• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 313
  • 89
  • 51
  • 43
  • 40
  • 15
  • 14
  • 13
  • 9
  • 7
  • 7
  • 4
  • 4
  • 3
  • 2
  • Tagged with
  • 716
  • 97
  • 86
  • 75
  • 72
  • 70
  • 62
  • 61
  • 59
  • 58
  • 57
  • 57
  • 56
  • 56
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

High performance RF and baseband building blocks for wireless receivers

Bahmani, Faramarz 17 September 2007 (has links)
Because of the unique architecture of wireless receivers, a designer must understand both the high frequency aspects as well as the low-frequency analog considerations for different building blocks of the receiver. The primary goal of this research work is to explore techniques for implementing high performance RF and baseband building blocks for wireless applications. Several novel techniques to improve the performance of analog building blocks are presented. An enhanced technique to couple two LC resonators is presented which does not degrade the loaded quality factor of the resonators which results in an increased dynamic range. A novel technique to automatically tune the quality factor of LC resonators is presented. The proposed scheme is stable and fast and allows programming both the quality factor and amplitude response of the LC filter. To keep the oscillation amplitude of LC VCOs constant and thus achieving a minimum phase noise and a reliable startup, a stable amplitude control loop is presented. The proposed scheme has been also used in a master-slave quality factor tuning of LC filters. An efficient and low-cost architecture for a 3.1GHz-10.6GHz ultra-wide band frequency synthesizer is presented. The proposed scheme is capable of generating 14A novel pseudo-differential transconductance amplifier is presented. The proposed scheme takes advantage of the second-order harmonic available at the output current of pseudo-differential structure to cancel the third-order harmonic distortion. A novel nonlinear function is proposed which inherently removes the third and the fifth order harmonics at its output signal. The proposed nonlinear block is used in a bandpass-based oscillator to generate a highly linear sinusoidal output. Finally, a linearized BiCMOS transconductance amplifier is presented. This transconductance is used to build a third-order linear phase low pass filter with a cut-off frequency of 264MHz for an ultra-wide band receiver. carrier frequencies.
52

Study and Implementation of DVB-T Receiver RF Module with Frequency Control Circuit Function

Chung, Nan-Hsiang 22 January 2008 (has links)
This thesis consists of two parts. The first part includes design and implementation of an RF tuner module for DVB-T receiver applications. The RF tuner module adopts single-conversion architecture and has a variable gain range of more than 60 dB. After improving the tracking filter characteristics, the module can achieve an image rejection of 60 dB. The second part is focused on DVB-T RF specification test for the implemented RF tuner module. This test uses the instruments accepted by DVB association to perform the standard measurement procedure. The measured sensitivity of the module is about -86 dBm, which has good ability to receive DVB-T signal in practical environment.
53

A Study on Receiver Design in the Ultra-Wide Band Channels

Chiu, Chih-hsien 12 September 2008 (has links)
Ultra-wideband (UWB) system is an indoor communication system, high data rate transmission within 5-10m transmitted range. This system suffers from high dense multipath channels impairment. If the spreading code is not orthogonal in dense multipath channels, severe inter-symbol interference (ISI) will degrade the system performance. In this thesis, we will discuss the performance of various receivers in ultra-wideband channels. Rake receiver can collect signal energy from different multipath. However, the imperfect orthogonal property of spreading code will cause severe ISI and degrade the performance of Rake receiver. Least mean square (LMS) chip equalizer not only combines the energy from different multipath, but also suppresses ISI. But, the complexity is too high to realize. In this thesis, we combine Rake receiver with ISI canceller to enhance system performance. If the canceller is before Rake receiver, we define it as ISIC RAKE. If the canceller is behind Rake receiver, we define it as RAKE ISIC. In the ISI canceller, not only ISI caused by preceding bits is cancelled, but also the ISI caused by following bit is cancelled. In multiuser cases, we are also canceling multi-access interference (MAI). From simulation results, the proposed method outperforms conventional Rake receiver, Rake receiver combined with LMS symbol equalizer, and LMS chip equalizer. The complexity of proposed method is lower than LMS chip equalizer.
54

Circuit Design of DS Spread Spectrum Receiver

Kuo, Che-Yu 09 September 2009 (has links)
Traditionally in CDMA system, selective rake receiver is the popular method of detection. When used in DS-UWB system, the complex in door environment will increase the channel paths. As the channel paths increase, the more fingers which are part of Rake receiver will increase. It will be difficult for hardware implement when consider the operation of channel estimation and Rake receiver. And it is unfavorable for hardware design. In this thesis, we will use partial Rake receiver to replace selective Rake receiver. Channel estimation is implemented by template the receiver signals within 2 bit time window length. The performance is acceptable and the hardware complexity is reduced. When implement the channel estimation, we combine some blocks of acquisition and channel estimation for reducing hardware complexity.
55

Mapping the Rivera and Cocos subduction zone

Suhardja, Sandy Kurniawan 11 March 2014 (has links)
The crust and upper mantle seismic structure beneath southwestern Mexico was investigated using several techniques including teleseismic tomography using 3D raytracing, a joint tomographic inversion of teleseismic and regional data that included relocation of regional seismicity, and a P to S converted wave study. The data used in these studies came from a broadband seismic deployment called MARS. The seismic deployment lasted 1.5 years from January 2006 to June 2007 and the stations covered much of Jalisco and Colima states as well as the western part of Michoacan states. At depth less than 50 km, P-wave receiver function images show a clear dipping slow velocity anomaly above a fast velocity layer. The slow anomaly convertor seen in receiver functions is directly above a fast dipping seismic anomaly seen in regional tomography results. The slow velocity with high Vp/Vs ratio is interpreted as a high pore fluid pressure zone within the upper layer of subducting oceanic crust. Regional seismicity was located using the double difference technique and then relocated in a tomography inversion. The seismicity is located very close to the slow dipping boundary to depths of 30-35 km and thus along the plate interface between the subducted and overlying plate. Deeper events are below the slow layer and thus are intraplate. Receiver function results also show a weaker continental Moho signal above the dipping slab that I interpret as a region of mantle serpentinization in the mantle wedge. Inland of the subduction zone, a clear Moho is observed with a maximum thickness of near 42 km although it thins to near 36 km depth towards the north approaching the Tepic-Zacoalco Rift. Using H-K analysis to examine Vp/Vs ratios in the crust, I find a band of very high Vp/Vs along the Jalisco Volcanic lineament as well as beneath the Michoacan-Guanajuato volcanic field. These observations suggest the continental crust is warm and possibly partially molten over broad areas associated with these two magmatic regions and not just locally beneath the volcanoes. I also found seismicity associated with the Jalisco Volcanic Lineament but it was trenchward of the volcanoes. This may indicate extension in this region is part of the explanation for this magmatic activity. At depths below 100 km, the tomography results show clear fast anomalies, about 0.3 km/s faster than the reference model, dipping to the northeast that I interpret as the subducting Rivera and Cocos plates. Tomography models show that the Rivera slab is dipping much steeper than the Cocos plate at depth. Below 150 km depth, the Rivera plate shows an almost vertical dip supporting the interpretation that the slab has steepened through time beneath Jalisco leading to a coastward migration of young volcanism with mixed geochemical signatures. The location of the young volcanism of the Jalisco Volcanic Lineament is just at the edge of the steeply dipping slab seen in the tomography. The magmatism is thus likely a nascent arc. The models also display evidence of a gap between the Rivera and Cocos plates that increases in width with depth marking the boundary between the two plates. The gap lies just to the west of Colima graben and allows asthenosphere to rise above the plates feeding Colima volcano. Another interesting finding from this study is a possibility of a slab tear along the western edge of the Cocos plate at a depth of about 50 km extending 60 km horizontally. The tear is coincident with a lack of seismicity in this region although there are events below and above the tear. / text
56

Optimerade material för optiska komponenter i koncentrerande solfångare

Öberg, Malin January 2015 (has links)
The energy consumption continues to increase as the use of electronics and energy consuming equipment increases. The use of fossil fuels has to be phased out for this to be sustainable in the long run while the use of renewable energy continues to increase. A renewable energy source is solar energy but the production of heat and electricity are today very expensive compared to other energy sources and an important task for the solar energy market to grow is therefore to minimize the production cost of the solar collectors while increasing its efficiency to produce heat and/or electricity. One way to convert solar energy into heat is by using solar collectors and electricity can be produced by utilizing the produced heat, or by applying solar cells. This thesis aims to recommend a reflective material for the next generation solar collectors from Absolicon and to recommend a commercially available coating for the receiver tube of the solar collector. A market study has been carried out to investigate the cost-related aspects along with the optical and durable aspects for the optical material of the solar collector. Experimental evaluations have been performed to ensure that the optical materials meet the requirements that the supplier promises. The optical properties have been evaluated with advanced measuring equipment at the Ångströmlaboratoriet at Uppsala University and with an infrared camera. The measured values from the infrared camera were in turn used to theoretically calculate the thermal losses of the receiver tubes. To investigate the materials durability the materials were subjected to different climates in a climate chamber and all the tests that has been conducted in this thesis have been carried out both before and after the climate chamber simulation to investigate the materials optical and physical durability. An important aspect of the laminated films is that they should have good adhesive properties even when subjected to high temperatures and high humidity and a method to evaluate this has been developed. The result of the thesis shows that aluminum reflectors obtain the best optical results for concentrated solar collectors, but since aluminum is not suitable for the Absolicon solar collector TC160 the recommended reflector material is SF2, which showed good optical, adherent and durable properties which is desirable for a good solar collector and a total reflectance of 92.4 % was obtained. The material that is recommended as a receiver tube is R2 with a measured absorptance of 95.9 %, an emissivity of 17.7 % and the thermal energy loss was calculated to 1055 W. R2 is durable in high humidity and temperatures of 85°C for over 300 hours without the optical characteristics deteriorated. Based on the recommended materials, the next generation solar collectors from Absolicon obtained a theoretical calculated optical efficiency of 76 %.
57

Receiver Design and Performance Study for Amplify-and-Forward Cooperative Diversity Networks with Reduced CSI Requirement

LIU, PENG 25 June 2014 (has links)
This thesis aims to tackle the theoretical challenges of characterizing the fundamental performance limits of amplify-and-forward (AF) cooperative networks and to resolve the practical challenges in the receiver design for AF systems. First of all, we study the Shannon-theoretic channel capacity which serves as a benchmark for practical wireless communications systems. Specifically, we derive exact expressions of the ergodic capacity in a single-integral form for general multi-branch AF relay networks with/without the direct link (DL). Moreover, we derive closed-form and tight upper bounds on the ergodic capacity, which facilitate the evaluation of the ergodic capacity. These expressions provide useful theoretical tools for the design of practical wireless AF relaying systems. We then tackle the practical challenges involved in the design of AF receivers, aiming to substantially reduce the channel state information (CSI) signaling overhead yet achieving satisfactory error performance. We take the maximum-likelihood (ML) and generalized likelihood ratio test (GLRT) approaches to develop detectors under four typical wireless communications scenarios with little/no knowledge of the CSI. Firstly, for a semi-coherent scenario where only the product of channel coefficients of each relay branch is known, we develop the ML symbol-by-symbol (SBS) detector, which reduces the instantaneous CSI signaling overhead by 50% while achieving comparable performance to the ideal coherent receiver. Secondly, for the noncoherent scenario with only the (second-order) channel statistics and noise variances, we develop a noncoherent ML SBS detector for AF networks employing differential modulations. Thirdly, for AF networks with only the knowledge of the noise variance, we develop a sequence detector using GLRT. Lastly, for a completely blind scenario where the instantaneous CSI, channel statistics, and noise variances are all unknown, we develop a GLRT-based sequence detector. The proposed detectors achieve significant performance improvements over the state-of-the-art counterparts. The conducted theoretical analysis and practical design will facilitate the design of reliable communications over wireless AF networks with reduced CSI requirement. / Thesis (Ph.D, Electrical & Computer Engineering) -- Queen's University, 2014-06-25 16:48:05.912
58

Semi-parametric inference for the partial area under the ROC curve

Sun, Fangfang. January 2008 (has links)
Thesis (M.S.)--Georgia State University, 2008. / Title from file title page. Gengsheng Qin, committee chair; Yu-Sheng Hsu, Yixin Fang, Yuanhui Xiao, committee members. Description based on contents viewed July 22, 2009. Includes bibliographical references (p. 29-30).
59

Un circuit de réception GPS tolérant aux erreurs de l’électronique / Tolerant GPS receiver circuit for electronics errors

Hafidhi, Mohamed Mourad 16 November 2017 (has links)
La réduction de la taille des transistors et des tensions d’alimentations permettent de concevoir des circuits intégrés de plus en plus complexes. Cependant, en abordant les limites de l’intégration des transistors et en fleuretant avec les tensions d’alimentation minimale, la fiabilité des circuits n’est plus garantie : des erreurs dues aux perturbations environnementales peuvent apparaitre. L’apparition de ces erreurs affectent le comportement du circuit et peuvent, par intermittence ou de façon permanente, le rendre inapte à rendre le service pour lequel il a été conçu. Par conséquent, il est de plus en plus important de considérer les effets de ces erreurs dans la conception des futurs circuits. L’objectif de la thèse est de traiter la fiabilité des systèmes numériques et d’introduire de nouvelles techniques de tolérance aux pannes permettant de construire des applications de traitement de signal fiables sur un électronique peu fiable. Un exemple d’application a été considéré durant la thèse : les modules de poursuite dans un récepteur GPS. Ces modules contiennent un ensemble d’applications de traitement de signal avec des exigences de fiabilité différentes : fonction de corrélation, boucles de rétroactions, machines d’états, générateurs de codes et de porteuses. À partir d’une version standard d’un récepteur GPS, des mécanismes de redondance ont été proposés et ajoutés pour concevoir un récepteur GPS plus tolérant aux erreurs. Un circuit intégré (ASIC) sera conçu en utilisant une technologie 28 nm pour valider les performances de ces techniques et faire les tests de mesures de consommation d’énergie. Au cours de la thèse, une plate-forme d’émulation a été conçue pour préparer l’environnement expérimental à utiliser une fois l’ASIC fondu. / There is continual motivation to scale down transistors size and to reduce the supply voltage of the circuits. However, by approaching the limits of transistor scaling and operating at a minimal supply voltage, circuit reliability has emerged as a critical concern. Circuits become more and more susceptible to errors due to Process, Voltage and Temperature (PVT) variations. Occurrence of errors can affect the behavior of circuits and generate a permanent system failure. Therefore, it is increasingly important to deal with errors effects in order to keep future devices working properly. The objective of the thesis is to address the reliability in digital systems and introduce new fault tolerant techniques to perform reliable signal processing applications on unreliable hardware. An example of application has been considered in the thesis: the tracking process of GPS receivers. It contains a very interesting set of different signal processing problem with different requirements of reliability: Correlation process, tracking loops (recursive operations), state machine, Gold and carrier generators. Starting from a noiseless GPS receiver, redundant mechanisms have been proposed and added to design a more resilient GPS receiver tolerant to errors. An Application-Specific Integrated Circuit (ASIC) will be designed, based on thesis results, using the 28 nm technology to validate the performances of the proposed techniques performances. During the thesis, an emulation platform was designed to prepare the experimental environment for the ASIC.
60

Lithospheric Structure Across the Northern Canadian Cordillera from Teleseismic Receiver Functions

Ashoori Pareshkoohi, Azadeh January 2016 (has links)
A major change in seismic velocities between Earth’s crust and mantle is known as the Mohorovicic discontinuity (Moho). The depth of the Moho plays an important role in characterizing the overall structure of the crust and can be related to the tectonic setting of a region. Teleseismic P-wave receiver function techniques can provide estimates of the depth of the Moho and therefore crustal thickness under a broadband station. In this research we are interested in the structure of the crust and mantle across the northern Canadian cordillera, described by various tectonic settings. The teleseismic data recorded by broadband three-component seismic stations are used to perform receiver function analysis to determine the lateral variations of Moho depth under northern Canadian cordillera and map out the crustal thickness under the broadband stations. Based on visual inspection of receiver function results in the region, we find evidence of anisotropy or dipping reflectors in the crustal structure of the northern cordillera observed in back-azimuthal variations of transverse component receiver functions. We further provide a quantitative interpretation of receiver function in terms of anisotropy or dipping structure by decomposing the azimuthal variations of depth migrated receiver functions into back-azimuthal harmonics. This technique can be used to map out the orientation of anisotropy that may be related to cracks and/or rock texture caused by deformation. We resolve the Moho at an average depth of ~35 km along the western profile of the study area. Harmonic decomposition along the study area yields crustal anisotropy at depth 5-20 km, which does not extend in the lower crust. This can be the result of complex deformation at a detachment zone like a quasi-rigid displacement of the upper crust over a lower crust. The detected anisotropy over the study area is not coherent as the slow symmetry directions detected by harmonic decomposition are highly variable.

Page generated in 0.1118 seconds