energy bins. The developed method was initially tested at low count rate with a Co-57 and an Am-241 gamma-ray sources, then at high count rates up to ~2 Mc/s with an X-ray source. With the characterization and the validation of this innovative algorithm we prove its ability in providing a stable response of the detector over time without affecting the energy resolution (~7% at 122 keV) and the dead time (~70 ns).
68

Compatibility of X-ray Tubes with Magnetic Resonance Imaging Scanners for Aortic Valve Replacement

Bracken, John Allan 18 February 2010 (has links)
Aortic stenosis is the most common acquired heart valve condition. Open-heart surgical aortic valve replacement is an effective treatment for patients who receive it. However, approximately one-third of patients who require this treatment do not receive it due to the risks associated with the surgery. Percutaneous aortic valve replacement (PAVR) is a minimally invasive technique that can replace the aortic valve of patients contraindicated for open-heart surgery. Although PAVR is now entering clinical practice, a closed bore hybrid x-ray/MRI (CBXMR) imaging system is under development to improve the safety and efficacy of PAVR. This system will harness the complementary strengths of x-ray imaging (surgical tool/vascular imaging) and MRI (cardiac soft tissue contrast) to deploy a bioprosthesis in the aortic annulus. An x-ray C-arm will be placed about 1 m from the entrance of the MRI scanner to facilitate smooth intermodality patient transfer during the procedure. The performance of a rotating-anode x-ray tube in the magnetic fringe field of a 1.5 T MRI scanner was investigated. A rotating-anode x-ray tube provides the fluoroscopy and angiography needed for PAVR. The magnetic fringe field can affect the ability of the x-ray tube to dissipate heat. It was shown that the fringe field perpendicular to the anode rotation axis can reduce anode rotation frequency. These effects can limit the maximum permissible power that can be safely dissipated on the anode track during a single exposure. In the fringe field strengths at the C-arm position (4-5 mT), anode rotation frequency only decreased by about 1%, which will have negligible impact on tube heat loadability. The fringe field can cause a field of view shift. The field of view shifted by approximately 3 mm, which can be corrected by active magnetic shielding and further collimation. An active magnetic shielding system was constructed that can correct focal spot deflection. These results are facilitating the construction of a prototype CBXMR system, the goal of which is to improve success rates for PAVR procedures.
69

Compatibility of X-ray Tubes with Magnetic Resonance Imaging Scanners for Aortic Valve Replacement

Bracken, John Allan 18 February 2010 (has links)
Aortic stenosis is the most common acquired heart valve condition. Open-heart surgical aortic valve replacement is an effective treatment for patients who receive it. However, approximately one-third of patients who require this treatment do not receive it due to the risks associated with the surgery. Percutaneous aortic valve replacement (PAVR) is a minimally invasive technique that can replace the aortic valve of patients contraindicated for open-heart surgery. Although PAVR is now entering clinical practice, a closed bore hybrid x-ray/MRI (CBXMR) imaging system is under development to improve the safety and efficacy of PAVR. This system will harness the complementary strengths of x-ray imaging (surgical tool/vascular imaging) and MRI (cardiac soft tissue contrast) to deploy a bioprosthesis in the aortic annulus. An x-ray C-arm will be placed about 1 m from the entrance of the MRI scanner to facilitate smooth intermodality patient transfer during the procedure. The performance of a rotating-anode x-ray tube in the magnetic fringe field of a 1.5 T MRI scanner was investigated. A rotating-anode x-ray tube provides the fluoroscopy and angiography needed for PAVR. The magnetic fringe field can affect the ability of the x-ray tube to dissipate heat. It was shown that the fringe field perpendicular to the anode rotation axis can reduce anode rotation frequency. These effects can limit the maximum permissible power that can be safely dissipated on the anode track during a single exposure. In the fringe field strengths at the C-arm position (4-5 mT), anode rotation frequency only decreased by about 1%, which will have negligible impact on tube heat loadability. The fringe field can cause a field of view shift. The field of view shifted by approximately 3 mm, which can be corrected by active magnetic shielding and further collimation. An active magnetic shielding system was constructed that can correct focal spot deflection. These results are facilitating the construction of a prototype CBXMR system, the goal of which is to improve success rates for PAVR procedures.
70

Contributions to the characterization of grating-based x-ray phase-contrast imaging

Chabior, Michael 28 December 2011 (has links) (PDF)
In this work, a characterization and optimization of the grating-based x-ray imaging technique is presented. The investigations are introduced by analytical considerations, are underpinned with numerical simulations and validated using exemplary experiments. A detailed examination of the image formation in a grating interferometer is given, highlighting the dependence of the measured signal on the profile of the gratings. Subsequently, it is shown analytically and in experiments that grating-based imaging can be performed using three basic grating arrangements, which differ in their requirements on grating fabrication and experimental implementation. By a characterization of the measurement signal for each arrangement, a dependence of the signal strength on the sample position within the interferometer is identified. The consecutive evaluation of the impact of this position dependence on radiographic and tomographic data leads to the derivation of optimized reconstruction algorithms and to a correction of resulting image artifacts. Additionally, it is shown that the simultaneous measurement of attenuation and phase images allows the determination of the atomic number of the sample, opening new possibilities for material discrimination. Apart from these investigations on the contrast formation, various imperfections of the technique are investigated: The properties of the image noise are examined in a detailed statistical analysis, yielding a fundamental understanding of the signal-to-noise behavior of the three available contrast channels. Additionally, beam-hardening artifacts at polychromatic x-ray sources are investigated and their correction by a linearization approach is resented. By a subsequent analysis of the influence of various different grating imperfections on the image quality, tolerance limits for grating fabrication are specified. Furthermore, analytical considerations show that gratings with a duty cycle of 1/3 are advantageous with respect to the signal-to-noise ratio in comparison to common gratings with a duty cycle of 1/2. In conclusion, the results, concepts and methods developed in this work broaden the understanding of grating-based x-ray imaging and constitute a step forward towards the practical implementations of the technique in imaging applications.

Page generated in 0.2544 seconds