• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 4
  • 3
  • Tagged with
  • 31
  • 9
  • 8
  • 7
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Forensic Analysis Of C-4 And Commercial Blasting Agents For Possible Discrimination

Steele, Katie 01 January 2007 (has links)
The criminal use of explosives has increased in recent years. Political instability and the wide spread access to the internet, filled with "homemade recipes," are two conjectures for the increase. C-4 is a plastic bonded explosive (PBX) comprised of 91% of the high explosive RDX, 1.6% processing oils, 5.3% plasticizer, and 2.1% polyisobutylene (PIB). C-4 is most commonly used for military purposes, but also has found use in commercial industry as well. Current methods for the forensic analysis of C-4 are limited to identification of the explosive; however, recent publications have suggested the plausibility of discrimination between C-4 samples based upon the processing oils and stable isotope ratios. This research focuses on the discrimination of C-4 samples based on ratios of RDX to HMX, a common impurity resulting from RDX synthesis. The relative amounts of HMX are a function of the RDX synthetic route and conditions. RDX was extracted from different C-4 samples and was analyzed by ESI-MS-SIM as the chloride adduct, EI-GC-MS-SIM, and NICI-GC-MS. Ratios (RDX/HMX) were calculated for each method. An analysis of variance (ANOVA) followed by a Tukey HSD allowed for an overall discriminating power to be assessed for each analytical method. The C-4 processing oils were also extracted, and analyzed by direct exposure probe mass spectrometry (DEP-MS) with electron ionization, a technique that requires less than two minutes for analysis. The overall discriminating power of the processing oils was calculated by conducting a series of t tests. Lastly, a set of heterogeneous commercial blasting agents were analyzed by laser induced breakdown spectroscopy (LIBS). The data was analyzed by principal components analysis (PCA), and the possibility of creating a searchable library was explored.
12

Continuous crystallization of ultra-fine energetic particles by the Flash-Evaporation Process / Cristallisation continue des particules énergétiques ultra-fines par Évaporation-Flash

Risse, Benedikt 04 October 2012 (has links)
Sous l'effet d'une forte impulsion mécanique, d'une chaleur très forte ou d'une décharge électrostatique, un explosif comme le TNT ou le RDX peut accidentellement être initié. L'énergie apportée à l'explosif est convertie en chaleur, appelée point-chaud, dans des endroits spécifiques, contenant des impuretés, bulles de gaz, pores ouverts ou autres hétérogénéités. La taille d'un point-chaud de quelques micromètres peut être déjà suffisante pour initier une déflagration ou même une détonation. En réduisant la taille des particules de l'explosif, la formation des points-chauds est empêchée conduisant à un matériau moins sensible. Au sein de ce travail, un procédé continu est développé, fondé sur le principe de la cristallisation-flash, et permettant la préparation de particules énergétiques submicroniques en quantité de plusieurs grammes. Le procédé repose sur une opération de séchage par atomisation, au cours de laquelle une solution surchauffée est atomisée d'une manière continue. Afin de diminuer la taille moyenne des particules et d'obtenir une distribution de taille des particules très étroite, une étude paramétrique est réalisée. Au moyen de la cristallisation-flash, la préparation de composites énergétiques de haute qualité en grandes quantités est un succès. La qualité et quantité de ce composite énergétique sont uniques. Grâce au potentiel de ce procédé, la cristallisation-flash peut permettre la préparation de nombreuses substances et compositions énergétiques ou inertes / High explosives, such as TNT or RDX, may be accidentally initiated under the influence of a strong mechanical impulse, great heat or an electrostatic discharge. Smallest impurities, open pores, entrapped gases or other inhomogeneities within the explosive matrix may convert the delivered energy into heat, causing the formation of a so called hot-spot. A hot-spot size of a few micrometers can already be sufficient to initiate a deflagration or even a detonation of the explosive. By decreasing the particle size of the explosive, the formation of hot-spots is inhibited, resulting in a less sensitive material. In this work, a continuous operating flash-crystallization process was developed, being able to produce energetic submicron particles in a multigram scale. The process bases on a spray drying process where superheated solutions are continuously atomized. A parametric study was performed on this process in order to decrease the particle size and obtaining a narrower particle size distribution. By means of this flash-crystallization process, highly homogeneous energetic composites were prepared in a large scale. The quality and amount of the energetic composite are unique. The versatility of the flash-crystallization process allows the preparation of a large number of energetic and inert substances and compositions
13

Conception et développement d'un micro détonateur électrique intégrant des nanothermites pour l'amorçage par impact d'explosifs secondaires / Design and development of a micro electrical detonator integrating nanothermites for impact ignition of secondary explosives

Glavier, Ludovic 13 January 2017 (has links)
Les systèmes pyrotechniques sont des éléments clés pour la réussite de la mise en orbite des satellites. Ils permettent de réaliser des fonctions vitales pour la phase de vol d'un lanceur spatial comme l'allumage des moteurs, la séparation d'étages ou la neutralisation. L'actionnement de ces systèmes pyrotechniques nécessite différents effets pyrotechniques comme la génération d'une flamme, d'une grande quantité de gaz et une onde de choc. Ces travaux de thèse interviennent à la suite d'une précédente thèse sur la conception d'un initiateur intelligent et sécurisés permettant de générer une flamme et une grande quantité de gaz mais pas une onde de choc, indispensable dans la réalisation de certaines fonctions pyrotechniques comme la séparation d'étages ou la neutralisation. L'initiateur est piloté par commandes numériques, il dispose d'un stockage local d'énergie, d'une barrière de sécurité mécanique, et d'un PyroMEMS permettant de convertir un signal électrique en un signal pyrotechnique. Cet initiateur est conçu pour remplacer les systèmes pyrotechniques actuellement utilisés sur Ariane 5 car ils sont lourds, encombrants, ils contiennent une grande quantité de substance pyrotechnique augmentant les coûts de fabrication et de stockage, pour finir, les détonateurs et les lignes de transmissions contiennent du plomb dont l'obsolescence est programmé par la réglementation Européenne REACh. L'objectif de ces travaux de thèse est de concevoir et de développer la fonction détonation à partir d'un PyroMEMS contenant moins de 50 µg de nanothermite Al / CuO dans un volume inférieur à 0,83 cm3. Après l'étude des méthodes d'amorçage d'explosif secondaire et de l'état de l'art des détonateurs existant, nous avons conçu une architecture fonctionnant sur la propulsion d'un projectile créant une onde de choc par impact. Le développement de cette fonction détonation a permis d'étudier le comportement de différentes nanothermites (Al / CuO, Al / Bi2O3, Al / MoO3 et Al / PTFE) dans l'optique de propulser le projectile. Un modèle de balistique intérieure est développé avec la combustion de nanothermite Al / Bi2O3 dopé avec du PTFE permettant de conclure qu'il n'est pas possible d'utiliser des nanothermites pour amorcer par impact un explosif secondaire tel que le RDX. Un système de propulsion basé sur la combustion du RDX initié par nanothermite est alors développé avec une étude de l'influence des paramètres dimensionnels. La réalisation d'un démonstrateur final qui permet d'amorcer en détonation du RDX démontre la faisabilité d'un tel dispositif et permet de valider des choix de conception. / Pyrotechnic systems are the keys for satellite launching on orbit. Those systems are used for engines ignition, stage separation and self-destruction. To activate those functions, different kinds of initiators are used to generate a flame, pressure from gas expansion and a shock wave. This work involved following a previous thesis on the design of a smart and safe initiator able to generate a flame and pressure form gas expansion but not a shock wave which is essential in achieving certain functions on launcher as stage separation or neutralization. The initiator is controlled by digital controls, it contain local energy source, a mechanical safety barrier and a PyroMEMS for electro-pyrotechnical conversion. This initiator is design to replace Ariane 5 current pyrotechnic systems because they are heavy, bulky, they contain a large amount of pyrotechnic substance increasing the cost of manufacturing and storage. Also detonators and transmission lines contain lead banned by the European REACh. The goal of these thesis works is to design the detonator function from the flame generated by the PyroMEMS containing 50 µg of Al / CuO nanothermite in a volume less than 0,83 cm3 without primary explosive. After the study of secondary explosive priming methods and the state of art of existing detonators, we designed an architecture running on propelling a projectile creating a shock wave through impact. The development of this detonation function was used to study the behavior of different nanothermites (Al / CuO, Al / Bi2O3, Al / MoO3 and Al / PTFE) with a view to propel the projectile. An interior ballistic model is developed with the combustion nanothermite Al / Bi2O3 doped with PTFE to conclude that it is not possible to use nanothermites to ignite in detonation by impact, by a shock to Detonation Transition) a secondary explosive such as RDX. A propulsion system based on the combustion of RDX initiated by nanothermite is then developed with a study of the influence of dimensional parameters. Achieving a final demonstrator allows to ignite in detonation RDX demonstrates the feasibility of such a device and to validate design choices.
14

Caracterização e quantificação por meio de técnicas FT-IR, HPLC e TG de polímeros utilizados em composições de explosivos plásticos.

Elizabeth da Costa Mattos 09 November 2007 (has links)
Os altos explosivos são ferramentas usadas em diferentes áreas de pesquisa e são componentes críticos em armas convencionais e nucleares. Para se obter mais energia em menor volume, iniciou-se o desenvolvimento dos explosivos plásticos (PBX). Os PBXs foram desenvolvidos para reduzir a sensibilidade do explosivos, e são amplamente usados em ambas as aplicações, civil e militar, onde alta performance seja requerida. Um método para obtenção de cargas explosivas é a prensagem do explosivo coberto por meio de prensa hidráulica, e representa o mais importante processo para manufatura de cargas explosivas de alto desempenho. Como os armamentos podem ser expostos em ambientes térmicos e mecânicos agressivos, é importante caracterizar os PBXs, de modo a conhecer seu comportamento e propriedades. Portanto, contribuindo para a pesquisa de PBXs, foi desenvolvida nesta Tese uma metodologia para caracterizar e quantificar o teor de polímero em PBX por Espectroscopia no Infravermelho com Transformada de Fourier (FT-IR), utilizando-se como técnicas de referência para o método quantitativo, a Cromatografia a Líquido de Alta Performance (HPLC) e a Termogravimetria (TG). A metodologia proposta para a quantificação dos polímeros em PBX usando técnica FT-IR de Reflexão Total Atenuada (ATR) e Universal Reflexão Total Atenuada (UATR) apresentou excelentes resultados, mostrando-se mais rápida que as metodologias usuais e eliminando a desvantagem da geração de resíduos químicos. Tendo-se ainda a destacar que o desenvolvimento desta metodologia FT-IR, incluindo técnicas de análise de superfície, para quantificar polímeros, constitui uma nova linha de pesquisa em nosso Centro de Pesquisa, a qual já está servindo de base para desenvolvimento de novas metodologias aplicadas no setor aeroespacial.
15

Estudo do comportamento de carga oca conica utilizando cone moldado a partir de pós metálicos.

Roméro Guimarães 04 December 2009 (has links)
Muito se tem pesquisado no desenvolvimento e fabricação de dispositivos de perfuração, demolição e militares, utilizando Cargas Ocas ou Shaped Charges, desde o descobrimento do chamado efeito Monroe pelo cientista de mesmo nome; o qual através de suas pesquisas motivou também os pesquisadores da indústria do petróleo a utilizá-lo na prospecção e exploração deste precioso óleo mineral. Mas sempre foi e continuará sendo possível incrementar seu desempenho e isto tem sido feito com sucesso desde o projeto Bazooka, norte americano, no inicio da Segunda Grande Guerra. O trabalho aqui apresentado objetiva estudar o comportamento dos chamados liners ou cones utilizados em cargas ocas do tipo CSC - Conical Shaped Charges, utilizadas para exploração petrolífera, fabricados a partir da compactação de pós metálicos; especificamente combinando o Cobre com Tungstênio e Estanho; processo o qual substituiu na indústria petrolífera, com grande sucesso, os cones fabricados a partir de Cobre eletrolítico, ainda em uso na área militar, fabricados a partir de chapas por repuxo, estiramento, prensados ou até mesmo fundidos. O sucesso desta aplicação prende-se à maior facilidade de fabricação e configuração dos cones, possibilidade do uso de materiais pesados para incremento de energia de perfuração e desempenho similar ou mesmo melhor que os de metal puro. Adicionalmente, produz furos limpos, ou seja, sem resíduo de material do cone, os chamados slugs ou carrots; característica importante para exploração petrolífera.
16

Decomposição térmica de explosivos.

Glaci Ferreira Martins Pinheiro 00 December 2003 (has links)
O mecanismo da decomposição de nitraminas, especialmente do HMX, é complexo e depende das condições experimentais utilizadas. Além disso, com a variedade de métodos de cálculo disponíveis, os valores dos parâmetros cinéticos encontrados na literatura variam numa ampla faixa de valores. Este trabalho visa encontrar a melhor condição experimental e o melhor método de cálculo para obtenção de parâmetros cinéticos baseado na comparação de ensaios realizados com as técnicas DSC e TG nos modos isotérmicos e não-isotérmicos com ensaios de explosão térmica, "slow cookoff", realizados com corpos-de-prova de explosivo PBX contendo 80% de HMX e 20% de ligante poliuretânico na razão de aquecimento de 3C/h. As técnicas DSC e TG são boas ferramentas pois são seguras e permitem variações das condições experimentais. Foi avaliada a influência da granulometria, da quantidade de massa, da razão de aquecimento e da temperatura das isotermas. O método de cálculo mais indicado para obtenção de parâmetros cinéticos é o método isoconversional. Os ensaios de explosão térmica mostraram que a decomposição do PBX/HMX ocorre em quatro etapas. Foi observado que antes da decomposição atingir a etapa final, a reação não se auto-sustenta se a fonte de calor externa for retirada. Após um tratamento térmico até temperaturas em que ocorram degradação parcial, o tempo de indução torna-se menor e a temperatura de explosão foi 20C mais baixa. Baseado nos resultados, recomenda-se que o uso de composições PBX/HMX seja em temperaturas abaixo de 130C.
17

Combustion Modeling of RDX, HMX and GAP with Detailed Kinetics

Davidson, Jeffrey E. 01 January 1996 (has links)
A one-dimensional, steady-state numerical model of the combustion of homogeneous solid propellant has been developed. The combustion processes is modeled in three regions: solid, two-phase (liquid and gas) and gas. Conservation of energy and mass equations are solved in the two-phase and gas regions and the eigenvalue of the system (the mass burning rate) is converged by matching the heat flux at the interface of these two regions. The chemical reactions of the system are modeled using a global kinetic mechanism in the two-phase region and an elementary kinetic mechanism in the gas region. The model has been applied to RDX, HMX and GAP. There is very reasonable agreement between experimental data and model predictions for burning rate, temperature sensitivity, surface temperature, adiabatic flame temperature, species concentration profiles and melt-layer thickness. Many of the similarities and differences in the combustion of RDX and HMX are explained from sensitivity analysis results. The combustion characteristics of RDX and HMX are similar because of their similar chemistry. Differences in combustion characteristics arise due to differences in melting temperature, vapor pressure and initial decomposition steps. A reduced mechanism consisting of 18 species and 39 reactions was developed from the Melius-Yetter RDX mechanism (45 species, 232 reactions). This reduced mechanism reproduces most of the predictions of the full mechanism but is 7.5 times faster. Because of lack of concrete thermophysical property data for GAP, the modeling results are preliminary but indicate what type of experimental data is necessary before GAP can be modeled with more certainty.
18

First-Principles Studies of Energetic Materials

Conroy, Michael W 26 October 2007 (has links)
First-principles density functional theory calculations were performed on a number of important energetic molecular crystals, pentaerythritol tetranitrate (PETN), cyclotetramethylene tetranitramine (HMX), cyclotrimethylene trinitramine (RDX), and nitromethane. Simulations of hydrostatic and uniaxial compressions, as well as predictions of ground-state structures at ambient conditions, were performed using the DFT codes CASTEP and VASP. The first calculations done with CASTEP using GGA-PW yielded reasonable agreement with experiment for the calculated isothermal EOS for PETN-I from hydrostatic compression data, yet the EOS for β -HMX shows substantial deviation from experiment. Interesting anisotropic behavior of the shear-stress maxima were exhibited by both crystals upon uniaxial compression. It was predicted that the <100> direction, the least sensitive direction of PETN, has significantly different values for shear stress maxima τyx and τzx, in contrast to the more sensitive directions, <110> and <001>. In addition, non-monotonic dependence of one of the shear stresses as a function of strain was observed upon compression of PETN in the <100> direction. VASP calculations were later performed, and the results yielded good qualitative agreement with available experimental data for the calculated isothermal EOS and equilibrium structures for PETN-I, β-HMX, α-RDX, and nitromethane. Using VASP, uniaxial compression simulations were performed in the <100>, <010>, <001>, <110>, <101>, <011>, and <111> directions for all crystals up to the compression ratio V/V0 = 0.70. The VASP calculations of PETN reproduced the CASTEP results of significantly different values of τyx and τzx for the insensitive <100> compression, and relatively high and equal values of τyx and τzx for the sensitive <110> and <001> compressions. A correlation between this behavior of shear stress upon uniaxial compression and sensitivity was suggested, and predictions of anisotropic sensitivity of HMX, RDX, and nitromethane were made. Further analysis of the VASP results for PETN do not indicate a correlation between sensitivity and shear stress maxima as a function of longitudinal stress, where longitudinal stress is an appropriate experimental independent variable for comparison. The validity of a correlation between shear stress maxima and sensitivity requires further investigation. Further characterization of the anisotropic constitutive relationships in PETN was performed.
19

Multidimensional Modeling of Solid Propellant Burning Rates and Aluminum Agglomeration and One-Dimensional Modeling of RDX/GAP and AP/HTPB

Tanner, Matthew Wilder 02 December 2008 (has links) (PDF)
This document details original numerical studies performed by the author pertaining to solid propellant combustion. Detailed kinetic mechanisms have been utilized to model the combustion of the pseudo-propellants RDX/GAP and AP/HTPB. A particle packing model and a diffusion flame model have been utilized to develop a burning rate and an aluminum agglomeration model. The numerical model for RDX/GAP combustion utilizes a "universal" gas-phase kinetic mechanism previously applied to combustion models of several monopropellants and pseudo-propellants. The kinetic mechanism consists of 83 species and 530 reactions. Numerical results using this mechanism provide excellent agreement with RDX and GAP burning rate data, and agree qualitatively with RDX/GAP pseudo-propellant data. The numerical model for AP/HTPB combustion utilizes the same universal mechanism, with chlorine reactions added for modeling AP combustion. Including chlorine, there are 106 species and 611 reactions. Global condensed-phase reactions have been developed for six AP percentages between 59% and 80% AP. The AP/HTPB model accurately predicts burning rates, as well as temperature and species profiles. The numerical burning rate model utilizes a three-dimensional particle-packing model to generate cylindrical particle packs. Particle-size distributions have been modeled using a three-parameter lognormal distribution function. Pressure-dependent homogenization has been used to capture pressure effects and reduce cpu time. A "characteristic" burning path is found through each particle pack. Numerical results showed that different path-finding approaches work better depending on the propellant formulation and combustion conditions. Proposed future work and modifications to the present model are suggested. The numerical agglomeration model utilizes the same particle packing model and particle-size distribution function as in the burning rate model. Three preliminary models have been developed examining the ideas of pockets, separation distance, and aluminum ignition. Preliminary model results indicate the importance of predicting aluminum particle ignition. In the final model, the surface is regressed numerically through each particle pack. At each surface location, calculations are performed to determine whether aluminum particles combine and/or ignite. Ignition criteria have been developed from the results of the diffusion flame model and an analysis of particle-pack cross-sections. Numerical results show qualitative agreement with each experimentally observed trend. Proposed future work and modifications to the present model are suggested.
20

The Secret History of RDX: The Super-Explosive that Helped Win World War II

Baxter, Colin F. 23 April 2018 (has links)
During the early years of World War II, American ships crossing the Atlantic with oil and supplies were virtually defenseless against German U-boats. Bombs and torpedoes fitted with TNT barely made a dent in the tough steel plating that covered the hulls of Axis submarines and ships. Then, seemingly overnight, a top-secret, $100 million plant appeared near Kingsport, Tennessee, manufacturing a sugar-white substance called Research Department Explosive (code name RDX). Behind thirty-eight miles of fencing, thousands of men and women synthesized 23,000 tons of RDX each month. Twice as deadly as TNT and overshadowed only by the atomic bomb, this ordnance proved to be pivotal in the Battle of the Atlantic and directly contributed to the Allied victory in WWII.In The Secret History of RDX, Colin F. Baxter documents the journey of the super-explosive from conceptualization at Woolwich Arsenal in England to mass production at Holston Ordnance Works in east Tennessee. He examines the debates between RDX advocates and their opponents and explores the use of the explosive in the bomber war over Germany, in the naval war in the Atlantic, and as a key element in the trigger device of the atomic bomb.Drawing on archival records and interviews with individuals who worked at the Kingsport "powder plant" from 1942 to 1945, Baxter illuminates both the explosive's military significance and its impact on the lives of ordinary Americans involved in the war industry. Much more than a technical account, this study assesses the social and economic impact of the military-industrial complex on small communities on the home front. / https://dc.etsu.edu/etsu_books/1163/thumbnail.jpg

Page generated in 0.0574 seconds