Spelling suggestions: "subject:"rearrangement""
111 |
Caracterização de rearranjos cromossômicos aparentemente equilibrados associados a quadros clínicos / Characterization of apparently balanced chromosomal rearrangements associated with clinical phenotypesFonseca, Ana Carolina dos Santos 17 October 2011 (has links)
Este estudo teve como objetivo identificar mecanismos pelos quais rearranjos cromossômicos aparentemente equilibrados possam estar associados de maneira causal a determinados quadros clínicos. Para isso estudamos seis translocações cromossômicas aparentemente equilibradas, detectadas em pacientes com malformações congênitas, comprometimento neuropsicomotor ou déficit intelectual. Os pontos de quebra desses rearranjos foram mapeados por hibridação in situ fluorescente (FISH). A busca por microdeleções e duplicações genômicas foi realizada por a-CGH. Estudamos duas translocações esporádicas, t(7;17)(p.13;q24) e t(17;20)(q24.3;q11.2), nas quais os pontos de quebra no cromossomo 17 foram localizados, respectivamente, a 917-855 kb e 624-585 kb upstream ao gene SOX9, em segmentos sem genes mapeados. Ambos os portadores apresentavam alterações esqueléticas que indicaram o diagnóstico de displasia campomélica acampomélica. Não foram detectados desequilíbrios cromossômicos submicroscópicos por a-CGH. Essas translocações podem levar à expressão alterada do gene SOX9, ao afetar a região reguladora desse gene. Sequências dos outros cromossomos participantes da translocação, que foram aproximadas ao gene pelo rearranjo, também podem ter afetado sua expressão. O estudo dos rearranjos t(7;17) e t(17;20) forneceu informação para o entendimento da região reguladora do gene. As manifestações clínicas associadas à t(17;20) permitiram redefinir o limite distal do cluster distal de rearranjos do cromossomo 17 associados ao espectro de manifestações clínicas do SOX9. A presença de testículo no portador dessa translocação indicou um elemento conservado candidato a atuar como enhancer do SOX9, para o desenvolvimento do testículo. Duas outras translocações equilibradas estavam associadas a desequilíbrios submicroscópicos em cis aos pontos de quebra. Caracterizamos uma t(10;21)(p13;q22) esporádica associada a atraso do desenvolvimento neuropsicomotor, microcefalia e espasticidade generaliza. Os pontos de quebra dos cromossomos 10 e 21, foram mapeados, respectivamente, em segmentos de 440 kb e 172 kb. Três genes estão mapeados no segmento que contém o ponto de quebra do cromossomo 10 e três outros, no intervalo delimitado para o ponto de quebra no cromossomo 21. O gene CDNF, que pode ter sido interrompido pelo ponto de quebra do cromossomo 10, é altamente expresso no sistema nervoso. A análise por meio de a-CGH detectou quatro deleções no cromossomo 10 todas de novo, indicando a complexidade do rearranjo. Duas deleções estavam próximas ao ponto de quebra: uma deleção de 973 kb em 10p14 e uma outra de 1,15 Mb em 10p13, mapeadas a 3,27 Mb e 210 kb do ponto de quebra da translocação, respectivamente. Outras duas deleções no cromossomo 10 ocorreram no braço longo: uma deleção de 700 kb em 10q26.13 estaria a 110,10 Mb do ponto de quebra da translocação, mas não conseguimos mapeá-la por FISH; uma outra deleção de 1,66 Mb em 10q26.2-q26.3 foi mapeada a 114,68 Mb do ponto de quebra da translocação. Quatorze genes estão localizados nas regiões das microdeleções. Os genes GPR26, OPTN, CUGBP2 são altamente expressos no sistema nervoso e, assim como o CNDF, podem ser considerados candidatos ao efeito fenotípico. O modelo de chromothripsis, em que o rearranjo resulta de uma série de quebras na dupla fita do DNA, seguida de ligação aleatória dos fragmentos resultantes, pode explicar a formação da translocação t(10;21). Aplicando a-CGH no estudo de uma translocação t(X;22)(q22;q13) esporádica, detectamos duplicações de 490 kb e 570 kb, respectivamente, em 22q13 e Xq22. A análise por FISH revelou que as cópias adicionais desses segmentos estavam localizadas nos pontos de quebra dos cromossomos derivativos X (segmento duplicado de 22q13) e 22 (segmento duplicado de Xq22). Não há genes mapeados no segmento duplicado do cromossomo 22. Um dos 14 genes duplicados no cromossomo X é o PLP1 (proteolipid protein 1), cujas mutações de ponto e duplicações causam a doença de Pelizaeus- Merzbacher, caracterizada pela hipomielinização do sistema nervoso central e afetando quase que exclusivamente indivíduos do sexo masculino. O exame neurológico, incluindo ressonância magnética, mostrou que o quadro clínico da paciente é compatível com o da doença de Pelizaeus-Merzbacher. A análise do padrão de inativação do cromossomo X em linfócitos de sangue periférico da paciente, com base na metilação do gene AR e também citologicamente em metáfases, após incorporação de 5-BrdU, revelou que, na maioria das células, o cromossomo X normal está inativo. Esse padrão de inativação torna as células funcionalmente equilibradas quanto aos segmentos translocados. O PLP1, entretanto, tem uma cópia adicional no cromossomo 22, além das cópias localizadas nos cromossomos X e der(X). Portanto, duas cópias ativas do gene estão presentes nas células da portadora da t(X;22). O mecanismo de formação de rearranjos cromossômicos baseado em bolhas de replicação explicaria a formação de translocações com duplicação em ambos os pontos de quebra, como ocorreu nessa t(X;22). Estudamos também uma aparente t(2;22)(p14;q12) familial que cossegregava com quadro de atraso do desenvolvimento neuropsicomotor e dificuldade de aprendizado associados a dismorfismos craniofaciais e alterações de mãos. A identificação de duplicações e deleções submicroscópicas, por meio de a-CGH e sua validação por FISH revelaram que se tratava, na verdade, de rearranjo, complexo entre três cromossomos 2, 5 e 22: um segmento de 1,2 Mb de 2p14 inseriu-se no braço curto do cromossomo 5, um evento que pode ter causado a deleção de um segmento de 1,4 Mb em 5p15.1; no cromossomo derivativo der(22) um segmento adicional de 5q23.2- 23.3 inseriu-se no ponto de quebra. Todos os afetados da família eram portadores do der(2) e do der(22). No entanto, o der(5) não segregava com o quadro clínico e foi detectado em um individuo fenotipicamente normal da família. Todos os afetados eram portadores da duplicação de 6,6 Mb do braço longo do cromossomo 5 (5q23.2-23.3). Os 17 genes duplicados são candidatos para o quadro clínico, por aumento da dosagem de seus produtos. Outra alteração comum a todos os afetados foi a haploinsuficiência do gene SLC1A4 mapeado em 2p14 e altamente expresso no sistema nervoso. É interessante que a deleção em 2p14, consequente à ausência do der(5), está restrita aos dois afetados que aparentam tem maior déficit cognitivo. Além do SLC1A4 , quatro genes mapeados nesse segmento CEP68, RAB1A, ACTR2 e SPRED2 podem contribuir para a variabilidade clínica dos afetados. A translocação t(2;5;22) pode ter-se originado a partir de duas quebras no braço curto do cromossomo 2, duas no braço curto e duas outras no braço longo do cromossomo 5 e uma quebra no braço longo do cromossomo 22. As quebras teriam ocorrido simultaneamente em um único evento. Após reunião de extremidades quebradas, formaram-se os cromossomos derivativos. Investigamos por a-CGH uma t(2;16)(q35;q24.1) esporádica cujos pontos de quebra foram mapeados anteriormente por FISH; nenhum gene estava mapeado nos segmentos que continham esses pontos de quebra. Não detectamos desequilíbrios cromossômicos submicroscópicos. A paciente portadora da translocação t(2;16) tinha quatro dígitos nas duas mãos e hexadactilia nos pés. A cerca de 1 Mb do ponto de quebra do cromossomo 2 está mapeado o gene IHH, que atua no desenvolvimento dos membros. A translocação pode ter interrompido elemento regulador do IHH ou separado o gene de elemento(s) regulador(es), levando à alteração de sua expressão e ao fenótipo. Este estudo fornece evidência adicional da importância da busca de desequilíbrios cromossômicos submicroscópicos em associação com rearranjos aparentemente equilibrados. Em três das seis translocações estudadas - t(10;21), t(2;22), t(X;22) - foram detectados desequilíbrios cromossômicos submicroscópicos em cis aos pontos de quebra, que podem ser responsáveis pelas manifestações clínicas dos portadores. Este estudo ressalta ainda a importância da técnica de FISH na análise dos desequilíbrios cromossômicos detectados por array, permitindo determinar a relação entre as perdas ou ganhos de segmentos submicroscópicos e os rearranjos equilibrados. A caracterização de rearranjos equilibrados neste estudo também contribuiu para sugerir mecanismos para sua formação / This study aimed at identifying mechanisms that lead to phenotypic abnormalities in carriers of balanced chromosomal rearrangements. We studied six apparently balanced chromosomal translocations detected in patients with congenital malformations, intellectual impairment or neuropsychomotor delay. Breakpoint mapping of apparently balanced chromosomal rearrangements was performed by fluorescence in situ hybridization (FISH), and cryptic genomic imbalances were investigated by array comparative genomic hybridization (a-CGH). We studied two sporadic translocations, t(7;17) (p13;q24) and t(17;20) (q24.3,q11.2). The breakpoints were located on chromosome 17, respectively, 917-855 kb and 624-585 kb upstream the SOX9 gene. There are no genes mapped to these segments. Patients had skeletal abnormalities that led to the diagnosis of acampomelic campomelic dysplasia. No submicroscopic chromosomal imbalances were detected by a-CGH. These translocations can alter gene expression by directly disrupting regulatory elements or by a position effect. The translocation t(7;17) and (17;20) provided additional information regarding the regulatory region of SOX9. The clinical manifestations associated with the translocation t(17;20) allowed the redefining of the limits of the distal breakpoint cluster of rearrangements on chromosome 17, which are associated with SOX9-related disorders. A conserved element was identified as a candidate SOX9 enhancer for testis development. Two additional sporadic translocations were associated with submicroscopic imbalances in cis to the breakpoints: t(10;21) and t(X;22). The translocation t(10;21)(p13;q22) was present in a girl with delayed motor development, microcephaly and generalized spasticity. The breakpoints on chromosomes 10 and 21 were mapped to 440 kb and 172 kb segments, respectively. Among the genes mapped to these breakpoint regions, only CDNF on chromossome 10, is highly expressed in the nervous system. Four de novo deletions on chromosome 10 were identified by a-CGH, revealing the complexity of the rearrangement. Two deletions were located at the vicinity of the translocation breakpoint: a 973 kb deletion on 10p14 and a 1.15 Mb deletion on 10p13 located, respectively, 3.27 Mb and 210 kb distal to the translocation breakpoint. Two other deletions were detected on the long arm of chromosome 10: a 700 kb deletion on 10q26.13, located 110.10 Mb distal to the translocation breakpoint, which we could not mapped by FISH; and a 1.66 Mb deletion on 10q26.2-q26.3, located 114.68 Mb distal to the translocation breakpoint. Fourteen genes are mapped to the microdeletion regions. Among these genes, GPR26, OPTN, CUGBP2 are highly expressed in the nervous system and, together with CNDF, are candidates for having clinical effects. The chromothripsis model, in which rearrangements result from a series of simultaneous double-stranded breaks followed by random joining of chromosomal fragments, might explain the formation of this t(10,21) translocation. Applying a-CGH to the apparently balanced translocation t(X;22)(q22;q13) carried by a girl, we detected duplicated segments on 22q13 and Xq22, encompassing 490 kb and 570 kb, respectively. FISH analysis revealed that the additional copies were located to the breakpoints of the derivative X chromosome (22q13 duplicated segment) and of the derivative 22 chromosome (Xq22 duplicated segment). No genes are mapped to the duplicated segment of chromosome 22. One of the 14 duplicated genes on the X chromosome is PLP1 (proteolipid protein 1). PLP1 point mutations and duplications cause Pelizaeus-Merzbacher disease, characterized by hypomyelination of the central nervous system, and affecting almost exclusively males. Neurological examination of the patient, including MRI showed that her clinical manifestations were compatible with Pelizaeus-Merzbacher disease. The pattern of X chromosome inactivation was determined in peripheral blood lymphocytes, based on the AR gene methylation, and cytologically, in metaphases spreads, after 5-BrdU incorporation, and showed that the normal X chromosome was the inactive one in the majority of cells. This pattern of X inactivation makes cells functionally balanced for the translocated segments. A copy of the PLP1 gene, however, is present on chromosome 22, in addition to the copies located on the chromosomes X and der(X). Thus, two active copies of the gene are present in the cells, irrespective of the X-inactivation pattern. A mechanism based on replication bubbles can explain the formation of translocations with duplication at the breakpoints, such as this t(X;22). An apparently balanced familial translocation t(2;22)(p13;q12.2) was detected in association with learning disability and craniofacial and hand dysmorphisms. The combination of a-CGH and FISH revealed that the rearrangement, identified by Gbanding as a two-break balanced translocation, was a more complex three-chromosome rearrangement: a segment from chromosome 2 was inserted into chromosome 5 short arm, an event that probably caused a 5p15.1 deletion; on chromosome 22 a segment from 5q23.2-23.3 was inserted into the breakpoint. Chromosomes der(2) and der(22) were present in all affected individuals. However, the der(5) did not segregate with the clinical phenotype, and was detected in a phenotypically normal individual. The 6.6 Mb duplication of the long arm of chromosome 5 was the imbalance common to all affected individuals. The 17 genes in this region are candidates for the clinical phenotypes through dosage effect. In addition, common to all affected individuals is the haploinsufficiency of SLC1A4, a gene highly expressed in the nervous system, which is encompassed by the deletion on chromosome 2. Interestingly, learning disabilities were more pronounced in those patients who also carried chromosome 2 deletion. CEP68, RAB1A, ACTR2 and SPRED2, mapped to this deleted segment, might contribute to the variability of the clinical phenotype in the family. The translocation t(2;5;22) might have originated from a series of simultaneously occurring brakes, two on the short arm of chromosome 2, four breaks on the short arm and two on the long arm of chromosome 5, and one break on the long arm of chromosome 22. We also investigated by a-CGH a sporadic translocation t(2;16)(q35;q24.1) whose carrier had hand and feet defects. Submicroscopic imbalances were not detected. Previously performed FISH delimited the breakpoints segments on chromosomes 2 and 16, which encompassed no genes. The IHH gene, which is involved in limb development, is located approximately 1 Mb upstream chromosome 2 breakpoint. Therefore, the translocation might have disrupted a regulatory element of IHH or, alternatively, separated the gene from a regulatory region, thus altering IHH expression. This study provides further evidence for the occurrence of submicroscopic chromosomal imbalances in association with apparently balanced rearrangements. In three out of six translocations - t(10,21), t(2;5;22), t(X;22) - cryptic duplications/deletions in cis to the breakpoints were detected, which might account for the clinical manifestations of the patients. This study also highlights the importance of FISH in the analysis of genomic imbalances detected by array in determining how losses and gains of submicroscopic segments relate to the rearranged chromosomes. The characterization of the balanced translocations in this study also contributed to suggest mechanisms for their formation
|
112 |
Normal and pathological mechanisms of TCRα/δ locus rearrangement in thymic lymphopoiesis / Mécanismes de régulation normale et pathologique des remaniements du locus TCRα/δ dans la lymphopoïèse thymiqueCieslak, Agata 28 November 2016 (has links)
La maturation des cellules lymphoïdes T est un processus thymique hautement régulé au cours duquel les réarrangements ordonnés des loci du TCRδ, y, β et enfin α déterminent le développement des lignées yδ et αβ. Les remaniements somatiques des segments géniques V, (D) et J du TCR font intervenir les protéines RAG1/2, les séquences RSS jouxtant ces segments et des éléments régulateurs (enhancers) assurant une cis-régulation de ce processus. Le contrôle de la recombinaison V(D)J se fait grâce à divers mécanismes incluant des mécanismes épigénétiques, l’intervention de facteurs de transcription et la conformation/séquence des RSS. Dans ce travail, nous montrons que les réarrangements du locus TCRδ sont strictement ordonnés chez l’Homme. Le premier réarrangement Dδ2-Dδ3 se produit à un stade ETP (Early T-cell Precursor) CD34+/CD1a-/CD7+dim, et précède systématiquement le réarrangement Dδ2-Jδ1. L’analyse in silico du locus a permis d’identifier un site de fixation clé pour le facteur de transcription RUNX1 à proximité immédiate de l’heptamètre Dδ2-23RSS chez l’Homme mais absent chez la souris. Le recrutement de RUNX1 sur ce site dans les thymocytes très immatures CD34+/CD3- permet d’augmenter l’affinité de fixation des protéines RAG1/2 sur le Dδ2-23RSS de manière spécifique. Ce travail identifie un rôle original de cofacteur de RUNX1 au cours de la recombinaison V(D)J dans la thymopoïèse humaine. Une série d’analyses épigénétiques exhaustives, menées dans le cadre du projet Européen Blueprint, sur les sous-populations thymiques humaines, nous a permis d’établir que l’enhanceosome du TCRα est constitué, comme chez la souris, dès les étapes les plus précoces de la thymopoïèse sans pour autant pouvoir s’activer avant la fin de la β-sélection. Nos résultats préliminaires suggèrent que les protéines homéotiques HOXA (notamment HOXA9) répriment l’activité de l’enhancer alpha (et donc les réarrangements du TCRα en interagissant avec le facteur de transcription ETS1 via leurs homéodomaines. Leur répression, induite par le passage de la β-sélection, aboutit à l’ouverture chromatinienne des segments Vα/Jα via l’activation du TCRα. Ces résultats apportent un éclairage nouveau sur le découplage jusqu’ici inexpliqué entre la formation de l’enhanceosome du TCRα à un stade très immature et son activation, permettant les réarrangements du locus, à un stade thymique bien plus tardif. / Maturation of T lymphoid cells is a highly regulated process where ordered thymic rearrangements at the TCRδ, TCRy, TCRβ and finally TCRα loci determine the development into either yδ or αβ T-cell lineages. Somatic rearrangements of V, (D), and J gene segments of TCR loci involve RAG1/2 proteins, RSS sequences juxtaposing V, D, and J genes segments and regulatory elements (enhancers) providing a cis-regulation of this process. The control of the V(D)J recombination is achieved through various mechanisms including epigenetic modifications, involvement of transcription factors and RSS conformation/sequence. In this work, we show that TCRδ rearrangements are strictly ordered in Humans. The first Dδ2-Dδ3 rearrangement occurs at ETP (Early T-Cell Precursor) stage CD34+/CD1a-/CD7+dim, and always precedes Dδ2-Jδ1 rearrangement. In-silico analysis of the locus identified a key binding site for a transcription factor RUNX1 in close proximity to the Dδ2-23RSS heptamer in human, but not in mice. The RUNX1 recruitment at this site in immature CD34+/CD3- thymocytes increases binding affinity of RAG1/2 proteins. This work identifies an original cofactor of human VDJ recombination. A set of comprehensive epigenetic analysis conducted within the Europeen Blueprint project on human thymic subpopulations allowed as to establish that the TCRα enhanceosome (Eα), as in mice, is already formed from the earliest stages of thymopoiesis without being able to be activated before the end of β-selection. Our preliminary results suggest that HOXA homeobox proteins (including HOXA9) suppress the activity of the Eα (thus TCRα rearrangements) by interacting with the transcription factor ETS1 via their homeodomains. Induced by β-selection HOXA repression results in the chromatin opening of the Vα/Jα gene segments through TCRα activation. These finding shed new light on the so far unexplained shift observed between the formation of Eα enhanceosome at a very immature stages and its activation at a much later developmental stages.
|
113 |
Pesquisa dos mecanismos de rearranjos cromossômicos subteloméricos na monossomia 1p36, expansão do espectro da variabilidade fenotípica e comportamental, diagnósticos diferenciais e caracterização de uma região crítica para obesidade / Research on the mechanisms of subtelomeric rearrangements in monosomy 1p36, extension of the spectrum of phenotypic and behavioral variability, diferential diagnosis and characterization of a critical region for obesityD\'Angelo, Carla Sustek 25 June 2009 (has links)
Rearranjos subteloméricos submicroscópicos são uma causa importante de malformações congênitas múltiplas e retardo mental. Recentemente, os mecanismos de origem de rearranjos subteloméricos começaram a ser investigados. O seqüenciamento dos pontos de quebra de rearranjos cromossômicos em 1p36 revelou predomínio por mecanismos de reparo não exclusivos. Rearranjos constitucionais em 1p36 são as alterações subteloméricas mais comuns e incluem deleções terminais simples, cromossomos derivados, deleções intersticiais e rearranjos complexos. Estes rearranjos resultam em um padrão específico de malformações e distúrbios do desenvolvimento neuropsicomotor que caracterizam a síndrome de monossomia 1p36. Os genes causativos ainda não foram identificados e a expressão fenotípica pode ser em função da haploinsuficiência de genes contíguos ou pelo mecanismo de efeito de posição. Obesidade e hiperfagia são características descritas em ~15% dos casos. Investigamos por MLPA (Multiplex ligation-dependent probe amplification) a presença de rearranjos no segmento cromossômico 1p36 em um grupo de 154 pacientes com obesidade e hiperfagia e testes genéticos negativos para a síndrome de Prader-Willi (PWS), e outro grupo de 83 pacientes encaminhados para estudos cromossômicos por diversos motivos. A estratégia de MLPA utilizada permitiu identificar em nove pacientes diferentes tipos de rearranjos na região subtelomérica 1p36. Para investigar os mecanismos de quebra, reparo e estabilização cromossômica envolvidos em rearranjos subteloméricos, linhagens celulares de seis pacientes contendo rearranjos constitucionais em 1p36 foram desenvolvidas. A clonagem e seqüenciamento das junções dos pontos de quebra de um rearranjo complexo e três translocações não recíprocas identificaram similaridades nas junções que sugerem o reparo por NHEJ (Nonhomologous end-joining) como o mais provável mecanismo de origem destes rearranjos. Duas deleções terminais aparentemente simples também foram investigadas e o refinamento dos pontos de quebra identificou dois intervalos genômicos distintos contendo duplicações segmentares específicas de 1p36 com 90-98% de homologia. Estas duplicações segmentares podem ter estimulado ou sido usadas como substratos no mecanismo de reparo do DNA. Nossos achados reforçam a associação da monossomia 1p36 com obesidade e hiperfagia e sugerem que estas características estejam freqüentemente associadas com fenótipos atípicos/leves e deleções submicroscópicas com 2-3 Mb de extensão. Sugerimos o uso de MLPA como um método alternativo rápido de diagnóstico para detectar e caracterizar rearranjos em 1p36. / Subtelomeric abnormalities are an important cause of mental retardation and birth defects. The mechanisms involved in the formation of subtelomeric rearrangements are now beginning to be elucidated. Breakpoint sequencing analysis of 1p36 rearrangements has revealed prevalence of different nonexclusive recombination-repair mechanisms. Rearrangements of 1p36 are the most frequently detected subtelomeric abnormalities and include different-sized simple terminal deletions, derivative chromosomes, interstitial deletions and complex rearrangements. These rearrangements have been reported to result in the specific pattern of malformation and neurodevelopmental disabilities that characterizes monosomy 1p36 syndrome. Thus far, no genes have been conclusively determined to be causative. Besides, it is still not known if a mechanism of haploinsufficiency or position effect that influences phenotype expression in this commonest terminal deletion syndrome. Obesity and hyperphagia have been reported to occur in ~15% of cases. We have used multiplex ligation-dependent probe amplification (MLPA) to screen for monosomy 1p36 in a group of 154 hyperphagic and obese, PWS negative patients and in a separate group of 83 patients sent to investigate a variety of other conditions. The MLPA strategy used allowed the identification of a diversity of rearrangements in nine subjects. In order to gain further insights into the mechanisms of chromosome breakage, repair, and stabilization mediating subtelomeric rearrangements in humans, we have used cell lines containing constitutional rearrangements of 1p36 of six patients. Cloning of the breakpoint junctions in a complex rearrangement and three non-reciprocal translocations revealed similarities at the junctions that suggest NHEJ as the most likely mechanism of DNA repair that generated these rearrangements. Additionally, two apparently pure terminal deletions were also investigated and the refinement of the breakpoint regions identified two distinct genomic intervals ~25-kb apart, each containing a series of 1p36 specific segmental duplications with 90-98% identity. These segmental duplications might have been stimulated or used as substrate for a recombination-repair mechanism. Our work reinforces the association between monosomy 1p36 and obesity and hyperphagia, and further suggests that these features might be usually associated with an atypical/mild phenotype in addition to a submicroscopic deletion of ~2 to 3 Mb in size. We suggest the use of MLPA as an alternative method for high-throughput detection and delineation of rearrangements at 1p36.
|
114 |
Estudo cromossômico em espécies de Rineloricaria (ACTINOPTERYGII: SILURIFORMES: LORICARIIDAE): diversidade cariotípica e DNAs repetitivosPrimo, Cleberson Cezario 23 February 2015 (has links)
Made available in DSpace on 2017-07-21T19:59:45Z (GMT). No. of bitstreams: 1
Cleberson Cezario Primo.pdf: 3495062 bytes, checksum: 39e96203835221786c05ef8ab3b75523 (MD5)
Previous issue date: 2015-02-23 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The Loricariidae family (Actinopterygii: Siluriformes) is morphologically diverse, has a number close to 900 valid species, distributed in seven subfamilies (Lithogeneinae, Delturinae, Neoplecostominae, Hypoptopomatinae, Loricariinae, Ancistrinae and Hypostominae). However, cytogenetic studies in species of the family show evolutionary trends of karyotype diversification well defined for each of the subfamilies and the diploid number (2n) of 54 chromosomes is considered basal. Among the representatives of the subfamily Loricariinae, the variation of 2n is 36 to 74 chromosomes. Given these data, the Robertsonian rearrangements are the main mechanisms to explain the chromosome number variation in the subfamily. Rineloricaria is the most specious genus of Loricariinae, porting species with 2n = 36 to 2n = 70 chromosomes. However, little is known about what types of repetitive DNAs originate fission and fusion chromosome events. In this study, species of Rineloricaria from different rivers of the Paraná drainage were studied: Rineloricaria latirostris (Laranjinha river, Cinzas basin and Barra Grande river, Ivaí basin); Rineloricaria pentamaculata (Barra Grande and Juruba rivers, Tibagi basin); and, Rineloricaria stellata and Rineloricaria capitonia (Upper Uruguai river). The aim of this study was to characterize the karyotypes of populations/species of Rineloricaria and to check what types of repetitive DNAs may be related to Robertsonian events in the genus. In R. latirostris was detected 2n = 46 chromosomes for both populations, as well as for a triploid specimen from Laranjinha river. Rineloricaria pentamaculata had 2n = 56 chromosomes to populations from Barra Grande and Juruba rivers and a karyomorph in Barra Grande river with 2n = 54 chromosomes. Rineloricaria stellata had 2n = 54 chromosomes, while R. capitonia presented 2n = 64 chromosomes, both from the Uruguai river. The results using the chromosomal markers of 18S rDNA, 5S rDNA and TTAGGGn telomeric probe showed that these repetitive DNAs participated in end to end fusions of the st/a chromosomes in the karyotype diversification of R. latirostris. Vestiges of interstitial telomeric sites (ITS) were also detected in R. pentamaculata, karyomorph of 54 chromosomes from the Barra Grande river, suggesting chromosomal fusion to the diversification of this karyotype. The wide range of 2n between R. stellata and R. capitonia is compatible to the reproductive isolation of syntopic species and the diversification of R. capitonia can be explained by centric fusions. In addition to Robertsonian rearrangements, the pericentric inversions also assisted in the diversification of karyotypic formulas among the species/populations. In situ localization analysis using the transposable element Tc1-Mariner Like probe showed no evidence of the participation of transposon in chromosomal rearrangements and dispersion of multiple sites of 5S rDNA in Rineloricaria. Furthermore, analyzes of the Tc1-Mariner Like sequences showed intense molecular degeneration, especially in transposase domains. These results indicate the absence of activity of these sequences, which must be inert or serve to other genomic functions in the genus. Thus, this study discusses the telomeric instability, repetitive DNAs and the participation of rDNA gene families in karyotype diversification events in Rineloricaria. / A família Loricariidae (Actinopterygii: Siluriformes) é extremamente diversificada morfologicamente, conta com um número próximo a 900 espécies válidas, distribuídas em sete subfamílias (Lithogeneinae, Delturinae, Neoplecostominae, Hypoptopomatinae, Loricariinae, Ancistrinae e Hypostominae). Não obstante, os estudos citogenéticos em representantes da família mostram tendências evolutivas da diversificação cariotípica bem definidas para cada uma das subfamílias, sendo considerado basal o número diploide (2n) de 54 cromossomos. Entre os representantes da subfamília Loricariinae a variação do 2n é de 36 a 74 cromossomos. Diante destes dados, os rearranjos Robertsonianos são os principais mecanismos para explicar a variação cromossômica numérica na subfamília. Rineloricaria é o gênero mais especioso de Loricariinae, com espécies apresentando 2n = 36 até 2n = 70 cromossomos. Contudo, pouco se sabe sobre quais os tipos de DNAs repetitivos originam os eventos de fissão e fusão cromossômica. Neste estudo, foram avaliadas espécies de Rineloricaria de diferentes rios do sistema hidrográfico do Paraná: Rineloricaria latirostris (rio Laranjinha, bacia do rio das Cinzas e rio Barra Grande, bacia do rio Ivaí); Rineloricaria pentamaculata (rio Barra Grande e rio Juruba, bacia do rio Tibagi); e, Rineloricaria stellata e Rineloricaria capitonia (Alto Rio Uruguai). O objetivo foi de caracterizar cariotipicamente as populações/espécies de Rineloricaria estudadas, além de verificar quais os tipos de DNAs repetitivos podem estar relacionados aos eventos Robertsonianos no gênero. Em R. latirostris foi detectado 2n = 46 cromossomos para ambas populações, além de um exemplar triploide para o rio Laranjinha. Rineloricaria pentamaculata apresentou 2n = 56 cromossomos para as populações dos rios Barra Grande e Juruba e um cariomorfo 2n = 54 cromossomos no rio Barra Grande. Rineloricaria stellata apresentou 2n = 54 cromossomos, enquanto R. capitonia detém 2n = 64 cromossomos, ambas do rio Uruguai. Os resultados com marcadores cromossômicos de rDNA 18S, rDNA 5S e sonda TTAGGGn evidenciaram que estes DNAs repetitivos participaram dos eventos de fusão terminal para terminal (end to end fusions) de cromossomos st/a na diversificação cariotípica de R. latirostris. Vestígios de sítios teloméricos intersticiais (ITS) foram evidenciados também em R. pentamaculata, cariomorfo de 54 cromossomos do rio Barra Grande, sugerindo fusão cromossômica para a diversificação deste cariótipo. A ampla variação de 2n entre R. stellata e R. capitonia é compatível para o isolamento reprodutivo das espécies sintópicas e pode ser explicado por fissões cêntricas na diversificação de R. capitonia. Além dos rearranjos Robertsonianos, as inversões pericêntricas também auxiliaram na diversificação de fórmulas cariotípicas entre as espécies/populações. A análise de localização in situ do elemento transponível Tc1-Mariner Like não mostrou evidências da participação deste transposon nos rearranjos cromossômicos e na dispersão dos sítios múltiplos de rDNA 5S em Rineloricaria. Ainda, as análises das sequências Tc1-Mariner Like evidenciaram intensa degeneração molecular, principalmente nos domínios transposase. Estes resultados indicam a ausência de atividade destas sequências, as quais devem ser inertes ou servir para outras funções genômicas no gênero. Desta forma, este estudo discute a instabilidade telomérica, DNAs repetitivos e a participação das famílias gênicas de rDNA nos eventos de diversificação cariotípica em Rineloricaria.
|
115 |
Caracterização de rearranjos cromossômicos citogeneticamente equilibrados associados a quadros clínicos / Characterization of karyotypically balanced chromosomal rearrangements associated with clinical featuresFonseca, Ana Carolina dos Santos 04 March 2016 (has links)
Este estudo teve como objetivos (a) identificar mecanismos pelos quais rearranjos cromossômicos citogeneticamente equilibrados possam estar associados de maneira causal a determinados quadros clínicos e (b) contribuir para a compreensão dos mecanismos de formação desses rearranjos. Para isso, foram estudados 45 rearranjos cromossômicos citogeneticamente equilibrados (29 translocações, 10 inversões e seis rearranjos complexos), detectados em pacientes que apresentavam malformações congênitas, comprometimento do desenvolvimento neuropsicomotor ou déficit intelectual. Foram 31 rearranjos cromossômicos esporádicos, três familiais que segregavam com o quadro clínico e mais 11 rearranjos cromossômicos herdados de genitores fenotipicamente normais. Inicialmente os pontos de quebra desses rearranjos foram mapeados por hibridação in situ fluorescente (FISH). A busca por microdeleções e duplicações genômicas foi realizada por a-CGH. A investigação dos pontos de quebra prosseguiu com a aplicação da técnica de Mate-Pair Sequencing (MPS), que permite localizar as quebras em segmentos de 100 pb - 1 kb, na maioria dos casos. Para obter os segmentos de junção das quebras no nível de pares de bases, os segmentos delimitados por MPS foram sequenciados pelo método de Sanger. A análise por aCGH revelou microdeleções ou microduplicações localizadas nos cromossomos rearranjados, em 12 dos 45 pacientes investigados (27%). A análise de 27 rearranjos por MPS permitiu a caracterização dos pontos de junção das quebras. MPS expandiu o número de pontos de quebra, detectados por análise do cariótipo ou aCGH, de 114 para 156 (em resolução < 2kb, na maioria dos casos). O número de pontos de quebra/rearranjo variou de 2 a 20. Os 156 pontos de quebra resultaram em 86 variantes estruturais equilibradas e outras 32 variantes não equilibradas. Perdas e ganhos de segmentos submiscroscópicos nos cromossomos rearranjados constituíram a principal causa ou, provavelmente, contribuíram para o quadro clínico de 12 dos 45 pacientes. Em cinco desses 12 rearranjos foram detectadas por MPS a interrupção de genes já relacionados à doença, ou provável alteração de sua região reguladora, contribundo para o quadro clínico. Em quatro dos 33 rearranjos não associados a perdas ou ganhos de segmentos, a análise por MPS revelou a interrupção de genes que já foram anteriormente relacionados a doenças, explicando-se, assim, as características clínicas dos portadores; outro rearranjo pode ter levando alteração da expressão gênica de gene sensível a dosagem e ao quadro clínico. Um rearranjo cromossômico familial, identificado na análise após bandamento G como uma translocação equilibrada, t(2;22)(p14;q12), segregava com quadro de atraso do desenvolvimento neuropsicomotor e dificuldade de aprendizado associados a dismorfismos. A combinação das análises por FISH, aCGH e MPS revelou que se tratava, na verdade, de rearranjo complexo entre os cromossomos 2, 5 e 22, incluindo 10 quebras. A segregação de diferentes desequilíbrios submicroscópicos em indivíduos afetados e clinicamente normais permitiu a compreensão da variabilidade clínica observada na família. Rearranjos equilibrados detectados em indivíduos afetados, mas herdados de genitores clinicamente normais, são, em geral, considerados como não tendo relação com o quadro clínico, apesar da possibilidade de desequilíbrios cromossômicos gerados por permuta desigual na meiose do genitor portador do rearranjo. Neste trabalho, a investigação de 11 desses rearranjos por aCGH não revelou perdas ou ganhos de segmentos nos cromossomos rearranjados. No entanto, a análise por aCGH da portadora de um desses rearranjos - inv(12)mat - revelou deleção de 8,7 Mb no cromossomo 8, como causa de seu fenótipo clínico. Essa deleção estava relacionada com outro rearranjo equilibrado também presente em sua mãe, independente da inversão. Para compreender os mecanismos de formação de rearranjos citogeneticamente equilibrados, investigamos os segmentos de junção no nível de pares de base. A análise por MPS que levou, na maioria dos casos, ao mapeamento dos pontos de quebras em segmentos <1kb permitiu o sequenciamento pelo método de Sanger de 51 segmentos de junções de 17 rearranjos. A ocorrência de blunt fusions ou inserções e deleções <10 pb, e a ausência de homologia ou a presença de micro homologia de 2 pb a 4 pb de extensão indicaram o mecanismo de junção de extremidades não homólogas (non-homologous end joinging; NHEJ), na maioria das 51 junções caracterizadas. As características de três dos quatro rearranjos mais complexos, com 17-20 quebras, indicaram sua formação pelo mecanismo de chromothripsis. Este estudo mostra a importância da análise genômica de variações de número de cópias por microarray, juntamente com o mapeamento dos pontos de quebra por MPS, para determinar a estrutura de rearranjos cromossômicos citogeneticamente equilibrados e seu impacto clínico. O mapeamento dos segmentos de junção por MPS, permitindo o sequenciamento pelo método de Sanger, foi essencial para a compreensão de mecanismos de formação desses rearranjos / This study aimed at (a) identifying causative mechanisms of clinical features in carriers of karyotypically balanced chromosomal rearrangements (BCRs), and (b) disclosing the mechanisms of formation of these chromosomal rearrangements. Forty-five BCRs - 29 translocations, 10 inversions and six complex rearrangements, detected in patients with intellectual disability, developmental delay and/or congenital malformations were investigated. Thirty-one rearrangements were de novo, three were familial and segregated with the clinical phenotype, and 11 BCRs were inherited from phenotypically normal parents. Initially, the breakpoints of the rearrangements were mapped by using fluorescence in situ hybridization (FISH), and the presence of cryptic genomic imbalances was investigated by array comparative genomic hybridization (a-CGH). Breakpoint-containing segments were narrowed down to approximately 100 pb - 1 kb, by using NGS-based mate-pair-sequencing (MPS). In order to investigate breakpoint junctions at the nucleotide level, breakpoint segments delimited by MPS were Sanger sequenced. De novo microimbalances on the rearranged chromosomes were detected by aCGH in 12 out of the 45 patients investigated (27%). MPS of 27 BCRs expanded the number of breakpoints, previously detected by karyotyping and aCGH, from 114 to 156 (breakpoint resolution < 2 kb, in most cases). The number of breakpoints/BCR ranged from 2 to 20. The 156 breakpoints resulted in 86 balanced and 32 unbalanced sample-specific structural variations (SVs). In 12 out of the 45 patients investigated by aCGH, microimbalaces on the rearranged chromosomes were responsible or likely contributed to the clinical features observed in the carriers. In five of these 12 rearrangements, truncated known disease genes or their regulatory regions also contributed to the clinical phenotype. MPS analysis revealed four out of the 33 rearrangements not associated with microimbalaces, truncated known disease genes, thus explaining clinical features of carriers. Another balanced rearrangement might have truncated the regulatory region of a dosage sensitive gene, thus disturbing gene expression and leading to the clinical features of the carrier. A karyotypically balanced translocation t(2;22)(p13;q12.2) associated with variable learning disabilities and dysmorphisms, was detected in six individuals in a three-generation family. Combined a-CGH, FISH and MPS revealed a ten-break complex rearrangement, also involving chromosome 5. As the consequence of the segregation of the derivative chromosomes der(2), der(5) and der(22), different microimbalances were present in affected and clinically normal family members, thus contributing to the clinical variability. Although, historically, BCRs inherited from phenotypically normal parents have not been considered as causally associated with clinical features of carriers, cryptic microimbalances on the rearranged chromosome have been reported that explained the clinical features of the affected carriers. In 11 such inherited BCRs ascertained through affected individuals, which were investigated in this work by using aCGH, no microimbalances were detected on the chromosomes involved. However, aCGH analysis in an affected girl, who carried an inv(12)mat, detected a likely pathogenic 8.7 Mb deletion on chromosome 8. This deleted chromosome derived from another maternal balanced rearrangement, not related to the inversion. In order to investigate mechanisms of BCR formation, breakpoint junctions, mapped at intervals of approximately 1 kb by MPS, were narrowed down to the nucleotide level by Sanger sequencing. Fifty-one breakpoint junctions (BPJs) from 17 BCRs (nine translocations, three inversions and five complex rearrangements) were sequenced. The occurrence of blunt fusions or <10 bp deletions, insertions or duplications in the majority of the 51 BPJs, and the absence of homology or the presence of just 2 bp to 4 bp microhomology indicated non-homologous end joining (NHEJ). In three of the four most complex BCRs (17 to 20 breaks) indicated chromothripsis as the mechanism underlying their formation. This study illustrates the importance of combining copy number variation analysis by microarray and breakpoint mapping by MPS, to determine the structure of karyotypically balanced chromosomal rearrangements, and to unravel their clinical impact. Mapping the breakpoint-junctions by MPS, followed by Sanger sequencing, was fundamental to determine the mechanism of formation of these rearrangements
|
116 |
Structure and conformational rearrangements during splicing of the ribozyme component of group II introns / Structure et réarrangements conformationnels au cours de l’épissage du composant ribozyme d’un intron de groupe IILi, Cheng-Fang 27 June 2011 (has links)
Les introns de groupe II forment une classe d’ARN connus avant tout pour leur activité ribozymique, qui leur permet de catalyser leur propre réaction d’épissage. Sous certaines conditions, ces introns peuvent s’exciser des ARN précurseurs dont ils font partie et assurer la ligation des exons qui les bordent sans l’aide d’aucune protéine. Les introns de groupe II sont généralement excisés sous forme d’un lariat, semblable à celui formé par les introns des prémessagers nucléaires, dont l’épissage est assurée par le spliceosome. De telles similarités dans le mécanisme d’épissage suggèrent que les introns de groupe II et les introns des prémessagers nucléaires pourraient avoir un ancêtre évolutif commun.Malgré leurs séquences très diverses, les introns de groupe II peuvent être définis par une structure secondaire commune, hautement conservée. Celle-ci est formée de six domaines (domaine I à domaine VI ; D1-D6), émergeant d’une roue centrale. L’épissage des introns de groupe II comprend deux étapes, et autant de réactions de transestérification, qui produisent les exons liés et l’intron excisé sous forme lariat. Il est généralement admis que la structure du ribozyme subit des changements conformationnels entre les deux étapes de l’épissage et que le domaine VI est un acteur clé dans ce phénomène. Cependant, malgré l’identification d’un certain nombre d’interactions tertiaires entre domaines, ni la RMN, ni les études faisant appel à des modifications chimiques ne sont parvenues à déterminer l’environnement immédiat, au niveau du site actif du ribozyme, de l’adénosine qui sert de point de branchement de la structure en lariat, ainsi que des nucléotides qui entourent cette adénosine au sein du domaine VI. A l’aide d’analyses phylogénétiques et d’une modélisation moléculaire tridimensionnelle, nous avons identifié plusieurs sections du ribozyme susceptibles de constituer le site de fixation du domaine VI au cours de l’étape de branchement. Des mutations ont été introduites dans ces sites de fixation potentiels et la cinétique de réaction des ARN mutants résultants a été déterminée. Afin de démontrer formellement l’interaction du domaine VI avec le site récepteur le plus probable, une molécule de ribozyme dont la réaction de branchement est assurée par l’addition d’oligonucléotides ADN ou ARN qui positionnent correctement le domaine VI vis-à-vis de son partenaire a été construite. En combinant l’information apportée par différentes expériences de ce type, nous avons pu générer un modèle à résolution atomique du complexe formé par le domaine VI, son site de branchement et le reste de l’intron au moment où l’épissage est initié. / Group II introns are a class of RNAs best known for their ribozyme-catalyzed, self-splicing reaction. Under certain conditions, the introns can excise themselves from precursor mRNAs and ligate together their flanking exons, without the aid of proteins. Group II introns generally excise from pre-mRNA as a lariat, like the one formed by spliceosomal introns, similarities in the splicing mechanism suggest that group II introns and nuclear spliceosomal introns may share a common evolutionary ancestor.Despite their very diverse primary sequences, group II introns are defined by a highly conserved secondary structure. This generally consists of six domains (Domain I-Domain VI; D1-D6) radiating from a central wheel. Each of the six intronic domains has a specific role in folding, conformational rearrangements or catalysis. The native conformation of a group II intron is sustained by intra- and interdomain long-range tertiary interactions, which are critical either for folding of the intron to the native state or for its catalytic activity. In brief, Domain V interacts with Domain I to form the minimal catalytic core; Domain VI contains a highly conserved bulged adenosine serving as the branch-point nucleotide. DII and Domain III contribute to RNA folding and catalytic efficiency. Domain IV, which encodes the intron ORF, is dispensable for ribozyme activity.Group II intron splicing proceeds through two step transesterification reactions which yield ligated exons and an excised intron lariat. It is initiated by the 2’-hydroxyl group of the bulged adenosine within Domain 6, which serves as a branch point and attacks the phosphate at the 5’-end of the intron, thus releasing the 5’-exon while forming a lariat structure in the first step. The released 5’-exon, which is bound to the intron through base pairing interactions, is then positioned correctly to attack the 3’-splice site with its free 3’-OH in the second step of splicing. It is generally believed that the structure of a group II ribozyme undergoes conformational rearrangements between first step and second step and domain VI must play a central role in the process. However, despite the identification of several interdomain tertiary interactions, neither NMR nor chemical probing studies have been successful in determining the local surroundings of the branch-point adenosine and neighboring domain VI nucleotides in the ribozyme active site. By using phylogenetic analysis and molecular modelling, we have identified several areas of the molecule which have the potential to constitute the docking site of domain VI. Mutations were introduced in putative binding sites and the resulting, mutant RNAs have been kinetically characterized. This has allowed us to identify a site within the ribozyme that appears to be specifically involved in the branching reaction. In order to further investigate the interaction between that site and domain VI, we set up a system in which the docking of domain VI into its presumed binding site is ensured by the addition of DNA/RNA oligos that position the two RNA elements in an appropriate orientation. By combining the information from such experiments, we have built an atomic-resolution model of the complex formed by domain VI, the branch site and the rest of the intron at the time at which splicing is initiated.
|
117 |
Contribution des polymorphismes d'insertions à la stérilité des hybrides chez Paramecium tetraurelia / Contribution of insertion polymorphisms to hybrid sterility in Paramecium tetraureliaPellerin, Guillaume 31 March 2017 (has links)
Comme tous les ciliés, P. tetraurelia réarrange son génome à chaque génération sexuelle pendant le développement de son macronoyau somatique ¿ partir du micronoyau germinal. Les réarrangements incluent l’excision précise de courtes séquences dérivant de transposons et appelés IES (Internal Eliminated Sequences) dont la majorité sont intragéniques. L’excision d’une fraction d’entre elles dépend de petits ARN maternels (appelés scnARN) qui sont produits à partir de tout le génome germinal pendant la méiose. Ce mécanisme pose un problème lors d’une conjugaison entre deux souches présentant des polymorphismes d’insertion : une cellule sera théoriquement incapable d’exciser une IES portée par l’allèle paternel reçu si cette IES est absente de l’allèle maternel ou si la séquence est trop divergente. Mes résultats montrent cependant que les allèles paternels divergents sont correctement excisés en utilisant les scnARN produit par la cellule paternelle. Dans le cas d’un polymorphisme absence/présence, l’IES que j’ai étudié est excisée chez 70 % des hétérozygotes F1, également via les scnARN paternels. Nous avons exploré deux hypothèses pour expliquer comment ils pouvaient agir. Il pourrait s’agir d’une programmation précoce des noyaux gamétiques ou alors d’un échange cytoplasmique des scnARN. Finalement, j’ai montré qu’un défaut de scnARN maternels n’est pas une cause possible de dysgénésie hybride. Cependant, 30 % des hétérozygotes F1 présentent une rétention variable de l’IES étudié via un mécanisme inconnu. Si cela est généralisable à toutes les IES homozygotes, alors ce mécanisme aurait un effet délétère sérieux sur les F1 et pourrait contribuer à l’isolement reproductif. / Like all ciliates, P. tetraurelia entirely rearranges its genome during development of the somatic macronucleus from the germline micronucleus, in each sexual generation. Rearrangements include the precise excision of IESs (Internal Eliminated Sequences), single-copy intervening sequences likely derived from transposon insertions. At least for a fraction of IESs, correct excision, which is required to reconstitute functional genes in the macronucleus, is thought to depend on their recognition by Piwi-bound small RNAs (called scnRNAs) produced from the maternal germline genome during meiosis. This raises a problem during conjugation between strains presenting insertion polymorphisms: a cell will be theoretically unable to excise an IES from the incoming (paternal) allele if that IES is absent from the maternal allele, or if its sequence is too divergent. Our results, however, indicate that divergent paternal alleles are correctly rearranged, using scnRNAs produced by the paternal cell. In the case of an absence/presence polymorphism, the IES we studied is excised in 70% of heterozygotes, also using paternal scnRNAs. We explored two hypotheses to explain how they can act. It could be either an early programming of the gametic nuclei or through cytoplasmic exchange of scnRNAs. My results seem to favor the latter. Overall, I showed that the lack of maternal scnRNAs is not a possible cause of hybrid dysgenesis. However, 30% of heterozygous F1 display a variable retention of the IES through an unknown mechanism. If this is true for all hemizygous IESs then it will have a strong deleterious effect on hybrid F1s and may contribute to reproductive isolation.
|
118 |
Embedding Theorems for Mixed Norm Spaces and ApplicationsAlgervik, Robert January 2008 (has links)
<p>This thesis is devoted to the study of mixed norm spaces that arise in connection with embeddings of Sobolev and Besov type spaces. The work in this direction originates in a paper due to Gagliardo (1958), and was continued by Fournier (1988) and by Kolyada (2005).</p><p><p><p>We consider fully anisotropic mixed norm spaces. Our main theorem states an embedding of these spaces into Lorentz spaces. Applying this result, we obtain sharp embedding theorems for anisotropic fractional Sobolev spaces and anisotropic Sobolev-Besov spaces. The methods used are based on non-increasing rearrangements and on estimates of sections of functions and sections of sets. We also study limiting relations between embeddings of spaces of different type. More exactly, mixed norm estimates enable us to get embedding constants with sharp asymptotic behaviour. This gives an extension of the results obtained for isotropic Besov spaces $B_p^\alpha$ by Bourgain, Brezis, and Mironescu, and for Besov spaces $B^{\alpha_1,\dots,\alpha_n}_p$ by Kolyada.</p><p>We study also some basic properties (in particular the approximation properties) of special weak type spaces that play an important role in the construction of mixed norm spaces and in the description of Sobolev type embeddings.</p></p></p>
|
119 |
Embedding Theorems for Mixed Norm Spaces and ApplicationsAlgervik, Robert January 2008 (has links)
This thesis is devoted to the study of mixed norm spaces that arise in connection with embeddings of Sobolev and Besov type spaces. The work in this direction originates in a paper due to Gagliardo (1958), and was continued by Fournier (1988) and by Kolyada (2005). We consider fully anisotropic mixed norm spaces. Our main theorem states an embedding of these spaces into Lorentz spaces. Applying this result, we obtain sharp embedding theorems for anisotropic fractional Sobolev spaces and anisotropic Sobolev-Besov spaces. The methods used are based on non-increasing rearrangements and on estimates of sections of functions and sections of sets. We also study limiting relations between embeddings of spaces of different type. More exactly, mixed norm estimates enable us to get embedding constants with sharp asymptotic behaviour. This gives an extension of the results obtained for isotropic Besov spaces $B_p^\alpha$ by Bourgain, Brezis, and Mironescu, and for Besov spaces $B^{\alpha_1,\dots,\alpha_n}_p$ by Kolyada. We study also some basic properties (in particular the approximation properties) of special weak type spaces that play an important role in the construction of mixed norm spaces and in the description of Sobolev type embeddings.
|
120 |
Minimal Residual Disease Assessment in Childhood Acute Lymphoblastic LeukemiaThörn, Ingrid January 2009 (has links)
Traditionally, response to treatment in hematological malignancies is evaluated by light microscopy of bone marrow (BM) smears, but due to more effective therapies more sensitive methods are needed. Today, detection of minimal residual disease (MRD) using immunological and molecular techniques can be 100 times more sensitive than morphology. The main aim of this thesis was to compare and evaluate three currently available MRD methods in childhood acute lymphoblastic leukemia (ALL): (i) real-time quantitative PCR (RQ-PCR) of rearranged antigen receptor genes, (ii) multicolor flow cytometry (FCM) of leukemia-associated immunophenotypes and (iii) real-time quantitative PCR of fusion gene transcripts (RT-PCR). In paper I, we assessed the applicability of RQ-PCR in a population-based cohort of childhood ALL diagnosed in Sweden between 2002-2006. Clonal IG/TCR rearrangements were identified in the 96% of the 279 ALL cases. Using RQ-PCR, the quantitative range of 10-3 was reached in 93% of B-cell precursor (BCP) ALL and 86% of T-cell ALL (T-ALL) by at least one target gene. In paper II, we compared MRD detection using both RQ-PCR and FCM in the context of NOPHO ALL-2000 protocol. By applying the stratification threshold of ≥0.1% MRD late during induction therapy (day 29), we could demonstrate that both methods can predict the risk of BM relapse but not extramedullary relapse. However, the threshold of ≥0.2% MRD appears to be more optimal using RQ-PCR in BCP ALL, whilst in T-ALL, the results indicate that RQ-PCR is preferable for MRD assessment. The stability of RNA in vitro is a critical factor when using sensitive molecular techniques such as MRD detection. In paper III, we evaluated the influence on MRD detection when blood is collected in tubes with RNA stabilization reagents (PAX gene Vacutatiner®) compared to collection in EDTA-tubes (non-stabilized). We analyzed 68 matched samples from chronic myeloid leukemia patients and the results indicated that non-stabilized blood processed within 30 hours is preferable for MRD detection. In paper IV, follow-up samples from eight children with Philadelphia positive (Ph+) ALL were evaluated with the three available MRD methods. MRD measured by the fusion gene transcripts (BCR-ABL1) appeared to be the most sensitive method, however, precise quantification can be difficult and the other methods are thus complementary. In conclusion, all three applied MRD methods are useful and correlate to each other, although not necessary exchangeable in individual patients. We also conclude that MRD assessment by RQ-PCR, based on rearranged IG/TCR genes and multicolor FCM are predictive for identification of high risk childhood ALL patients.
|
Page generated in 0.093 seconds